A Meta-Learning-Based Precoder Optimization Framework for Rate-Splitting Multiple Access
In this letter, we propose the use of a meta-learning based precoder optimization framework to directly optimize the Rate-Splitting Multiple Access (RSMA) precoders with partial Channel State Information at the Transmitter (CSIT). By exploiting the overfitting of the compact neural network to maximi...
Uloženo v:
| Vydáno v: | IEEE wireless communications letters Ročník 13; číslo 2; s. 347 - 351 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-2337, 2162-2345 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!