Deep Reinforcement Learning-Based Dynamic Reconfiguration Planning for Digital Twin-Driven Smart Manufacturing Systems With Reconfigurable Machine Tools
Smart manufacturing systems are a new paradigm in Industry 4.0 driven by the emerging information and communication technology and artificial intelligence that converge to digital twin, which are able to perceive, recognize, and handle the changes in demand and production. Reconfigurable machine too...
Uložené v:
| Vydané v: | IEEE transactions on industrial informatics Ročník 20; číslo 11; s. 13135 - 13146 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Smart manufacturing systems are a new paradigm in Industry 4.0 driven by the emerging information and communication technology and artificial intelligence that converge to digital twin, which are able to perceive, recognize, and handle the changes in demand and production. Reconfigurable machine tools (RMTs) can promote the flexibility of smart manufacturing systems. The fundamental problem lies in dynamically reconfiguring the RMTs in smart manufacturing systems efficiently and accurately by considering the flexibility of production precedence and operation sequences simultaneously. Therefore, in this article, a deep reinforcement learning-based reconfiguration planning method of digital twin-driven smart manufacturing systems with RMT is proposed to seek optimal reconfiguration policy online. The reconfiguration processes of smart manufacturing systems are modeled by considering reconfiguration cost, moving cost, and processing cost. Deep Q -network is adopted to explore the state space and action space to find the optimal reconfiguration scheme with the highest return. An industry case study is presented to demonstrate the effectiveness and efficiency of the proposed method, where the reconfiguration processes of a smart manufacturing system consisting of five RMTs for producing four parts are discussed. |
|---|---|
| AbstractList | Smart manufacturing systems are a new paradigm in Industry 4.0 driven by the emerging information and communication technology and artificial intelligence that converge to digital twin, which are able to perceive, recognize, and handle the changes in demand and production. Reconfigurable machine tools (RMTs) can promote the flexibility of smart manufacturing systems. The fundamental problem lies in dynamically reconfiguring the RMTs in smart manufacturing systems efficiently and accurately by considering the flexibility of production precedence and operation sequences simultaneously. Therefore, in this article, a deep reinforcement learning-based reconfiguration planning method of digital twin-driven smart manufacturing systems with RMT is proposed to seek optimal reconfiguration policy online. The reconfiguration processes of smart manufacturing systems are modeled by considering reconfiguration cost, moving cost, and processing cost. Deep Q -network is adopted to explore the state space and action space to find the optimal reconfiguration scheme with the highest return. An industry case study is presented to demonstrate the effectiveness and efficiency of the proposed method, where the reconfiguration processes of a smart manufacturing system consisting of five RMTs for producing four parts are discussed. |
| Author | Moghaddam, Shokraneh K. Wang, Guoxin Lu, Yuqian Yan, Yan Shi, Xuejiang Huang, Jintang Huang, Sihan |
| Author_xml | – sequence: 1 givenname: Jintang surname: Huang fullname: Huang, Jintang email: huangjt0119@163.com organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Sihan orcidid: 0000-0002-4086-2903 surname: Huang fullname: Huang, Sihan email: hsh@bit.edu.cn organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Shokraneh K. orcidid: 0000-0001-8864-0229 surname: Moghaddam fullname: Moghaddam, Shokraneh K. email: s.khashkhashimoghadam@herts.ac.uk organization: School of Physics, Engineering, and Computer Science, University of Hertfordshire, Hatfield, U.K – sequence: 4 givenname: Yuqian orcidid: 0000-0001-5954-0421 surname: Lu fullname: Lu, Yuqian email: yuqian.lu@auckland.ac.nz organization: Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand – sequence: 5 givenname: Guoxin orcidid: 0000-0003-2363-8595 surname: Wang fullname: Wang, Guoxin email: wangguoxin@bit.edu.cn organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 6 givenname: Yan orcidid: 0000-0001-8555-0156 surname: Yan fullname: Yan, Yan email: yanyan331@bit.edu.cn organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 7 givenname: Xuejiang surname: Shi fullname: Shi, Xuejiang email: 81321763@qq.com organization: Hongyun Honghe Tobacco Group, Kunming, China |
| BookMark | eNp9kT1PIzEQhi3ESQSO_goKS9Qb_LkfJRAOIgVxugRdufJ6Z4PRxg62l1P-CT8Xr0KBKKjGIz3PWDPvMTq0zgJCvyiZUkqqi9V8PmWEiSkXPPXyAE1oJWhGiCSH6S0lzTgj_Agdh_BMCC8IrybobQawxX_B2M55DRuwES9AeWvsOrtSAVo821m1MTpB2tnOrAevonEW_-mVHTGcTDwzaxNVj1f_jc1m3ryCxcuN8hHfKzt0SsfBj-xyFyJsAv5n4tPniU0PidRPxgJeOdeHn-hHp_oApx_1BD3-vlld32WLh9v59eUi06xiMZOyyjtV5i0IrgRtW8qrVjaEgCi6ohG8aBrSsVLRQiitZNq7aItWkEaIhlWSn6Dz_dytdy8DhFg_u8Hb9GXNKRMly8tKJCrfU9q7EDx0tU7rjmeIXpm-pqQeU6hTCvWYQv2RQhLJF3HrTbrL7jvlbK8YAPiE51QUouTv9K-W8A |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_3390_systems13090762 crossref_primary_10_1007_s10696_024_09585_3 crossref_primary_10_1016_j_rcim_2025_102982 crossref_primary_10_3390_systems13090800 crossref_primary_10_1080_00207543_2025_2497961 crossref_primary_10_1007_s00170_024_14732_z crossref_primary_10_3390_systems13080631 crossref_primary_10_1016_j_cie_2025_111362 crossref_primary_10_3390_app15095208 crossref_primary_10_1007_s40171_025_00447_x crossref_primary_10_1186_s10033_025_01239_1 crossref_primary_10_1109_JIOT_2025_3564295 crossref_primary_10_1016_j_cie_2025_110878 crossref_primary_10_1109_JSEN_2025_3526362 crossref_primary_10_1109_TSMC_2025_3572389 crossref_primary_10_1016_j_aei_2025_103386 crossref_primary_10_1016_j_rineng_2025_105527 crossref_primary_10_1016_j_aei_2025_103268 crossref_primary_10_1038_s41598_024_82154_8 crossref_primary_10_1080_00207543_2025_2474215 crossref_primary_10_1016_j_swevo_2025_101907 crossref_primary_10_1186_s10033_025_01346_z crossref_primary_10_1016_j_jmsy_2025_08_016 crossref_primary_10_1007_s10845_025_02621_5 crossref_primary_10_1016_j_jii_2025_100901 crossref_primary_10_1109_ACCESS_2025_3532600 crossref_primary_10_70322_ism_2025_10024 crossref_primary_10_1016_j_measurement_2025_117152 crossref_primary_10_1109_ACCESS_2025_3546085 |
| Cites_doi | 10.1016/j.ijpe.2020.107884 10.1016/j.jmsy.2018.09.005 10.1080/00207543.2016.1145821 10.1016/j.cirp.2020.04.008 10.1007/BF00992698 10.1080/00207543.2017.1351644 10.1109/LRA.2019.2930432 10.1080/00207543.2020.1813913 10.1109/TII.2018.2843811 10.1016/j.swevo.2021.100868 10.1007/s00170-021-08522-0 10.1126/science.220.4598.671 10.1613/jair.301 10.1109/TII.2020.3035451 10.1016/j.jmsy.2021.05.011 10.1016/j.rcim.2019.101895 10.1080/00207543.2018.1518605 10.1016/j.jmsy.2021.04.016 10.1080/00207543.2010.482566 10.1016/S0007-8506(07)63232-6 10.1080/00207543.2017.1406674 10.1109/MSP.2017.2743240 10.1109/TII.2018.2873186 10.1007/s11465-018-0483-0 10.1080/00207543.2020.1847340 10.1109/tnn.1998.712192 10.1109/TII.2012.2188900 10.1080/00207543.2013.856528 10.1109/TII.2019.2954334 10.1007/s11465-018-0499-5 10.1080/00207543.2018.1522006 10.1007/s42524-023-0286-9 10.1080/0951192X.2019.1699256 10.1109/JIOT.2019.2950048 10.1080/00207543.2020.1766719 10.3390/app12105172 10.1016/j.cirp.2007.05.112 10.1109/TII.2021.3061419 10.1016/j.jmsy.2021.03.001 10.1109/CASE48305.2020.9216985 10.1007/978-3-031-46452-2_9 10.1109/TII.2022.3146552 10.1080/00207543.2021.1943037 10.1109/LRA.2022.3184795 10.1016/j.ijmachtools.2006.03.017 10.1007/s11042-020-10139-6 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2024.3431095 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 13146 |
| ExternalDocumentID | 10_1109_TII_2024_3431095 10614748 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51975056 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: L243009 funderid: 10.13039/501100004826 – fundername: National Key Research and Development Program of China grantid: 2021YFB1716201 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars funderid: 10.13039/501100012236 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-5596fa86de43a41dd139d5b00e47f7b437bb0f28a174aca50377d7d40b44b2953 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283800400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:16:48 EDT 2025 Sat Nov 29 04:17:14 EST 2025 Tue Nov 18 21:43:02 EST 2025 Wed Aug 27 03:06:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-5596fa86de43a41dd139d5b00e47f7b437bb0f28a174aca50377d7d40b44b2953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4086-2903 0000-0001-5954-0421 0000-0003-2363-8595 0000-0001-8555-0156 0000-0001-8864-0229 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10614748 |
| PQID | 3124826894 |
| PQPubID | 85507 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10614748 crossref_citationtrail_10_1109_TII_2024_3431095 crossref_primary_10_1109_TII_2024_3431095 proquest_journals_3124826894 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Li (ref42) 2017 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref22 doi: 10.1016/j.ijpe.2020.107884 – ident: ref18 doi: 10.1016/j.jmsy.2018.09.005 – ident: ref20 doi: 10.1080/00207543.2016.1145821 – ident: ref46 doi: 10.1016/j.cirp.2020.04.008 – ident: ref43 doi: 10.1007/BF00992698 – ident: ref1 doi: 10.1080/00207543.2017.1351644 – ident: ref30 doi: 10.1109/LRA.2019.2930432 – ident: ref19 doi: 10.1080/00207543.2020.1813913 – ident: ref16 doi: 10.1109/TII.2018.2843811 – ident: ref37 doi: 10.1016/j.swevo.2021.100868 – ident: ref32 doi: 10.1007/s00170-021-08522-0 – ident: ref36 doi: 10.1126/science.220.4598.671 – year: 2017 ident: ref42 article-title: Deep reinforcement learning: An overview – ident: ref38 doi: 10.1613/jair.301 – ident: ref39 doi: 10.1109/TII.2020.3035451 – ident: ref7 doi: 10.1016/j.jmsy.2021.05.011 – ident: ref27 doi: 10.1016/j.rcim.2019.101895 – ident: ref13 doi: 10.1080/00207543.2018.1518605 – ident: ref24 doi: 10.1016/j.jmsy.2021.04.016 – ident: ref34 doi: 10.1080/00207543.2010.482566 – ident: ref11 doi: 10.1016/S0007-8506(07)63232-6 – ident: ref26 doi: 10.1080/00207543.2017.1406674 – ident: ref44 doi: 10.1109/MSP.2017.2743240 – ident: ref9 doi: 10.1109/TII.2018.2873186 – ident: ref21 doi: 10.1007/s11465-018-0483-0 – ident: ref5 doi: 10.1080/00207543.2020.1847340 – ident: ref41 doi: 10.1109/tnn.1998.712192 – ident: ref4 doi: 10.1109/TII.2012.2188900 – ident: ref12 doi: 10.1080/00207543.2013.856528 – ident: ref40 doi: 10.1109/TII.2019.2954334 – ident: ref2 doi: 10.1007/s11465-018-0499-5 – ident: ref28 doi: 10.1080/00207543.2018.1522006 – ident: ref45 doi: 10.1007/s42524-023-0286-9 – ident: ref10 doi: 10.1080/0951192X.2019.1699256 – ident: ref15 doi: 10.1109/JIOT.2019.2950048 – ident: ref29 doi: 10.1080/00207543.2020.1766719 – ident: ref17 doi: 10.3390/app12105172 – ident: ref23 doi: 10.1016/j.cirp.2007.05.112 – ident: ref8 doi: 10.1109/TII.2021.3061419 – ident: ref14 doi: 10.1016/j.jmsy.2021.03.001 – ident: ref25 doi: 10.1109/CASE48305.2020.9216985 – ident: ref47 doi: 10.1007/978-3-031-46452-2_9 – ident: ref3 doi: 10.1109/TII.2022.3146552 – ident: ref33 doi: 10.1080/00207543.2021.1943037 – ident: ref31 doi: 10.1109/LRA.2022.3184795 – ident: ref6 doi: 10.1016/j.ijmachtools.2006.03.017 – ident: ref35 doi: 10.1007/s11042-020-10139-6 |
| SSID | ssj0037039 |
| Score | 2.5603054 |
| Snippet | Smart manufacturing systems are a new paradigm in Industry 4.0 driven by the emerging information and communication technology and artificial intelligence that... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13135 |
| SubjectTerms | Artificial intelligence Deep learning Deep reinforcement learning digital twin Digital twins Flexibility Industry 4.0 Machine tools Manufacturing Manufacturing systems Optimization Planning Production reconfigurable machine tools (RMTs) Reconfiguration reconfiguration planning Smart manufacturing smart manufacturing systems |
| Title | Deep Reinforcement Learning-Based Dynamic Reconfiguration Planning for Digital Twin-Driven Smart Manufacturing Systems With Reconfigurable Machine Tools |
| URI | https://ieeexplore.ieee.org/document/10614748 https://www.proquest.com/docview/3124826894 |
| Volume | 20 |
| WOSCitedRecordID | wos001283800400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUAcYADUKDqAq184MLBrNd24uQIbFE5FKF2EdwiO54skbbZ1X7AX-HnMnYStAhRiVsOthXpjT1-tuc9Qo45WFMI7ZjjuWHKWMUwbgzDVCsgcdLbPQSzCX19ndzfpzdNsXqohQGA8PgMTv1nuMt343zhj8q6gb5olaySVa3julirXXYlhm4axFGjHpOCy_ZOkqfdwdUVMkGhTqXyQpjRmxwUTFXercQhvVxuf_LHdshWs4-kZzXwX8gKVLtkc0ldcI889wEm9A8EbdQ8HAPSRk51yM4xeznar_3oqSehVVEOF3U80NbKiGJP2i-H3lmEDp7KivWnfnmkf_9hyNHfplr4yohQ6kgb8XN6V84flke0I8CW_s0m0MF4PJrtk9vLn4OLX6wxYmC5SMWcIeuIC5PEDpQ0quccbhtdhBMWlC60VVJbywuRGKQ3xnssSK2ddopbpaxII_mVrFXjCr4RivysZ3hkC21iBbhbkE5ziBxPhe3Fed4h3RaaLG9Uyr1ZxigLbIWnGYKZeTCzBswOOXntMakVOv7Tdt-Dt9Suxq1Djlr4s2YOzzKJWx8kX0mqDj7odkg2_Oh1aeIRWZtPF_CdrOeP83I2_RHC8wU0LORD |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQQIOfBaxUMAHLhzc9drOOjm2bKuuaFcIgugtsuPJEmnJVvsBf4Wfy9hJqkUIJG452EmkN_b42Z73AN4IdLaSxnMvSsu1dZpT3FhOqVZi6lWwe4hmE2Y2Sy8vsw9dsXqshUHEePkMD8NjPMv3y3IbtsqGkb4Ynd6EW4nWUrTlWv3Eqyh4syiPmoy4kkL1p5IiG-bTKXFBqQ-VDlKYyW9ZKNqq_DEXxwRz-uA_f-0h3O9Wkuyohf4R3MDmMdzb0Rd8Aj8niFfsI0Z11DJuBLJOUHXOjyl_eTZpHelZoKFNVc-3bUSw3syIUU82qefBW4TlP-qGT1ZhgmSfvlHQsQvbbENtRCx2ZJ38OftSb77uvtEtkFqGW5vI8uVysd6Hz6cn-bsz3lkx8FJmcsOJd4wrm449amX1yHtaOPqEhixqUxmnlXFOVDK1RHBscFlQxnjjtXBaO5kl6insNcsGnwEjhjayInGVsWONtF5Q3ghMvMikG43LcgDDHpqi7HTKg13Gooh8RWQFgVkEMIsOzAG8ve5x1Wp0_KPtfgBvp12L2wAOeviLbhSvC0WLH6Jfaaaf_6Xba7hzll-cF-fT2fsXcDd8qS1UPIC9zWqLL-F2-X1Tr1evYqj-Aja354o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning-Based+Dynamic+Reconfiguration+Planning+for+Digital+Twin-Driven+Smart+Manufacturing+Systems+With+Reconfigurable+Machine+Tools&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Huang%2C+Jintang&rft.au=Huang%2C+Sihan&rft.au=Moghaddam%2C+Shokraneh+K.&rft.au=Lu%2C+Yuqian&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=20&rft.issue=11&rft.spage=13135&rft.epage=13146&rft_id=info:doi/10.1109%2FTII.2024.3431095&rft.externalDocID=10614748 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |