On the computation of intrinsic Proper Generalized Decomposition modes of parametric symmetric elliptic problems on Grassmann manifolds

In this work, we introduce an iterative optimization algorithm to obtain the intrinsic Proper Generalized Decomposition modes of elliptic partial differential equations. The main idea behind this procedure is to adapt the general Gradient Descent algorithm to the algebraic version of the intrinsic P...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 470; s. 128579
Hlavní autori: Bandera, Alejandro, Fernández-García, Soledad, Gómez-Mármol, Macarena
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.06.2024
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this work, we introduce an iterative optimization algorithm to obtain the intrinsic Proper Generalized Decomposition modes of elliptic partial differential equations. The main idea behind this procedure is to adapt the general Gradient Descent algorithm to the algebraic version of the intrinsic Proper Generalized Decomposition framework, and then to couple a one-dimensional case of the algorithm with a deflation algorithm in order to keep enriching the solution by computing further intrinsic Proper Generalized Decomposition modes. For this novel iterative optimization procedure, we present some numerical tests based on physical parametric problems, in which we obtain very promising results in comparison with the ones already presented in the literature. This supports the use of this procedure in order to obtain the intrinsic PGD modes of parametric symmetric problems. •Computation of Proper Generalized Decomposition modes geometrically.•Adaptation of the Gradient Descent algorithm to the Proper Generalized Decomposition matrix framework.•Application to physical problems with very promising results compared to previous literature.
AbstractList In this work, we introduce an iterative optimization algorithm to obtain the intrinsic Proper Generalized Decomposition modes of elliptic partial differential equations. The main idea behind this procedure is to adapt the general Gradient Descent algorithm to the algebraic version of the intrinsic Proper Generalized Decomposition framework, and then to couple a one-dimensional case of the algorithm with a deflation algorithm in order to keep enriching the solution by computing further intrinsic Proper Generalized Decomposition modes. For this novel iterative optimization procedure, we present some numerical tests based on physical parametric problems, in which we obtain very promising results in comparison with the ones already presented in the literature. This supports the use of this procedure in order to obtain the intrinsic PGD modes of parametric symmetric problems. •Computation of Proper Generalized Decomposition modes geometrically.•Adaptation of the Gradient Descent algorithm to the Proper Generalized Decomposition matrix framework.•Application to physical problems with very promising results compared to previous literature.
ArticleNumber 128579
Author Fernández-García, Soledad
Gómez-Mármol, Macarena
Bandera, Alejandro
Author_xml – sequence: 1
  givenname: Alejandro
  orcidid: 0000-0002-5633-2333
  surname: Bandera
  fullname: Bandera, Alejandro
  email: abandera@us.es
  organization: Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Calle Tarfia s/n, Seville, 41012, Spain
– sequence: 2
  givenname: Soledad
  orcidid: 0000-0001-6993-407X
  surname: Fernández-García
  fullname: Fernández-García, Soledad
  organization: Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Calle Tarfia s/n, Seville, 41012, Spain
– sequence: 3
  givenname: Macarena
  surname: Gómez-Mármol
  fullname: Gómez-Mármol, Macarena
  organization: Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Calle Tarfia s/n, Seville, 41012, Spain
BookMark eNp9kM9KAzEQh4NUsK0-gLe8wK7J_slu8CRVq1CoBz2HdHaCKbvJkqxCfQFf29R69jQ_mN83DN-CzJx3SMg1ZzlnXNzscz1AXrCiynnR1o08I3PeNmVWi0rOyJwxKbKSsfKCLGLcM8Yawas5-d46Or0jBT-MH5OerHfUG2rdFKyLFuhL8CMGukaHQff2Czt6j8e2j_a3PfgO45EZddADJg5oPAx_CfvejlMKY_C7HofUdHQddIyDdgnWzhrfd_GSnBvdR7z6m0vy9vjwunrKNtv18-puk0EhiymrWy4rJnnZ7GpTgyk7aTQIDVCAlEVXG4GihrREIZngKRqoRN2gFDtoebkk_HQXgo8xoFFjsIMOB8WZOppUe5VMqqNJdTKZmNsTg-mxT4tBRbDoADsbECbVefsP_QP6V4Hk
Cites_doi 10.1007/s40324-019-00198-7
10.1007/s11831-010-9049-y
10.1137/S0895479895290954
10.1007/s11831-010-9053-2
10.1137/17M1137164
10.1007/s12289-009-0647-x
10.1016/j.jnnfm.2006.07.007
10.7151/dmdico.1078
10.1146/annurev.fl.25.010193.002543
10.1007/s002110100282
10.1007/s11831-011-9064-7
10.1051/m2an/2011053
10.1137/S0036142901389049
10.1016/j.jmaa.2010.12.003
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.amc.2024.128579
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
ExternalDocumentID 10_1016_j_amc_2024_128579
S0096300324000511
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6I.
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
LG9
M26
M41
R2-
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c292t-5819409137b5f5cf3d9fac6acc2c992d5f6e65cb5fe690615cbfc4657e96bc813
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171237000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 07:22:35 EST 2025
Sat Mar 02 16:01:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Symmetric elliptic problems
Proper Generalized Decomposition
Gradient descent
Grassmann manifold
Reduced order modeling
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-5819409137b5f5cf3d9fac6acc2c992d5f6e65cb5fe690615cbfc4657e96bc813
ORCID 0000-0001-6993-407X
0000-0002-5633-2333
OpenAccessLink https://dx.doi.org/10.1016/j.amc.2024.128579
ParticipantIDs crossref_primary_10_1016_j_amc_2024_128579
elsevier_sciencedirect_doi_10_1016_j_amc_2024_128579
PublicationCentury 2000
PublicationDate 2024-06-01
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Schilders, Van der Vorst, Rommes (br0150) 2008
Bendokat, Zimmermann, Absil (br0190) 2020
Chinesta, Ladeveze, Cueto (br0070) 2011; 18
Quarteroni, Manzoni, Negri (br0120) 2015
Magnus, Neudecker (br0210) 2019
Petersen, Pedersen (br0220) 2008; 7
Néron, Ladevèze (br0110) 2010; 17
Ammar (br0010) 2010; 3
Chinesta, Keunings, Leygue (br0060) 2013
Rathinam, Petzold (br0130) 2003; 41
Hesthaven, Rozza, Stamm (br0080) 2015
Volkwein (br0140) 2013; 4
Azaïez, Rebollo, Mármol (br0180) 2020; 77
Falco, Nouy (br0170) 2011; 376
Kunisch, Volkwein (br0100) 2001; 90
Kahlbacher, Volkwein (br0090) 2007; 27
Azaïez, Belgacem, Casado-Díaz, Rebollo, Murat (br0160) 2018; 50
Ammar, Mokdad, Chinesta, Keunings (br0020) 2006; 139
Chapelle, Gariah, Sainte-Marie (br0040) 2012; 46
Chinesta, Ammar, Cueto (br0050) 2010; 17
Edelman, Arias, Smith (br0200) 1998; 20
Berkooz, Holmes, Lumley (br0030) 1993; 25
Rathinam (10.1016/j.amc.2024.128579_br0130) 2003; 41
Volkwein (10.1016/j.amc.2024.128579_br0140) 2013; 4
Azaïez (10.1016/j.amc.2024.128579_br0180) 2020; 77
Magnus (10.1016/j.amc.2024.128579_br0210) 2019
Ammar (10.1016/j.amc.2024.128579_br0020) 2006; 139
Berkooz (10.1016/j.amc.2024.128579_br0030) 1993; 25
Chinesta (10.1016/j.amc.2024.128579_br0060) 2013
Falco (10.1016/j.amc.2024.128579_br0170) 2011; 376
Kahlbacher (10.1016/j.amc.2024.128579_br0090) 2007; 27
Chinesta (10.1016/j.amc.2024.128579_br0050) 2010; 17
Bendokat (10.1016/j.amc.2024.128579_br0190)
Kunisch (10.1016/j.amc.2024.128579_br0100) 2001; 90
Ammar (10.1016/j.amc.2024.128579_br0010) 2010; 3
Néron (10.1016/j.amc.2024.128579_br0110) 2010; 17
Azaïez (10.1016/j.amc.2024.128579_br0160) 2018; 50
Quarteroni (10.1016/j.amc.2024.128579_br0120) 2015
Hesthaven (10.1016/j.amc.2024.128579_br0080) 2015
Chinesta (10.1016/j.amc.2024.128579_br0070) 2011; 18
Schilders (10.1016/j.amc.2024.128579_br0150) 2008
Edelman (10.1016/j.amc.2024.128579_br0200) 1998; 20
Chapelle (10.1016/j.amc.2024.128579_br0040) 2012; 46
Petersen (10.1016/j.amc.2024.128579_br0220) 2008; 7
References_xml – volume: 17
  start-page: 327
  year: 2010
  end-page: 350
  ident: br0050
  article-title: Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models
  publication-title: Arch. Comput. Methods Eng.
– volume: 27
  start-page: 95
  year: 2007
  end-page: 117
  ident: br0090
  article-title: Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems
  publication-title: Discuss. Math., Differ. Incl. Control Optim.
– volume: 77
  start-page: 59
  year: 2020
  end-page: 72
  ident: br0180
  article-title: On the computation of proper generalized decomposition modes of parametric elliptic problems
  publication-title: SeMA J.
– year: 2020
  ident: br0190
  article-title: A Grassmann manifold handbook: basic geometry and computational aspects
– volume: 20
  start-page: 303
  year: 1998
  end-page: 353
  ident: br0200
  article-title: The geometry of algorithms with orthogonality constraints
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 139
  start-page: 153
  year: 2006
  end-page: 176
  ident: br0020
  article-title: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 17
  start-page: 351
  year: 2010
  end-page: 372
  ident: br0110
  article-title: Proper generalized decomposition for multiscale and multiphysics problems
  publication-title: Arch. Comput. Methods Eng.
– volume: 46
  start-page: 731
  year: 2012
  end-page: 757
  ident: br0040
  article-title: Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples
  publication-title: ESAIM: Math. Model. Numer. Anal.
– volume: 90
  start-page: 117
  year: 2001
  end-page: 148
  ident: br0100
  article-title: Galerkin proper orthogonal decomposition methods for parabolic problems
  publication-title: Numer. Math.
– volume: 41
  start-page: 1893
  year: 2003
  end-page: 1925
  ident: br0130
  article-title: A new look at proper orthogonal decomposition
  publication-title: SIAM J. Numer. Anal.
– year: 2019
  ident: br0210
  article-title: Matrix Differential Calculus with Applications in Statistics and Econometrics
– volume: 50
  start-page: 5426
  year: 2018
  end-page: 5445
  ident: br0160
  article-title: A new algorithm of proper generalized decomposition for parametric symmetric elliptic problems
  publication-title: SIAM J. Math. Anal.
– volume: 3
  start-page: 89
  year: 2010
  end-page: 102
  ident: br0010
  article-title: The proper generalized decomposition: a powerful tool for model reduction
  publication-title: Int. J. Mater. Form.
– volume: 25
  start-page: 539
  year: 1993
  end-page: 575
  ident: br0030
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– year: 2013
  ident: br0060
  article-title: The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer
– year: 2008
  ident: br0150
  article-title: Model Order Reduction: Theory, Research Aspects and Applications, vol. 13
– volume: 18
  start-page: 395
  year: 2011
  ident: br0070
  article-title: A short review on model order reduction based on proper generalized decomposition
  publication-title: Arch. Comput. Methods Eng.
– year: 2015
  ident: br0120
  article-title: Reduced Basis Methods for Partial Differential Equations: An Introduction
– volume: 376
  start-page: 469
  year: 2011
  end-page: 480
  ident: br0170
  article-title: A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach
  publication-title: J. Math. Anal. Appl.
– volume: 7
  start-page: 510
  year: 2008
  ident: br0220
  article-title: The matrix cookbook
  publication-title: Tech. Univ. Den.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 29
  ident: br0140
  article-title: Proper orthogonal decomposition: theory and reduced-order modelling
  publication-title: Lect. Notes Univ. Konstanz
– year: 2015
  ident: br0080
  article-title: Certified Reduced Basis Methods for Parametrized Partial Differential Equations
– volume: 77
  start-page: 59
  issue: 1
  year: 2020
  ident: 10.1016/j.amc.2024.128579_br0180
  article-title: On the computation of proper generalized decomposition modes of parametric elliptic problems
  publication-title: SeMA J.
  doi: 10.1007/s40324-019-00198-7
– volume: 17
  start-page: 327
  issue: 4
  year: 2010
  ident: 10.1016/j.amc.2024.128579_br0050
  article-title: Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-010-9049-y
– volume: 4
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.amc.2024.128579_br0140
  article-title: Proper orthogonal decomposition: theory and reduced-order modelling
  publication-title: Lect. Notes Univ. Konstanz
– year: 2008
  ident: 10.1016/j.amc.2024.128579_br0150
– volume: 20
  start-page: 303
  issue: 2
  year: 1998
  ident: 10.1016/j.amc.2024.128579_br0200
  article-title: The geometry of algorithms with orthogonality constraints
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479895290954
– year: 2019
  ident: 10.1016/j.amc.2024.128579_br0210
– volume: 17
  start-page: 351
  year: 2010
  ident: 10.1016/j.amc.2024.128579_br0110
  article-title: Proper generalized decomposition for multiscale and multiphysics problems
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-010-9053-2
– volume: 50
  start-page: 5426
  issue: 5
  year: 2018
  ident: 10.1016/j.amc.2024.128579_br0160
  article-title: A new algorithm of proper generalized decomposition for parametric symmetric elliptic problems
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/17M1137164
– volume: 3
  start-page: 89
  issue: 2
  year: 2010
  ident: 10.1016/j.amc.2024.128579_br0010
  article-title: The proper generalized decomposition: a powerful tool for model reduction
  publication-title: Int. J. Mater. Form.
  doi: 10.1007/s12289-009-0647-x
– volume: 139
  start-page: 153
  issue: 3
  year: 2006
  ident: 10.1016/j.amc.2024.128579_br0020
  article-title: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2006.07.007
– year: 2013
  ident: 10.1016/j.amc.2024.128579_br0060
– volume: 27
  start-page: 95
  issue: 1
  year: 2007
  ident: 10.1016/j.amc.2024.128579_br0090
  article-title: Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems
  publication-title: Discuss. Math., Differ. Incl. Control Optim.
  doi: 10.7151/dmdico.1078
– year: 2015
  ident: 10.1016/j.amc.2024.128579_br0120
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  ident: 10.1016/j.amc.2024.128579_br0030
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.002543
– year: 2015
  ident: 10.1016/j.amc.2024.128579_br0080
– volume: 90
  start-page: 117
  year: 2001
  ident: 10.1016/j.amc.2024.128579_br0100
  article-title: Galerkin proper orthogonal decomposition methods for parabolic problems
  publication-title: Numer. Math.
  doi: 10.1007/s002110100282
– ident: 10.1016/j.amc.2024.128579_br0190
– volume: 18
  start-page: 395
  issue: 4
  year: 2011
  ident: 10.1016/j.amc.2024.128579_br0070
  article-title: A short review on model order reduction based on proper generalized decomposition
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-011-9064-7
– volume: 46
  start-page: 731
  issue: 4
  year: 2012
  ident: 10.1016/j.amc.2024.128579_br0040
  article-title: Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2011053
– volume: 41
  start-page: 1893
  issue: 5
  year: 2003
  ident: 10.1016/j.amc.2024.128579_br0130
  article-title: A new look at proper orthogonal decomposition
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901389049
– volume: 7
  start-page: 510
  issue: 15
  year: 2008
  ident: 10.1016/j.amc.2024.128579_br0220
  article-title: The matrix cookbook
  publication-title: Tech. Univ. Den.
– volume: 376
  start-page: 469
  issue: 2
  year: 2011
  ident: 10.1016/j.amc.2024.128579_br0170
  article-title: A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.12.003
SSID ssj0007614
Score 2.426448
Snippet In this work, we introduce an iterative optimization algorithm to obtain the intrinsic Proper Generalized Decomposition modes of elliptic partial differential...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128579
SubjectTerms Gradient descent
Grassmann manifold
Proper Generalized Decomposition
Reduced order modeling
Symmetric elliptic problems
Title On the computation of intrinsic Proper Generalized Decomposition modes of parametric symmetric elliptic problems on Grassmann manifolds
URI https://dx.doi.org/10.1016/j.amc.2024.128579
Volume 470
WOSCitedRecordID wos001171237000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcUPlSCxT5wAmUajeJk_hYoBQQ2yJRpL1FiT-krDbeVXapCn-AH8YfYyaOnbRQiR64RE5iO1HmyZ7Yb94Q8kKLDH4qRBJk0bgMYi15wGGeDqSUhQrDieRxGyj8KT05yWYz_nk0-uViYc4XqTHZxQVf_VdTwzUwNobO3sDcvlO4AGUwOhzB7HD8J8OfWuKiaNM1eIewMpumMmskwuPye-P0pqsfCqnIWLujb7XJcVqCB8qC15hxS7xaf6-7Egp4rlDltUtF0243HDfgg9eFMciGrfRyYcOHvbxt5-rWXiN27eLp3Dv2K6oYbVN0sTfzAvUUhmve7cb-BBe-g2MwXHv6tq3-ZblQspCeUIS3Xkc1VJzaRk1ts4lNC6S72azhbsEjjHtilhvEOdL1xtFwEI9t-pFuGIZJl9kcNX_MEHaxYn5Q1ChgGcYHfd3LatxXZknPXXS0uHkOXeTYRW67uEW2w5RxmB22Dz8czT56hyBNrMS8e2-3ud7SDK-8x9_do4HLc7ZD7nX_KvTQYuw-GSnzgNyd9kZ8SH6eGgqndGBJutTUo41atNEB2ugltNEWbdimRxv1aKMObdShjUITjzbq0faIfH13dPbmfdDl9ghEyMNNwMATjVGTNi2ZZkJHkutCJIUQoeA8lEwnKmECbiqU0p5AUYs4YaniSQnjS_SYbJmlUbuE6lSlGpqA85nGhUzLTGbhZFzqLFKalWyPvHSfNF9ZCZf8WiPukdh99LzzQa1vmQOArm_25CbPeEru9Lh-RrY2zTe1T26L8021bp536PkNO5Ctpw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+computation+of+intrinsic+Proper+Generalized+Decomposition+modes+of+parametric+symmetric+elliptic+problems+on+Grassmann+manifolds&rft.jtitle=Applied+mathematics+and+computation&rft.au=Bandera%2C+Alejandro&rft.au=Fern%C3%A1ndez-Garc%C3%ADa%2C+Soledad&rft.au=G%C3%B3mez-M%C3%A1rmol%2C+Macarena&rft.date=2024-06-01&rft.issn=0096-3003&rft.volume=470&rft.spage=128579&rft_id=info:doi/10.1016%2Fj.amc.2024.128579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2024_128579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon