A Meta-Learning-Based Precoder Optimization Framework for Rate-Splitting Multiple Access

In this letter, we propose the use of a meta-learning based precoder optimization framework to directly optimize the Rate-Splitting Multiple Access (RSMA) precoders with partial Channel State Information at the Transmitter (CSIT). By exploiting the overfitting of the compact neural network to maximi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE wireless communications letters Ročník 13; číslo 2; s. 347 - 351
Hlavní autori: Cerna Loli, Rafael, Clerckx, Bruno
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-2337, 2162-2345
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this letter, we propose the use of a meta-learning based precoder optimization framework to directly optimize the Rate-Splitting Multiple Access (RSMA) precoders with partial Channel State Information at the Transmitter (CSIT). By exploiting the overfitting of the compact neural network to maximize the explicit Average Sum-Rate (ASR) expression, we effectively bypass the need for any other training data while minimizing the total running time. Numerical results reveal that the meta-learning based solution achieves similar ASR performance to conventional precoder optimization in medium-scale scenarios, and significantly outperforms sub-optimal low complexity precoder algorithms in the large-scale regime.
AbstractList In this letter, we propose the use of a meta-learning based precoder optimization framework to directly optimize the Rate-Splitting Multiple Access (RSMA) precoders with partial Channel State Information at the Transmitter (CSIT). By exploiting the overfitting of the compact neural network to maximize the explicit Average Sum-Rate (ASR) expression, we effectively bypass the need for any other training data while minimizing the total running time. Numerical results reveal that the meta-learning based solution achieves similar ASR performance to conventional precoder optimization in medium-scale scenarios, and significantly outperforms sub-optimal low complexity precoder algorithms in the large-scale regime.
Author Cerna Loli, Rafael
Clerckx, Bruno
Author_xml – sequence: 1
  givenname: Rafael
  orcidid: 0000-0002-6393-1991
  surname: Cerna Loli
  fullname: Cerna Loli, Rafael
  email: rafael.cerna-loli19@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
– sequence: 2
  givenname: Bruno
  orcidid: 0000-0001-5949-6459
  surname: Clerckx
  fullname: Clerckx, Bruno
  email: b.clerckx@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
BookMark eNp9kE1LAzEQhoNUsNbePXgIeN6aj026e6zFqrCl4gd6W9LsrKRuN2uSIvrrTa2IeHAuM4f3mReeQ9RrbQsIHVMyopTkZ8XjdMQI4yPOWU643EN9RiVLGE9F7-fm4wM09H5F4khCGc366GmC5xBUUoByrWmfk3PlocI3DrStwOFFF8zafKhgbItnTq3hzboXXFuHb1WA5K5rTAgRxPNNE0zXAJ5oDd4fof1aNR6G33uAHmYX99OrpFhcXk8nRaJZzkIiuJC1FLmWfMk0yceklhlNVVppWEotxySrpNRU5KLKVA61klRwnkmVLYWQKR-g093fztnXDfhQruzGtbGyjAUp4TFFY4rsUtpZ7x3UZefMWrn3kpJyq7CMCsutwvJbYUTkH0Sb8OUhOGWa_8CTHWgA4FcPJymTgn8CtLl-kw
CODEN IWCLAF
CitedBy_id crossref_primary_10_1109_JPROC_2024_3409428
crossref_primary_10_1109_JSTSP_2025_3532040
crossref_primary_10_1109_ACCESS_2025_3586865
crossref_primary_10_1109_TCOMM_2024_3486982
Cites_doi 10.1109/TSP.2018.2866382
10.1109/COMST.2022.3191937
10.1109/TCOMM.2018.2842758
10.1109/WCNCW49093.2021.9420034
10.1109/LWC.2019.2954518
10.1109/LWC.2022.3186160
10.1109/TNNLS.2022.3165627
10.1109/TWC.2016.2543212
10.1109/TCOMM.2016.2603991
10.1109/TCOMM.2020.3014153
10.1186/s13638-018-1104-7
10.1109/TSP.2023.3238275
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LWC.2023.3329036
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2162-2345
EndPage 351
ExternalDocumentID 10_1109_LWC_2023_3329036
10304265
Genre orig-research
GrantInformation_xml – fundername: Defence Science and Technology Laboratory (Dstl) Communications and Networks Research Programme
  funderid: 10.13039/100010418
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c292t-5356f659c63b2c0970f6814a4dceb6c6708d66c1595d8a9efa6153386a8b55643
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001167560000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-2337
IngestDate Mon Jun 30 07:04:40 EDT 2025
Sat Nov 29 03:22:53 EST 2025
Tue Nov 18 22:12:10 EST 2025
Wed Aug 27 02:12:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-5356f659c63b2c0970f6814a4dceb6c6708d66c1595d8a9efa6153386a8b55643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5949-6459
0000-0002-6393-1991
PQID 2924035561
PQPubID 2040496
PageCount 5
ParticipantIDs ieee_primary_10304265
crossref_primary_10_1109_LWC_2023_3329036
crossref_citationtrail_10_1109_LWC_2023_3329036
proquest_journals_2924035561
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE wireless communications letters
PublicationTitleAbbrev LWC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref11
ref10
ref2
ref1
ref8
ref7
Kingma (ref14) 2014
ref9
ref4
ref3
ref6
ref5
Grant (ref15) 2013
Xia (ref13) 2022
References_xml – ident: ref7
  doi: 10.1109/TSP.2018.2866382
– year: 2022
  ident: ref13
  article-title: A meta-learning based gradient descent algorithm for MU-MIMO beamforming
  publication-title: arXiv:2210.13279
– year: 2014
  ident: ref14
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref1
  doi: 10.1109/COMST.2022.3191937
– ident: ref10
  doi: 10.1109/TCOMM.2018.2842758
– ident: ref5
  doi: 10.1109/WCNCW49093.2021.9420034
– ident: ref3
  doi: 10.1109/LWC.2019.2954518
– ident: ref12
  doi: 10.1109/LWC.2022.3186160
– ident: ref11
  doi: 10.1109/TNNLS.2022.3165627
– ident: ref6
  doi: 10.1109/TWC.2016.2543212
– volume-title: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.0 Beta
  year: 2013
  ident: ref15
– ident: ref4
  doi: 10.1109/TCOMM.2016.2603991
– ident: ref9
  doi: 10.1109/TCOMM.2020.3014153
– ident: ref2
  doi: 10.1186/s13638-018-1104-7
– ident: ref8
  doi: 10.1109/TSP.2023.3238275
SSID ssj0000601218
Score 2.3556516
Snippet In this letter, we propose the use of a meta-learning based precoder optimization framework to directly optimize the Rate-Splitting Multiple Access (RSMA)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 347
SubjectTerms Algorithms
Artificial neural networks
Channel state information
Complexity theory
Decoding
Interference
Learning
Metalearning
Multiple access
Neural networks
non-convex optimization
Optimization
partial channel state information at the transmitter (CSIT)
Rate-splitting multiple access (RSMA)
Splitting
Title A Meta-Learning-Based Precoder Optimization Framework for Rate-Splitting Multiple Access
URI https://ieeexplore.ieee.org/document/10304265
https://www.proquest.com/docview/2924035561
Volume 13
WOSCitedRecordID wos001167560000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2345
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601218
  issn: 2162-2337
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyLKSx5YGNw6duzYY0FUDC0gnt0iv4KQoKDS8vuxHReQEEhsGewouUt8n8933wfAYWVYYBGrkLAFRbk1GkmncpRpwbTNqMtjle_doDg_F6ORvEzN6rEXxjkXi89cJ1zGs3z7YmYhVdYNklg-orAGaBQFr5u1PhMqgViExHweyThBhNJifiyJZXdwf9IJSuEdSonEkZD5KwxFXZUfi3GMMP3Vfz7bGlhJUBL2at-vgwU33gDL3wgGN8GoB4duqlBiUX1Axz5oWXgZtsHWTeCFXzCeUycm7M_rtKAHsvDKg1B07SFqLIyGw1R4CHtRYbEFbvunNydnKGkpIEMkmSJGGa84k4ZTTQyWBa64yHLlveM0N7zAwnJuPLhhVijpKhWRoOBKaMY8bNkCzfHL2G0DmAUNQIutVc7vpaTWlRLMmcwSkymNaRt056YtTSIaD3oXT2XccGBZemeUwRllckYbHH3OeK1JNv4Y2wrG_zautnsb7M3dV6bf8K30r55jGhRAd36ZtguW_N3zug57DzSnk5nbB4vmffr4NjmIX9gHFfvMkQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB3xUQk40JaCCNDWh156cOK11177GBARVZMUtUBzW_lrERIEFAK_H9txAAmBxG0PtnZ3ZtfzPJ55D-BHY3lkEWuwdBXDpbMGK69LXBjJjSuYL1OV71m_Gg7laKSOc7N66oXx3qfiM9-Ol-ks313bu5gq60RJrBBR-CIsR-ms3K71mFKJ1CI0ZfRoISimjFXzg0miOv3_B-2oFd5mjCqSKJmfAlFSVnmxHKcY0_v4zqf7BOsZTKLuzPufYcGPN2DtGcXgFxh10cBPNc48qud4P4Qth47jRtj5CfoTloyr3IuJevNKLRSgLPobYCj-F0BqKo1Gg1x6iLpJY3ETTnuHJwdHOKspYEsVnWLOuGgEV1YwQy1RFWmELEod_OONsKIi0glhA7zhTmrlG52woBRaGs4DcNmCpfH12G8DKqIKoCPOaR92U8qYRkvubeGoLbQhrAWduWlrm6nGo-LFZZ22HETVwRl1dEadndGCn48zbmY0G2-M3YzGfzZuZvcW7M3dV-cf8bYOr14SFjVAd16Z9h1Wjk4G_br_a_h7F1bDncpZVfYeLE0nd_4rfLD304vbybf0tT0A6ujP2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Meta-Learning-Based+Precoder+Optimization+Framework+for+Rate-Splitting+Multiple+Access&rft.jtitle=IEEE+wireless+communications+letters&rft.au=Rafael+Cerna+Loli&rft.au=Clerckx%2C+Bruno&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-2337&rft.eissn=2162-2345&rft.volume=13&rft.issue=2&rft.spage=347&rft_id=info:doi/10.1109%2FLWC.2023.3329036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2337&client=summon