On the Fundamental Limits of Matrix Completion: Leveraging Hierarchical Similarity Graphs

We study a matrix completion problem which leverages a hierarchical structure of social similarity graphs as side information in the context of recommender systems. We assume that users are categorized into clusters, each of which comprises sub-clusters (or what we call "groups"). We consi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 70; H. 3; S. 2039 - 2075
Hauptverfasser: Ahn, Junhyung, Elmahdy, Adel, Mohajer, Soheil, Suh, Changho
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study a matrix completion problem which leverages a hierarchical structure of social similarity graphs as side information in the context of recommender systems. We assume that users are categorized into clusters, each of which comprises sub-clusters (or what we call "groups"). We consider a hierarchical stochastic block model that well respects practically-relevant social graphs and follows a low-rank rating matrix model. Under this setting, we characterize the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) as a function of the quality of graph side information (to be detailed) by proving sharp upper and lower bounds on the sample complexity. One important consequence of this result is that leveraging the hierarchical structure of similarity graphs yields a substantial gain in sample complexity relative to the one that simply identifies different groups without resorting to the relational structure across them. Another implication of the result is when the graph information is rich, the optimal sample complexity is proportional to the number of clusters, while it nearly stays constant as the number of groups in a cluster increases. We empirically demonstrate through extensive experiments that the proposed algorithm achieves the optimal sample complexity.
AbstractList We study a matrix completion problem which leverages a hierarchical structure of social similarity graphs as side information in the context of recommender systems. We assume that users are categorized into clusters, each of which comprises sub-clusters (or what we call “groups”). We consider a hierarchical stochastic block model that well respects practically-relevant social graphs and follows a low-rank rating matrix model. Under this setting, we characterize the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) as a function of the quality of graph side information (to be detailed) by proving sharp upper and lower bounds on the sample complexity. One important consequence of this result is that leveraging the hierarchical structure of similarity graphs yields a substantial gain in sample complexity relative to the one that simply identifies different groups without resorting to the relational structure across them. Another implication of the result is when the graph information is rich, the optimal sample complexity is proportional to the number of clusters, while it nearly stays constant as the number of groups in a cluster increases. We empirically demonstrate through extensive experiments that the proposed algorithm achieves the optimal sample complexity.
Author Elmahdy, Adel
Suh, Changho
Ahn, Junhyung
Mohajer, Soheil
Author_xml – sequence: 1
  givenname: Junhyung
  orcidid: 0009-0003-0345-1608
  surname: Ahn
  fullname: Ahn, Junhyung
  email: tonyahn96@kaist.ac.kr
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
– sequence: 2
  givenname: Adel
  orcidid: 0000-0002-2977-2237
  surname: Elmahdy
  fullname: Elmahdy, Adel
  email: adel@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Soheil
  orcidid: 0000-0003-2254-1652
  surname: Mohajer
  fullname: Mohajer, Soheil
  email: soheil@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 4
  givenname: Changho
  orcidid: 0000-0002-3101-4291
  surname: Suh
  fullname: Suh, Changho
  email: chsuh@kaist.ac.kr
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
BookMark eNp9kDtPwzAUhS1UJEphZ2CwxJziR1wnbKiiDymoA2VgsuzEaV0lTrBdRP89rtoBMbDcl853r-65BgPbWQ3AHUZjjFH-uF6uxwQROqY0ZTkiF2CIGeNJPmHpAAwRwlmSp2l2Ba6938U2ZZgMwcfKwrDVcLa3lWy1DbKBhWlN8LCr4asMznzDadf2jQ6ms0-w0F_ayY2xG7gwsXLl1pQReotQI50JBzh3st_6G3BZy8br23MegffZy3q6SIrVfDl9LpKS5CQkTHGdVjVnFSs5woTLGDliVKu6IkrllapxlnGlKs7rOEuxzIlklKKSqIrQEXg47e1d97nXPohdt3c2nhTxAJ8gTngWVZOTqnSd907XojRBHl8KTppGYCSONopoozjaKM42RhD9AXtnWukO_yH3J8RorX_JKWcMY_oDEX6AMQ
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110456
Cites_doi 10.1109/TNSE.2016.2634322
10.1145/1864708.1864736
10.1109/MC.2009.263
10.1007/s13278-013-0141-9
10.1214/15-aos1428
10.1137/100811404
10.1561/9781680834772
10.1109/TIT.2010.2054251
10.1109/TIT.2015.2490670
10.1145/3321386
10.1109/ICASSP.2010.5495899
10.1137/080738970
10.1109/CCNC.2006.1593032
10.1109/ALLERTON.2018.8636058
10.1109/JPROC.2009.2035722
10.1016/j.physa.2011.12.021
10.1145/1557019.1557067
10.1007/s10107-017-1181-0
10.1073/pnas.98.2.404
10.1609/aaai.v29i1.9153
10.5555/2969442.2969475
10.1145/1458082.1458205
10.1109/ACCESS.2019.2928130
10.1007/s10208-009-9045-5
10.1109/ISIT50566.2022.9834449
10.1109/TPDS.2012.192
10.1145/1571941.1571978
10.1109/ICDM.2017.74
10.1016/j.acha.2015.08.003
10.1109/TIT.2010.2046205
10.1109/ICASSP.2017.7952911
10.1109/TSP.2021.3052033
10.1109/TPAMI.2012.271
10.1109/FOCS.2015.47
10.1002/0471722154
10.1007/s12532-012-0044-1
10.1145/1639714.1639745
10.1145/1935826.1935877
10.1145/2365952.2365969
10.5555/2969442.2969624
10.1137/110845768
10.1109/TIT.2010.2044061
10.1146/annurev.soc.27.1.415
10.1109/TPAMI.2010.231
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2023.3345902
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 2075
ExternalDocumentID 10_1109_TIT_2023_3345902
10375511
Genre orig-research
GrantInformation_xml – fundername: KAIST
  grantid: N11230067
  funderid: 10.13039/501100007107
– fundername: Korean Government [Ministry of Science and ICT (MSIT)], Development and Study of AI Technologies to Inexpensively Conform to Evolving Policy on Ethics
  grantid: 2022-0-00184
– fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant
– fundername: Korea Advanced Institute of Science and Technology (KAIST) Grand Challenge 30 Program
  funderid: 10.13039/501100007107
– fundername: National Science Foundation
  grantid: CCF-1749981
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-5b7e4df75d5c70127a7017053ebfd2bb9dbf1887bbd77fbfd41a92a5330c2bd23
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001203295400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 30 05:01:23 EST 2025
Sat Nov 29 03:31:51 EST 2025
Tue Nov 18 22:05:35 EST 2025
Wed Aug 27 02:17:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-5b7e4df75d5c70127a7017053ebfd2bb9dbf1887bbd77fbfd41a92a5330c2bd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-0345-1608
0000-0003-2254-1652
0000-0002-2977-2237
0000-0002-3101-4291
PQID 2927607278
PQPubID 36024
PageCount 37
ParticipantIDs crossref_primary_10_1109_TIT_2023_3345902
crossref_citationtrail_10_1109_TIT_2023_3345902
ieee_primary_10375511
proquest_journals_2927607278
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref58
ref52
ref11
ref55
ref10
ref17
Ashtiani (ref53)
ref16
Massa (ref14)
ref19
ref18
Elmahdy (ref28); 33
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Mohan (ref37) 2012; 11
ref43
ref49
ref7
ref9
ref4
ref3
Mazumdar (ref54)
ref5
Wang (ref39)
ref40
Kalofolias (ref8) 2014
ref35
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Jo (ref27) 2020
van den Berg (ref21) 2017
Fazel (ref34) 2002
MacWilliams (ref57) 1977; 16
ref23
ref26
ref25
ref22
Li (ref6)
ref29
Monti (ref20); 30
Ahn (ref24)
Gao (ref50) 2017; 18
References_xml – year: 2014
  ident: ref8
  article-title: Matrix completion on graphs
  publication-title: arXiv:1408.1717
– ident: ref51
  doi: 10.1109/TNSE.2016.2634322
– year: 2002
  ident: ref34
  article-title: Matrix rank minimization with applications
– year: 2017
  ident: ref21
  article-title: Graph convolutional matrix completion
  publication-title: arXiv:1706.02263
– ident: ref5
  doi: 10.1145/1864708.1864736
– ident: ref1
  doi: 10.1109/MC.2009.263
– ident: ref3
  doi: 10.1007/s13278-013-0141-9
– start-page: 1126
  volume-title: Proc. Int. Joint Conf. Artif. Intell. (IJCAI)
  ident: ref6
  article-title: Relation regularized matrix factorization
– ident: ref58
  doi: 10.1214/15-aos1428
– ident: ref36
  doi: 10.1137/100811404
– year: 2020
  ident: ref27
  article-title: Discrete-valued preference estimation with graph side information
  publication-title: arXiv:2003.07040
– ident: ref55
  doi: 10.1561/9781680834772
– ident: ref38
  doi: 10.1109/TIT.2010.2054251
– ident: ref56
  doi: 10.1109/TIT.2015.2490670
– ident: ref52
  doi: 10.1145/3321386
– ident: ref42
  doi: 10.1109/ICASSP.2010.5495899
– start-page: 121
  volume-title: Proc. AAAI
  ident: ref14
  article-title: Controversial users demand local trust metrics: An experimental study on Epinions.com community
– ident: ref35
  doi: 10.1137/080738970
– ident: ref15
  doi: 10.1109/CCNC.2006.1593032
– ident: ref25
  doi: 10.1109/ALLERTON.2018.8636058
– ident: ref46
  doi: 10.1109/JPROC.2009.2035722
– ident: ref47
  doi: 10.1016/j.physa.2011.12.021
– start-page: 4272
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref24
  article-title: Binary rating estimation with graph side information
– volume: 11
  start-page: 3441
  year: 2012
  ident: ref37
  article-title: Iterative reweighted algorithms for matrix rank minimization
  publication-title: J. Mach. Learn. Res.
– ident: ref16
  doi: 10.1145/1557019.1557067
– ident: ref45
  doi: 10.1007/s10107-017-1181-0
– ident: ref48
  doi: 10.1073/pnas.98.2.404
– ident: ref11
  doi: 10.1609/aaai.v29i1.9153
– ident: ref23
  doi: 10.5555/2969442.2969475
– ident: ref9
  doi: 10.1145/1458082.1458205
– ident: ref30
  doi: 10.1109/ACCESS.2019.2928130
– ident: ref31
  doi: 10.1007/s10208-009-9045-5
– ident: ref29
  doi: 10.1109/ISIT50566.2022.9834449
– ident: ref18
  doi: 10.1109/TPDS.2012.192
– ident: ref10
  doi: 10.1145/1571941.1571978
– start-page: 91
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref39
  article-title: Rank-one matrix pursuit for matrix completion
– ident: ref12
  doi: 10.1109/ICDM.2017.74
– ident: ref40
  doi: 10.1016/j.acha.2015.08.003
– start-page: 4682
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref54
  article-title: Query complexity of clustering with side information
– ident: ref32
  doi: 10.1109/TIT.2010.2046205
– ident: ref13
  doi: 10.1109/ICASSP.2017.7952911
– start-page: 3216
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref53
  article-title: Clustering with same-cluster queries
– volume: 30
  start-page: 3697
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref20
  article-title: Geometric matrix completion with recurrent multi-graph neural networks
– ident: ref26
  doi: 10.1109/TSP.2021.3052033
– ident: ref44
  doi: 10.1109/TPAMI.2012.271
– ident: ref49
  doi: 10.1109/FOCS.2015.47
– volume: 33
  start-page: 9061
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref28
  article-title: Matrix completion with hierarchical graph side information
– ident: ref59
  doi: 10.1002/0471722154
– ident: ref41
  doi: 10.1007/s12532-012-0044-1
– ident: ref17
  doi: 10.1145/1639714.1639745
– volume: 16
  volume-title: The Theory Error Correcting Codes
  year: 1977
  ident: ref57
– ident: ref7
  doi: 10.1145/1935826.1935877
– ident: ref19
  doi: 10.1145/2365952.2365969
– ident: ref22
  doi: 10.5555/2969442.2969624
– ident: ref43
  doi: 10.1137/110845768
– volume: 18
  start-page: 1980
  year: 2017
  ident: ref50
  article-title: Achieving optimal misclassification proportion in stochastic block models
  publication-title: J. Mach. Learn. Res.
– ident: ref33
  doi: 10.1109/TIT.2010.2044061
– ident: ref2
  doi: 10.1146/annurev.soc.27.1.415
– ident: ref4
  doi: 10.1109/TPAMI.2010.231
SSID ssj0014512
Score 2.4501178
Snippet We study a matrix completion problem which leverages a hierarchical structure of social similarity graphs as side information in the context of recommender...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2039
SubjectTerms Algorithms
Clustering algorithms
Clusters
Collaborative filtering
Complexity
Complexity theory
Filtering
graph side information
Graphs
Information theory
Lower bounds
matrix completion problem
Recommender systems
Similarity
Sparse matrices
Title On the Fundamental Limits of Matrix Completion: Leveraging Hierarchical Similarity Graphs
URI https://ieeexplore.ieee.org/document/10375511
https://www.proquest.com/docview/2927607278
Volume 70
WOSCitedRecordID wos001203295400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20eNCD1VqxWmUPXjykTbKbbOJNxFqhVsEK9RSyX1AoiTSt-POd3SSlIgreQthZkrz9mMnse4PQZaxTQShLHZbyyKGBJA6sgdSB8Swj6kVcaEsUHrHxOJpO4-eKrG65MEope_hM9cylzeXLXKzMr7K-4bTBDg_BzjZjYUnWWqcMaOCV0uAezGAIOuqcpBv3Jw-TnikT3iOEGrmSb3uQLaryYyW228ug-c8HO0D7lR-Jb0rgD9GWylqoWddowNWUbaG9DcHBI_T2lGHw-PDA8D9KWX9sKU4FzjV-NHL9n9h0YiS58-wajxQMdVvICA9nhqtsS6fM8QsYQUwMLjy-N5LXRRu9Du4mt0OnKq7gCD_2l07AmaJSs0AGgpn8c8qstA5RXEuf81hy7QFinEvGNNyjXhr7qTmMKnwufXKMGlmeqROEiQt9hFQHKlSUMj9KOXVlLDgJUuIL0kH9-nMnolIeNwUw5omNQNw4AYASA1BSAdRBV2uL91J144-2bQPIRrsSiw7q1pAm1bwsEnh1Frrgs0Wnv5idoV3onZbHzLqosVys1DnaER_LWbG4sEPuCwxg084
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7IFNQH7-K85sEXH7q1Sbq0vok4J25TcMJ8Ks2lMJBW7BR_vidpNxRR8K2UJL18uZyTk-87AKdxlirGReqJVEYeDzXzcA7kHvZnHfEgkipzROG-GA6j8Ti-r8nqjgtjjHGHz0zLXrpYvi7Um90qa1tOG67w6OwshpxTv6JrzYMGPAwqcfAAxzC6HbOopB-3Rzejlk0U3mKMW8GSb6uQS6vyYy52C0x3_Z-vtgFrtSVJLiroN2HB5FuwPsvSQOpBuwWrXyQHt-HpLido85GuZYBUwv7EkZxKUmRkYAX7P4htxIpyF_k56Rvs7C6VEelNLFvZJU95Jg9YCb1iNOLJtRW9LnfgsXs1uux5dXoFT9GYTr1QCsN1JkIdKmEj0Klw4jrMyExTKWMtswAxk1ILkeE9HqQxTe1xVEWlpmwXGnmRmz0gzMc2OjwLTcdwLmiUSu7rWEkWpowq1oT27HcnqtYetykwnhPng_hxggAlFqCkBqgJZ_MaL5Xuxh9ldywgX8pVWDThcAZpUo_MMsFPFx0frbZo_5dqJ7DcGw36Sf9meHsAK_gkXh06O4TG9PXNHMGSep9Oytdj1_0-ATlE1xU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Fundamental+Limits+of+Matrix+Completion%3A+Leveraging+Hierarchical+Similarity+Graphs&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Ahn%2C+Junhyung&rft.au=Elmahdy%2C+Adel&rft.au=Mohajer%2C+Soheil&rft.au=Suh%2C+Changho&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=70&rft.issue=3&rft.spage=2039&rft.epage=2075&rft_id=info:doi/10.1109%2FTIT.2023.3345902&rft.externalDocID=10375511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon