An Entropy-based Adaptive DBSCAN Clustering Algorithm and Its Application in THz Wireless Channels
Terahertz (THz) communication has emerged as a highly promising technology in the field of sixth-generation (6G) communication systems. The understanding of propagation behavior, channel characteristics, and the development of a realistic channel model are essential prerequisites for THz communicati...
Uloženo v:
| Vydáno v: | IEEE transactions on antennas and propagation Ročník 71; číslo 12; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-926X, 1558-2221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Terahertz (THz) communication has emerged as a highly promising technology in the field of sixth-generation (6G) communication systems. The understanding of propagation behavior, channel characteristics, and the development of a realistic channel model are essential prerequisites for THz communications. Notably, THz channels exhibit the distinctive feature of sparse clustering, which is a characteristic unique to THz channels. In this paper, we propose an entropy-based adaptive density-based spatial clustering of applications with noise (EBA-DBSCAN) algorithm for efficient cluster analysis in THz communication channels. The EBA-DBSCAN algorithm combines the entropy method (EM) and the median absolute deviation method (MAD) to determine the clustering order and obtain an adaptive neighborhood radius for each multipath component (MPC). Extensive measurement campaigns are conducted in an indoor L-shaped hallway, covering the frequency range from 215 GHz to 225 GHz. The clustering performance and time complexity of the proposed algorithm are comprehensively evaluated. Furthermore, we analyze the cluster parameters by considering the distribution characteristics of the surrounding environment. The clustering characteristics presented in this study significantly contribute to a better understanding of radio propagation and serve as a foundation for the development of efficient and accurate cluster-based channel models for 6G THz communication systems. |
|---|---|
| AbstractList | Terahertz (THz) communication has emerged as a highly promising technology in the field of sixth-generation (6G) communication systems. The understanding of propagation behavior, channel characteristics, and the development of a realistic channel model are essential prerequisites for THz communications. Notably, THz channels exhibit the distinctive feature of sparse clustering, which is a characteristic unique to THz channels. In this paper, we propose an entropy-based adaptive density-based spatial clustering of applications with noise (EBA-DBSCAN) algorithm for efficient cluster analysis in THz communication channels. The EBA-DBSCAN algorithm combines the entropy method (EM) and the median absolute deviation method (MAD) to determine the clustering order and obtain an adaptive neighborhood radius for each multipath component (MPC). Extensive measurement campaigns are conducted in an indoor L-shaped hallway, covering the frequency range from 215 GHz to 225 GHz. The clustering performance and time complexity of the proposed algorithm are comprehensively evaluated. Furthermore, we analyze the cluster parameters by considering the distribution characteristics of the surrounding environment. The clustering characteristics presented in this study significantly contribute to a better understanding of radio propagation and serve as a foundation for the development of efficient and accurate cluster-based channel models for 6G THz communication systems. Terahertz (THz) communication has emerged as a highly promising technology in the field of sixth-generation (6G) communication systems. The understanding of propagation behavior, channel characteristics, and the development of a realistic channel model are essential prerequisites for THz communications. Notably, THz channels exhibit the distinctive feature of sparse clustering, which is a characteristic unique to THz channels. In this article, we propose an entropy-based adaptive density-based spatial clustering of applications with noise (EBA-DBSCAN) algorithm for efficient cluster analysis in THz communication channels. The EBA-DBSCAN algorithm combines the entropy method (EM) and the median absolute deviation (MAD) method to determine the clustering order and obtain an adaptive neighborhood radius for each multipath component (MPC). Extensive measurement campaigns are conducted in an indoor L-shaped hallway, covering the frequency range from 215 to 225 GHz. The clustering performance and time complexity of the proposed algorithm are comprehensively evaluated. Furthermore, we analyze the cluster parameters by considering the distribution characteristics of the surrounding environment. The clustering characteristics presented in this study significantly contribute to a better understanding of radio propagation and serve as a foundation for the development of efficient and accurate cluster-based channel models for 6G THz communication systems. |
| Author | Wang, Yang Wang, Guangjian Li, Xianjin Zhang, Jie Yu, Ziming Luo, Jiao Liao, Xi |
| Author_xml | – sequence: 1 givenname: Jiao surname: Luo fullname: Luo, Jiao organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 2 givenname: Xi orcidid: 0000-0003-2416-1282 surname: Liao fullname: Liao, Xi organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 3 givenname: Yang orcidid: 0000-0003-2481-962X surname: Wang fullname: Wang, Yang organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 4 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, UK – sequence: 5 givenname: Ziming surname: Yu fullname: Yu, Ziming organization: Huawei Technologies Co., Ltd, China – sequence: 6 givenname: Guangjian orcidid: 0000-0003-1048-1226 surname: Wang fullname: Wang, Guangjian organization: Huawei Technologies Co., Ltd, China – sequence: 7 givenname: Xianjin surname: Li fullname: Li, Xianjin organization: Huawei Technologies Co., Ltd, China |
| BookMark | eNp9kM9LwzAYhoNMcJvePXgIeO7Mr2bNsdbpBkMFJ3oLaZNpRpfWJBPmX2_ndhAPnj4-eJ_v5XsGoOcaZwA4x2iEMRJXi_xxRBChI0oJF4QdgT5O0ywhhOAe6COEs0QQ_noCBiGsupVljPVBmTs4cdE37TYpVTAa5lq10X4aeHP9VOT3sKg3IRpv3RvM67fG2_i-hsppOIsB5m1b20pF2zhoHVxMv-CL9aY2IcDiXTln6nAKjpeqDubsMIfg-XayKKbJ_OFuVuTzpCKCxCTVgmi1zLjmqVIZV2qc8gxpTE2lSsEy0iU00ppUaak1GyMlykpRQihlJTN0CC73d1vffGxMiHLVbLzrKiURiHHMGOVdCu1TlW9C8GYpW2_Xym8lRnJnUnYm5c6kPJjsEP4HqWz8-Tl6Zev_wIs9aI0xv3oowiml9Bvb7oJG |
| CODEN | IETPAK |
| CitedBy_id | crossref_primary_10_3390_drones9080586 crossref_primary_10_1109_ACCESS_2025_3566743 crossref_primary_10_1016_j_dsim_2025_01_011 crossref_primary_10_1109_JIOT_2024_3447082 |
| Cites_doi | 10.1109/LAWP.2020.3040477 10.1109/LAWP.2022.3180179 10.1109/TWC.2017.2740206 10.1109/TVT.2019.2951374 10.1109/VTC2020-Spring48590.2020.9129206 10.1109/TAP.2021.3137417 10.1109/TBDATA.2018.2840696 10.1109/TAP.2022.3217159 10.1109/TWC.2020.3026356 10.1109/TAP.2022.3143253 10.1109/TAP.2022.3140538 10.1109/TAP.2016.2546953 10.1109/ICC45855.2022.9839013 10.1109/TCOMM.2022.3171800 10.1109/TAP.2022.3149663 10.1109/ICEICT53123.2021.9531238 10.1109/TWC.2021.3090781 10.1109/ACCESS.2020.2981293 10.23919/JCC.2021.05.001 10.23919/JCC.2022.11.008 10.23919/JCC.2022.06.009 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TAP.2023.3326924 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2221 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TAP_2023_3326924 10301533 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Chongqing Municipality grantid: cstc2021jcyj-msxmX0634 funderid: 10.13039/501100005230 – fundername: National Natural Science Foundation of China grantid: 62171071; 62271095 funderid: 10.13039/501100001809 – fundername: the Natural Science Foundation Innovation and Development Joint Fund project of Chongqing under Grant grantid: CSTB2022NSCQ-LZX0073 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 AAYXX ABFSI ACKIV AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH TAF VH1 VJK VOH 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c292t-5d92daf86d65aa86aa75680d13ecab94825d9d0dd2c5bdd470a9bca322334b4e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001164974500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-926X |
| IngestDate | Mon Jun 30 08:15:40 EDT 2025 Sat Nov 29 05:23:29 EST 2025 Tue Nov 18 22:04:19 EST 2025 Wed Aug 27 02:37:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-5d92daf86d65aa86aa75680d13ecab94825d9d0dd2c5bdd470a9bca322334b4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2481-962X 0000-0003-1048-1226 0000-0003-2416-1282 |
| PQID | 2904614436 |
| PQPubID | 85476 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TAP_2023_3326924 crossref_citationtrail_10_1109_TAP_2023_3326924 ieee_primary_10301533 proquest_journals_2904614436 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on antennas and propagation |
| PublicationTitleAbbrev | TAP |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 (ref4) 2018 ref23 Kashyap (ref24) ref25 ref20 ref22 ref21 Guo (ref15) ref8 ref7 (ref3) 2019 ref9 ref6 ref5 |
| References_xml | – ident: ref9 doi: 10.1109/LAWP.2020.3040477 – ident: ref11 doi: 10.1109/LAWP.2022.3180179 – ident: ref14 doi: 10.1109/TWC.2017.2740206 – ident: ref5 doi: 10.1109/TVT.2019.2951374 – ident: ref17 doi: 10.1109/VTC2020-Spring48590.2020.9129206 – volume-title: Study Channel Model for Frequencies From 0.5 to 100 GHz (Release 16) year: 2019 ident: ref3 – start-page: 486 volume-title: Proc. 3rd Int. Conf. Signal Process. Integr. Netw. (SPIN) ident: ref24 article-title: A variant of DBSCAN algorithm to find embedded and nested adjacent clusters – volume-title: Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations year: 2018 ident: ref4 – ident: ref25 doi: 10.1109/TAP.2021.3137417 – ident: ref12 doi: 10.1109/TBDATA.2018.2840696 – ident: ref18 doi: 10.1109/TAP.2022.3217159 – ident: ref8 doi: 10.1109/TWC.2020.3026356 – ident: ref13 doi: 10.1109/TAP.2022.3143253 – ident: ref23 doi: 10.1109/TAP.2022.3140538 – ident: ref16 doi: 10.1109/TAP.2016.2546953 – ident: ref20 doi: 10.1109/ICC45855.2022.9839013 – ident: ref1 doi: 10.1109/TCOMM.2022.3171800 – ident: ref10 doi: 10.1109/TAP.2022.3149663 – start-page: 1 volume-title: Proc. 13th Eur. Conf. Antennas Propag. (EuCAP) ident: ref15 article-title: A clustering algorithm based on joint kernel density for millimeter wave radio channels – ident: ref19 doi: 10.1109/ICEICT53123.2021.9531238 – ident: ref21 doi: 10.1109/TWC.2021.3090781 – ident: ref22 doi: 10.1109/ACCESS.2020.2981293 – ident: ref2 doi: 10.23919/JCC.2021.05.001 – ident: ref7 doi: 10.23919/JCC.2022.11.008 – ident: ref6 doi: 10.23919/JCC.2022.06.009 |
| SSID | ssj0014844 |
| Score | 2.4498672 |
| Snippet | Terahertz (THz) communication has emerged as a highly promising technology in the field of sixth-generation (6G) communication systems. The understanding of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 6G mobile communication Adaptive algorithms Algorithms channel measurement Channels Cluster analysis Clustering Clustering algorithms Communication Communications systems Delays Entropy Frequency measurement Frequency ranges Halls multipath clustering radio propagation Radio transmission Terahertz communication Wireless communication |
| Title | An Entropy-based Adaptive DBSCAN Clustering Algorithm and Its Application in THz Wireless Channels |
| URI | https://ieeexplore.ieee.org/document/10301533 https://www.proquest.com/docview/2904614436 |
| Volume | 71 |
| WOSCitedRecordID | wos001164974500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2221 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014844 issn: 0018-926X databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyIKBXlgYUjrOM7DYyhUsFRIFKlbZPscqBTSqk2R4NdjJykUIZDYMpyjyJ_v4dzddwhdcAI01Io5AMJ3mJDgcOUxh3haE5YKwiNVDpsIh8NoPOb3dbN62QujtS6Lz3TXPpa5fJiqpf1V1rMjsWx80kCNMAyrZq3PlAGLWEW57BoNpsF4lZMkvDeK77t2THjXM8EKp-ybDyqHqvywxKV7Gez-88P20E4dR-K4An4fbej8AG2vsQseIhnn-MYWos_eHOusAMcgZta84eurh348xP1saXkSjDSOs6fpfFI8v2CRA74rFjj-Sm3jSY5Ht-_YlspmxjRi25OQG6_aQo-Dm1H_1qlHKjiKclo4PnAKIo0CCHwhokCI0A8iAq6nlZCcmfsicCAAVPkSgIVEcKmE0XrPY5Jp7wg182mujxHmZr_d1CVSMsEinkYqoMrAkrrS59KXbdRbbXKiar5xO_YiS8p7B-GJgSWxsCQ1LG10-bliVnFt_CHbsjCsyVUItFFnBWRSa-MiodzSyjPmBSe_LDtFW_btVZ1KBzWL-VKfoU31WkwW8_PyoH0AYlDP5w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VFgk4UB5FDbRlD1w4OFmvx489mrRVKkpUiSDlZu3urEuk4ESJUwl-Pbu2U4pQkXrzYVa29tt5rGfmG4APkpNIrcGASMUBKk2BNBEGPLKWY6m4zEwzbCIdj7PpVF51zepNL4y1tik-s33_2OTyaWE2_lfZwI_E8vHJI9iLEUXYtmvdJg0ww5Z0OXQ6LJLpNivJ5WCSX_X9oPB-5MIVKfAvL9SMVfnHFjcO5nz_gZ_2Ap53kSTLW-hfwo6tXsGzO_yCr0HnFTvzpejLn4F3V8RyUktv4Njpp6_DfMyG841nSnDSLJ9fL1az-vsPpipiF_Wa5X-S22xWscnoF_PFsnNnHJnvSqicXz2Ab-dnk-Eo6IYqBEZIUQcxSUGqzBJKYqWyRKk0TjJOYWSN0hLdjZEkcSJhYk2EKVdSG-X0PopQo43ewG61qOwhMOn2OyxDrjUqzGSZmUSYNE3LUMdSx7oHg-0mF6ZjHPeDL-ZFc_PgsnCwFB6WooOlBx9vVyxbto3_yB54GO7ItQj04GgLZNHp47oQ0hPLI0bJ23uWvYcno8mXy-LyYvz5HTz1b2qrVo5gt15t7DE8Njf1bL06aQ7db12a0y4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Entropy-Based+Adaptive+DBSCAN+Clustering+Algorithm+and+Its+Application+in+THz+Wireless+Channels&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Luo%2C+Jiao&rft.au=Liao%2C+Xi&rft.au=Wang%2C+Yang&rft.au=Zhang%2C+Jie&rft.date=2023-12-01&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=71&rft.issue=12&rft.spage=9830&rft.epage=9837&rft_id=info:doi/10.1109%2FTAP.2023.3326924&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAP_2023_3326924 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |