Deep Reinforcement Learning-Based Dynamic Reconfiguration Planning for Digital Twin-Driven Smart Manufacturing Systems With Reconfigurable Machine Tools

Smart manufacturing systems are a new paradigm in Industry 4.0 driven by the emerging information and communication technology and artificial intelligence that converge to digital twin, which are able to perceive, recognize, and handle the changes in demand and production. Reconfigurable machine too...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 20; číslo 11; s. 13135 - 13146
Hlavní autori: Huang, Jintang, Huang, Sihan, Moghaddam, Shokraneh K., Lu, Yuqian, Wang, Guoxin, Yan, Yan, Shi, Xuejiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Smart manufacturing systems are a new paradigm in Industry 4.0 driven by the emerging information and communication technology and artificial intelligence that converge to digital twin, which are able to perceive, recognize, and handle the changes in demand and production. Reconfigurable machine tools (RMTs) can promote the flexibility of smart manufacturing systems. The fundamental problem lies in dynamically reconfiguring the RMTs in smart manufacturing systems efficiently and accurately by considering the flexibility of production precedence and operation sequences simultaneously. Therefore, in this article, a deep reinforcement learning-based reconfiguration planning method of digital twin-driven smart manufacturing systems with RMT is proposed to seek optimal reconfiguration policy online. The reconfiguration processes of smart manufacturing systems are modeled by considering reconfiguration cost, moving cost, and processing cost. Deep Q -network is adopted to explore the state space and action space to find the optimal reconfiguration scheme with the highest return. An industry case study is presented to demonstrate the effectiveness and efficiency of the proposed method, where the reconfiguration processes of a smart manufacturing system consisting of five RMTs for producing four parts are discussed.
AbstractList Smart manufacturing systems are a new paradigm in Industry 4.0 driven by the emerging information and communication technology and artificial intelligence that converge to digital twin, which are able to perceive, recognize, and handle the changes in demand and production. Reconfigurable machine tools (RMTs) can promote the flexibility of smart manufacturing systems. The fundamental problem lies in dynamically reconfiguring the RMTs in smart manufacturing systems efficiently and accurately by considering the flexibility of production precedence and operation sequences simultaneously. Therefore, in this article, a deep reinforcement learning-based reconfiguration planning method of digital twin-driven smart manufacturing systems with RMT is proposed to seek optimal reconfiguration policy online. The reconfiguration processes of smart manufacturing systems are modeled by considering reconfiguration cost, moving cost, and processing cost. Deep Q -network is adopted to explore the state space and action space to find the optimal reconfiguration scheme with the highest return. An industry case study is presented to demonstrate the effectiveness and efficiency of the proposed method, where the reconfiguration processes of a smart manufacturing system consisting of five RMTs for producing four parts are discussed.
Author Moghaddam, Shokraneh K.
Wang, Guoxin
Lu, Yuqian
Yan, Yan
Shi, Xuejiang
Huang, Jintang
Huang, Sihan
Author_xml – sequence: 1
  givenname: Jintang
  surname: Huang
  fullname: Huang, Jintang
  email: huangjt0119@163.com
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Sihan
  orcidid: 0000-0002-4086-2903
  surname: Huang
  fullname: Huang, Sihan
  email: hsh@bit.edu.cn
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Shokraneh K.
  orcidid: 0000-0001-8864-0229
  surname: Moghaddam
  fullname: Moghaddam, Shokraneh K.
  email: s.khashkhashimoghadam@herts.ac.uk
  organization: School of Physics, Engineering, and Computer Science, University of Hertfordshire, Hatfield, U.K
– sequence: 4
  givenname: Yuqian
  orcidid: 0000-0001-5954-0421
  surname: Lu
  fullname: Lu, Yuqian
  email: yuqian.lu@auckland.ac.nz
  organization: Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
– sequence: 5
  givenname: Guoxin
  orcidid: 0000-0003-2363-8595
  surname: Wang
  fullname: Wang, Guoxin
  email: wangguoxin@bit.edu.cn
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Yan
  orcidid: 0000-0001-8555-0156
  surname: Yan
  fullname: Yan, Yan
  email: yanyan331@bit.edu.cn
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 7
  givenname: Xuejiang
  surname: Shi
  fullname: Shi, Xuejiang
  email: 81321763@qq.com
  organization: Hongyun Honghe Tobacco Group, Kunming, China
BookMark eNp9kT1PIzEQhi3ESQSO_goKS9Qb_LkfJRAOIgVxugRdufJ6Z4PRxg62l1P-CT8Xr0KBKKjGIz3PWDPvMTq0zgJCvyiZUkqqi9V8PmWEiSkXPPXyAE1oJWhGiCSH6S0lzTgj_Agdh_BMCC8IrybobQawxX_B2M55DRuwES9AeWvsOrtSAVo821m1MTpB2tnOrAevonEW_-mVHTGcTDwzaxNVj1f_jc1m3ryCxcuN8hHfKzt0SsfBj-xyFyJsAv5n4tPniU0PidRPxgJeOdeHn-hHp_oApx_1BD3-vlld32WLh9v59eUi06xiMZOyyjtV5i0IrgRtW8qrVjaEgCi6ohG8aBrSsVLRQiitZNq7aItWkEaIhlWSn6Dz_dytdy8DhFg_u8Hb9GXNKRMly8tKJCrfU9q7EDx0tU7rjmeIXpm-pqQeU6hTCvWYQv2RQhLJF3HrTbrL7jvlbK8YAPiE51QUouTv9K-W8A
CODEN ITIICH
CitedBy_id crossref_primary_10_3390_systems13090762
crossref_primary_10_1007_s10696_024_09585_3
crossref_primary_10_1016_j_rcim_2025_102982
crossref_primary_10_3390_systems13090800
crossref_primary_10_1080_00207543_2025_2497961
crossref_primary_10_1007_s00170_024_14732_z
crossref_primary_10_3390_systems13080631
crossref_primary_10_1016_j_cie_2025_111362
crossref_primary_10_3390_app15095208
crossref_primary_10_1007_s40171_025_00447_x
crossref_primary_10_1186_s10033_025_01239_1
crossref_primary_10_1109_JIOT_2025_3564295
crossref_primary_10_1016_j_cie_2025_110878
crossref_primary_10_1109_JSEN_2025_3526362
crossref_primary_10_1109_TSMC_2025_3572389
crossref_primary_10_1016_j_aei_2025_103386
crossref_primary_10_1016_j_rineng_2025_105527
crossref_primary_10_1016_j_aei_2025_103268
crossref_primary_10_1038_s41598_024_82154_8
crossref_primary_10_1080_00207543_2025_2474215
crossref_primary_10_1016_j_swevo_2025_101907
crossref_primary_10_1186_s10033_025_01346_z
crossref_primary_10_1016_j_jmsy_2025_08_016
crossref_primary_10_1007_s10845_025_02621_5
crossref_primary_10_1016_j_jii_2025_100901
crossref_primary_10_1109_ACCESS_2025_3532600
crossref_primary_10_70322_ism_2025_10024
crossref_primary_10_1016_j_measurement_2025_117152
crossref_primary_10_1109_ACCESS_2025_3546085
Cites_doi 10.1016/j.ijpe.2020.107884
10.1016/j.jmsy.2018.09.005
10.1080/00207543.2016.1145821
10.1016/j.cirp.2020.04.008
10.1007/BF00992698
10.1080/00207543.2017.1351644
10.1109/LRA.2019.2930432
10.1080/00207543.2020.1813913
10.1109/TII.2018.2843811
10.1016/j.swevo.2021.100868
10.1007/s00170-021-08522-0
10.1126/science.220.4598.671
10.1613/jair.301
10.1109/TII.2020.3035451
10.1016/j.jmsy.2021.05.011
10.1016/j.rcim.2019.101895
10.1080/00207543.2018.1518605
10.1016/j.jmsy.2021.04.016
10.1080/00207543.2010.482566
10.1016/S0007-8506(07)63232-6
10.1080/00207543.2017.1406674
10.1109/MSP.2017.2743240
10.1109/TII.2018.2873186
10.1007/s11465-018-0483-0
10.1080/00207543.2020.1847340
10.1109/tnn.1998.712192
10.1109/TII.2012.2188900
10.1080/00207543.2013.856528
10.1109/TII.2019.2954334
10.1007/s11465-018-0499-5
10.1080/00207543.2018.1522006
10.1007/s42524-023-0286-9
10.1080/0951192X.2019.1699256
10.1109/JIOT.2019.2950048
10.1080/00207543.2020.1766719
10.3390/app12105172
10.1016/j.cirp.2007.05.112
10.1109/TII.2021.3061419
10.1016/j.jmsy.2021.03.001
10.1109/CASE48305.2020.9216985
10.1007/978-3-031-46452-2_9
10.1109/TII.2022.3146552
10.1080/00207543.2021.1943037
10.1109/LRA.2022.3184795
10.1016/j.ijmachtools.2006.03.017
10.1007/s11042-020-10139-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2024.3431095
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 13146
ExternalDocumentID 10_1109_TII_2024_3431095
10614748
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51975056
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: L243009
  funderid: 10.13039/501100004826
– fundername: National Key Research and Development Program of China
  grantid: 2021YFB1716201
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
  funderid: 10.13039/501100012236
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-5596fa86de43a41dd139d5b00e47f7b437bb0f28a174aca50377d7d40b44b2953
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283800400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:16:48 EDT 2025
Sat Nov 29 04:17:14 EST 2025
Tue Nov 18 21:43:02 EST 2025
Wed Aug 27 03:06:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-5596fa86de43a41dd139d5b00e47f7b437bb0f28a174aca50377d7d40b44b2953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4086-2903
0000-0001-5954-0421
0000-0003-2363-8595
0000-0001-8555-0156
0000-0001-8864-0229
OpenAccessLink https://ieeexplore.ieee.org/document/10614748
PQID 3124826894
PQPubID 85507
PageCount 12
ParticipantIDs ieee_primary_10614748
crossref_citationtrail_10_1109_TII_2024_3431095
crossref_primary_10_1109_TII_2024_3431095
proquest_journals_3124826894
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Li (ref42) 2017
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref22
  doi: 10.1016/j.ijpe.2020.107884
– ident: ref18
  doi: 10.1016/j.jmsy.2018.09.005
– ident: ref20
  doi: 10.1080/00207543.2016.1145821
– ident: ref46
  doi: 10.1016/j.cirp.2020.04.008
– ident: ref43
  doi: 10.1007/BF00992698
– ident: ref1
  doi: 10.1080/00207543.2017.1351644
– ident: ref30
  doi: 10.1109/LRA.2019.2930432
– ident: ref19
  doi: 10.1080/00207543.2020.1813913
– ident: ref16
  doi: 10.1109/TII.2018.2843811
– ident: ref37
  doi: 10.1016/j.swevo.2021.100868
– ident: ref32
  doi: 10.1007/s00170-021-08522-0
– ident: ref36
  doi: 10.1126/science.220.4598.671
– year: 2017
  ident: ref42
  article-title: Deep reinforcement learning: An overview
– ident: ref38
  doi: 10.1613/jair.301
– ident: ref39
  doi: 10.1109/TII.2020.3035451
– ident: ref7
  doi: 10.1016/j.jmsy.2021.05.011
– ident: ref27
  doi: 10.1016/j.rcim.2019.101895
– ident: ref13
  doi: 10.1080/00207543.2018.1518605
– ident: ref24
  doi: 10.1016/j.jmsy.2021.04.016
– ident: ref34
  doi: 10.1080/00207543.2010.482566
– ident: ref11
  doi: 10.1016/S0007-8506(07)63232-6
– ident: ref26
  doi: 10.1080/00207543.2017.1406674
– ident: ref44
  doi: 10.1109/MSP.2017.2743240
– ident: ref9
  doi: 10.1109/TII.2018.2873186
– ident: ref21
  doi: 10.1007/s11465-018-0483-0
– ident: ref5
  doi: 10.1080/00207543.2020.1847340
– ident: ref41
  doi: 10.1109/tnn.1998.712192
– ident: ref4
  doi: 10.1109/TII.2012.2188900
– ident: ref12
  doi: 10.1080/00207543.2013.856528
– ident: ref40
  doi: 10.1109/TII.2019.2954334
– ident: ref2
  doi: 10.1007/s11465-018-0499-5
– ident: ref28
  doi: 10.1080/00207543.2018.1522006
– ident: ref45
  doi: 10.1007/s42524-023-0286-9
– ident: ref10
  doi: 10.1080/0951192X.2019.1699256
– ident: ref15
  doi: 10.1109/JIOT.2019.2950048
– ident: ref29
  doi: 10.1080/00207543.2020.1766719
– ident: ref17
  doi: 10.3390/app12105172
– ident: ref23
  doi: 10.1016/j.cirp.2007.05.112
– ident: ref8
  doi: 10.1109/TII.2021.3061419
– ident: ref14
  doi: 10.1016/j.jmsy.2021.03.001
– ident: ref25
  doi: 10.1109/CASE48305.2020.9216985
– ident: ref47
  doi: 10.1007/978-3-031-46452-2_9
– ident: ref3
  doi: 10.1109/TII.2022.3146552
– ident: ref33
  doi: 10.1080/00207543.2021.1943037
– ident: ref31
  doi: 10.1109/LRA.2022.3184795
– ident: ref6
  doi: 10.1016/j.ijmachtools.2006.03.017
– ident: ref35
  doi: 10.1007/s11042-020-10139-6
SSID ssj0037039
Score 2.5603054
Snippet Smart manufacturing systems are a new paradigm in Industry 4.0 driven by the emerging information and communication technology and artificial intelligence that...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13135
SubjectTerms Artificial intelligence
Deep learning
Deep reinforcement learning
digital twin
Digital twins
Flexibility
Industry 4.0
Machine tools
Manufacturing
Manufacturing systems
Optimization
Planning
Production
reconfigurable machine tools (RMTs)
Reconfiguration
reconfiguration planning
Smart manufacturing
smart manufacturing systems
Title Deep Reinforcement Learning-Based Dynamic Reconfiguration Planning for Digital Twin-Driven Smart Manufacturing Systems With Reconfigurable Machine Tools
URI https://ieeexplore.ieee.org/document/10614748
https://www.proquest.com/docview/3124826894
Volume 20
WOSCitedRecordID wos001283800400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUAcYADUKDqAq184MLBrNd24uQIbFE5FKF2EdwiO54skbbZ1X7AX-HnMnYStAhRiVsOthXpjT1-tuc9Qo45WFMI7ZjjuWHKWMUwbgzDVCsgcdLbPQSzCX19ndzfpzdNsXqohQGA8PgMTv1nuMt343zhj8q6gb5olaySVa3julirXXYlhm4axFGjHpOCy_ZOkqfdwdUVMkGhTqXyQpjRmxwUTFXercQhvVxuf_LHdshWs4-kZzXwX8gKVLtkc0ldcI889wEm9A8EbdQ8HAPSRk51yM4xeznar_3oqSehVVEOF3U80NbKiGJP2i-H3lmEDp7KivWnfnmkf_9hyNHfplr4yohQ6kgb8XN6V84flke0I8CW_s0m0MF4PJrtk9vLn4OLX6wxYmC5SMWcIeuIC5PEDpQ0quccbhtdhBMWlC60VVJbywuRGKQ3xnssSK2ddopbpaxII_mVrFXjCr4RivysZ3hkC21iBbhbkE5ziBxPhe3Fed4h3RaaLG9Uyr1ZxigLbIWnGYKZeTCzBswOOXntMakVOv7Tdt-Dt9Suxq1Djlr4s2YOzzKJWx8kX0mqDj7odkg2_Oh1aeIRWZtPF_CdrOeP83I2_RHC8wU0LORD
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQQIOfBaxUMAHLhzc9drOOjm2bKuuaFcIgugtsuPJEmnJVvsBf4Wfy9hJqkUIJG452EmkN_b42Z73AN4IdLaSxnMvSsu1dZpT3FhOqVZi6lWwe4hmE2Y2Sy8vsw9dsXqshUHEePkMD8NjPMv3y3IbtsqGkb4Ynd6EW4nWUrTlWv3Eqyh4syiPmoy4kkL1p5IiG-bTKXFBqQ-VDlKYyW9ZKNqq_DEXxwRz-uA_f-0h3O9Wkuyohf4R3MDmMdzb0Rd8Aj8niFfsI0Z11DJuBLJOUHXOjyl_eTZpHelZoKFNVc-3bUSw3syIUU82qefBW4TlP-qGT1ZhgmSfvlHQsQvbbENtRCx2ZJ38OftSb77uvtEtkFqGW5vI8uVysd6Hz6cn-bsz3lkx8FJmcsOJd4wrm449amX1yHtaOPqEhixqUxmnlXFOVDK1RHBscFlQxnjjtXBaO5kl6insNcsGnwEjhjayInGVsWONtF5Q3ghMvMikG43LcgDDHpqi7HTKg13Gooh8RWQFgVkEMIsOzAG8ve5x1Wp0_KPtfgBvp12L2wAOeviLbhSvC0WLH6Jfaaaf_6Xba7hzll-cF-fT2fsXcDd8qS1UPIC9zWqLL-F2-X1Tr1evYqj-Aja354o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning-Based+Dynamic+Reconfiguration+Planning+for+Digital+Twin-Driven+Smart+Manufacturing+Systems+With+Reconfigurable+Machine+Tools&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Huang%2C+Jintang&rft.au=Huang%2C+Sihan&rft.au=Moghaddam%2C+Shokraneh+K.&rft.au=Lu%2C+Yuqian&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=20&rft.issue=11&rft.spage=13135&rft.epage=13146&rft_id=info:doi/10.1109%2FTII.2024.3431095&rft.externalDocID=10614748
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon