Hierarchical Task Offloading for Vehicular Fog Computing Based on Multi-Agent Deep Reinforcement Learning

Vehicular fog computing (VFC) has been expected as a promising architecture that can make full use of computing resources of idle vehicles to increase computing capability. However, most current VFC architectures only focus on the local region and ignore the spatio-temporal heterogeneity of computin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications Jg. 23; H. 4; S. 3074 - 3085
Hauptverfasser: Hou, Yukai, Wei, Zhiwei, Zhang, Rongqing, Cheng, Xiang, Yang, Liuqing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1276, 1558-2248
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Vehicular fog computing (VFC) has been expected as a promising architecture that can make full use of computing resources of idle vehicles to increase computing capability. However, most current VFC architectures only focus on the local region and ignore the spatio-temporal heterogeneity of computing resources, resulting in that some regions have idle computing resources while others cannot satisfy the requirements of tasks. To further improve the overall computing resource utilization in the whole network, in this work, we propose a hierarchical VFC architecture, where neighboring regions can share their idle computing resources. Considering the high complexity of both inter- and intra-region cooperative task offloading in such a hierarchical VFC architecture, we put forward a distributed task offloading strategy based on multi-agent reinforcement learning in which the multi-agent reinforcement learning method is designed to learn each task vehicle's offloading strategy in a distributed manner. Moreover, to tackle the inefficiency caused by the multi-agent credit assignment problem, we provide the counterfactual multi-agent reinforcement learning approach which exploits a counterfactual baseline to evaluate the action of each agent. Simulation results validate that the proposed hierarchical VFC architecture can effectively improve the global task computing efficiency and the proposed mechanism outperforms the baseline algorithms.
AbstractList Vehicular fog computing (VFC) has been expected as a promising architecture that can make full use of computing resources of idle vehicles to increase computing capability. However, most current VFC architectures only focus on the local region and ignore the spatio-temporal heterogeneity of computing resources, resulting in that some regions have idle computing resources while others cannot satisfy the requirements of tasks. To further improve the overall computing resource utilization in the whole network, in this work, we propose a hierarchical VFC architecture, where neighboring regions can share their idle computing resources. Considering the high complexity of both inter- and intra-region cooperative task offloading in such a hierarchical VFC architecture, we put forward a distributed task offloading strategy based on multi-agent reinforcement learning in which the multi-agent reinforcement learning method is designed to learn each task vehicle’s offloading strategy in a distributed manner. Moreover, to tackle the inefficiency caused by the multi-agent credit assignment problem, we provide the counterfactual multi-agent reinforcement learning approach which exploits a counterfactual baseline to evaluate the action of each agent. Simulation results validate that the proposed hierarchical VFC architecture can effectively improve the global task computing efficiency and the proposed mechanism outperforms the baseline algorithms.
Author Wei, Zhiwei
Hou, Yukai
Cheng, Xiang
Zhang, Rongqing
Yang, Liuqing
Author_xml – sequence: 1
  givenname: Yukai
  orcidid: 0000-0003-4640-1582
  surname: Hou
  fullname: Hou, Yukai
  email: 2131508@tongji.edu.cn
  organization: School of Software Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Zhiwei
  orcidid: 0000-0001-9593-0013
  surname: Wei
  fullname: Wei, Zhiwei
  email: 2031563@tongji.edu.cn
  organization: School of Software Engineering, Tongji University, Shanghai, China
– sequence: 3
  givenname: Rongqing
  orcidid: 0000-0003-3774-6247
  surname: Zhang
  fullname: Zhang, Rongqing
  email: rongqingz@tongji.edu.cn
  organization: School of Software Engineering, Tongji University, Shanghai, China
– sequence: 4
  givenname: Xiang
  orcidid: 0000-0002-5943-0326
  surname: Cheng
  fullname: Cheng, Xiang
  email: xiangcheng@pku.edu.cn
  organization: School of Electronics, Peking University, Beijing, China
– sequence: 5
  givenname: Liuqing
  orcidid: 0000-0003-0231-6837
  surname: Yang
  fullname: Yang, Liuqing
  email: lqyang@ust.hk
  organization: Internet of Things Thrust and Intelligent Transportation Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
BookMark eNp9kDFPwzAQhS1UJNrCzsBgiTnFPsdJOpZCKVJRJVRgjBznXFxSuzjJwL8nURkQA9Od7r3vnvRGZOC8Q0IuOZtwzqY3m7f5BBiIiRBMCuAnZMilzCKAOBv0u0giDmlyRkZ1vWOMp4mUQ2KXFoMK-t1qVdGNqj_o2pjKq9K6LTU-0FfstLZSgS78ls79_tA2vXaraiypd_SprRobzbboGnqHeKDPaF1Hatz3pxWq4DrgnJwaVdV48TPH5GVxv5kvo9X64XE-W0UaptBEscYsLZnkwE2pFcYqK3SBRsQFT9CUosRYghZpqkWhDMRTVInkqSlMCkaUYkyuj38PwX-2WDf5zrfBdZG5YEJCBpBlnYsdXTr4ug5o8kOwexW-cs7yvtC8KzTvC81_Cu2Q5A-ibaMa610TlK3-A6-OoEXEXzkAMpmm4huHX4ZC
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_JIOT_2025_3545747
crossref_primary_10_1007_s11227_023_05698_y
crossref_primary_10_1049_itr2_70083
crossref_primary_10_1109_TMC_2025_3546263
crossref_primary_10_1109_OJCOMS_2024_3457023
crossref_primary_10_1016_j_future_2025_107950
crossref_primary_10_1049_cmu2_70064
crossref_primary_10_64362_zjse_7
crossref_primary_10_1016_j_adhoc_2025_103936
crossref_primary_10_1016_j_vehcom_2024_100862
crossref_primary_10_1109_JIOT_2024_3476476
crossref_primary_10_1016_j_adhoc_2025_104006
crossref_primary_10_1016_j_vehcom_2023_100626
crossref_primary_10_1007_s11277_024_11373_z
crossref_primary_10_1109_JIOT_2025_3526150
crossref_primary_10_3390_fi16080278
Cites_doi 10.1109/TVT.2020.3041929
10.1109/ACCESS.2019.2893571
10.1016/j.future.2019.01.059
10.1109/VTC2022-Spring54318.2022.9860775
10.1109/MNET.001.1900527
10.1109/ACCESS.2020.3029169
10.1109/tmc.2022.3211882
10.1109/ACCESS.2019.2900530
10.1109/TVT.2017.2714704
10.1109/JIOT.2021.3104324
10.1109/ACCESS.2018.2872750
10.1109/JIOT.2019.2949602
10.1109/TVT.2020.2970763
10.1109/ACCESS.2019.2963051
10.1109/IWCMC.2019.8766579
10.1109/MWC.2019.1700441
10.1109/MNET.001.1900200
10.1109/TWC.2020.3007805
10.1109/JIOT.2022.3182163
10.1109/ISCC58397.2023.10217881
10.1109/TVT.2019.2894851
10.1109/TVT.2018.2868013
10.1109/JIOT.2019.2958400
10.1109/JIOT.2020.2975496
10.1109/JIOT.2019.2946426
10.1109/MCOM.2017.1700208
10.1109/CloudCom.2013.89
10.1109/MNET.001.1900512
10.1109/MNET.011.2000572
10.1109/TVT.2016.2532863
10.1109/TNET.2015.2487344
10.1109/TVT.2016.2591558
10.1109/WCNC49053.2021.9417450
10.1109/MNET.2018.1700442
10.1109/MWC.001.1900317
10.1109/TPDS.2020.3046737
10.1109/TVT.2013.2245156
10.1109/MNET.2018.1700105
10.1109/MNET.001.1800510
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2023.3305321
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 3085
ExternalDocumentID 10_1109_TWC_2023_3305321
10225697
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021ZD0112700
  funderid: 10.13039/501100012166
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 62271351; 62125101; 62341101
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-4ce87d05121fdcae4a8bcbef34b16efd3de452c377c3baf249ea6517fbf72f3d3
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001201360000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 10:18:51 EDT 2025
Sat Nov 29 06:23:58 EST 2025
Tue Nov 18 22:32:10 EST 2025
Wed Aug 27 02:17:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-4ce87d05121fdcae4a8bcbef34b16efd3de452c377c3baf249ea6517fbf72f3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4640-1582
0000-0003-3774-6247
0000-0001-9593-0013
0000-0003-0231-6837
0000-0002-5943-0326
PQID 3035282288
PQPubID 105736
PageCount 12
ParticipantIDs crossref_primary_10_1109_TWC_2023_3305321
crossref_citationtrail_10_1109_TWC_2023_3305321
proquest_journals_3035282288
ieee_primary_10225697
PublicationCentury 2000
PublicationDate 2024-April
2024-4-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/TVT.2020.3041929
– ident: ref35
  doi: 10.1109/ACCESS.2019.2893571
– ident: ref30
  doi: 10.1016/j.future.2019.01.059
– ident: ref29
  doi: 10.1109/VTC2022-Spring54318.2022.9860775
– ident: ref21
  doi: 10.1109/MNET.001.1900527
– ident: ref17
  doi: 10.1109/ACCESS.2020.3029169
– ident: ref32
  doi: 10.1109/tmc.2022.3211882
– ident: ref24
  doi: 10.1109/ACCESS.2019.2900530
– ident: ref12
  doi: 10.1109/TVT.2017.2714704
– ident: ref13
  doi: 10.1109/JIOT.2021.3104324
– ident: ref7
  doi: 10.1109/ACCESS.2018.2872750
– ident: ref15
  doi: 10.1109/JIOT.2019.2949602
– ident: ref1
  doi: 10.1109/TVT.2020.2970763
– ident: ref18
  doi: 10.1109/ACCESS.2019.2963051
– ident: ref20
  doi: 10.1109/IWCMC.2019.8766579
– ident: ref3
  doi: 10.1109/MWC.2019.1700441
– ident: ref26
  doi: 10.1109/MNET.001.1900200
– ident: ref28
  doi: 10.1109/TWC.2020.3007805
– ident: ref11
  doi: 10.1109/JIOT.2022.3182163
– ident: ref4
  doi: 10.1109/ISCC58397.2023.10217881
– ident: ref6
  doi: 10.1109/TVT.2019.2894851
– ident: ref9
  doi: 10.1109/TVT.2018.2868013
– ident: ref16
  doi: 10.1109/JIOT.2019.2958400
– ident: ref14
  doi: 10.1109/JIOT.2020.2975496
– ident: ref27
  doi: 10.1109/JIOT.2019.2946426
– ident: ref34
  doi: 10.1109/MCOM.2017.1700208
– ident: ref37
  doi: 10.1109/CloudCom.2013.89
– ident: ref25
  doi: 10.1109/MNET.001.1900512
– ident: ref23
  doi: 10.1109/MNET.011.2000572
– ident: ref31
  doi: 10.1109/TVT.2016.2532863
– ident: ref36
  doi: 10.1109/TNET.2015.2487344
– ident: ref39
  doi: 10.1109/TVT.2016.2591558
– ident: ref19
  doi: 10.1109/WCNC49053.2021.9417450
– ident: ref5
  doi: 10.1109/MNET.2018.1700442
– ident: ref8
  doi: 10.1109/MWC.001.1900317
– ident: ref38
  doi: 10.1109/TPDS.2020.3046737
– ident: ref33
  doi: 10.1109/TVT.2013.2245156
– ident: ref10
  doi: 10.1109/MNET.2018.1700105
– ident: ref22
  doi: 10.1109/MNET.001.1800510
SSID ssj0017655
Score 2.5505521
Snippet Vehicular fog computing (VFC) has been expected as a promising architecture that can make full use of computing resources of idle vehicles to increase...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3074
SubjectTerms Algorithms
Complexity theory
Computation offloading
Computer architecture
counterfactual multi-agent
Deep learning
Edge computing
Heterogeneity
hierarchical task offloading
Idling
multi-agent reinforcement learning
Multiagent systems
Operations research
Reinforcement learning
Resource management
Resource utilization
Servers
Task analysis
Vehicular fog computing
Title Hierarchical Task Offloading for Vehicular Fog Computing Based on Multi-Agent Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10225697
https://www.proquest.com/docview/3035282288
Volume 23
WOSCitedRecordID wos001201360000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAG1EoyAMLQ_qwnTgey6NiQIBQgW6RH2eIqJKqLfx-bCetQAgktkixoyifL-fz3X0fQqdpLCzxfNqECBYxABYp7exKWg7OPcoEIFDm3_Db23Q4FPd1s3rohQGAUHwGLX8Zcvmm1O_-qKzto5M4EXwZLXOeVM1ai5QBT4LEqbNgLyzDFznJjmgPni9aXia85YL3mJLuNx8URFV-_ImDe-lv_vPFttBGvY_EvQr4bbQExQ5a_8IuuIvy69x3FwexkxEeyOkbvrN2VIaqeew2q_gJXvNQh4r75QuuBB78vXPn2gwuCxzac6Oeb7_ClwBj_ACBaVWHQ0Vck7O-7KHH_tXg4jqqlRUiTQSZRUxDyo2zR9K1RktgMlVagaVMdROwhhpgMdGUc02VtC5EA5nEXW6V5cRSQ_fRSlEWcIBwYkwsaRx491mspGKmY4WwjEhlLaQN1J5_60zXtONe_WKUhfCjIzKHTubRyWp0GuhsMWNcUW78MXbPo_FlXAVEAzXneGa1UU4z6rlf3YYoTQ9_mXaE1tzT68qcJlqZTd7hGK3qj1k-nZyE9fYJiG3T8w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VWgk49MFDbEupD71wyD78iOMjBVZbsd1WaFu4RX6MYcVqg9iF31_bCSsqBFJvkWIrUT5PxuOZ-T6Ar4VQnkY-bUoVzzgiz4wNdqW9xOAedY6YKPOHcjQqLi7Ur6ZZPfXCIGIqPsN2vEy5fFfZu3hU1onRiciVXIHXgnPardu1lkkDmSeR02DDUVpGLrOSXdUZnx-1o1B4O4TvgtHeP14oyao8-RcnB9N_95-v9h7eNjtJclhD_wFe4WwTNh7xC27BZDCJ_cVJ7mRKxnp-TX56P61S3TwJ21XyB68mqRKV9KtLUks8xHvfgnNzpJqR1KCbHcYGLHKMeEPOMHGt2nSsSBp61stt-N0_GR8NskZbIbNU0UXGLRbSBYukPe-sRq4LYw16xk0vR--YQy6oZVJaZrQPQRrqXPSkN15SzxzbgdVZNcNdILlzQjORmPe5MNpw1_VKeU618R6LFnQevnVpG-LxqH8xLVMA0lVlQKeM6JQNOi04WM64qUk3Xhi7HdF4NK4GogV7D3iWjVnOSxbZX8OWqCg-PjPtC6wNxj-G5fD76PQTrIcnNXU6e7C6uL3Dz_DG3i8m89v9tPb-ArWa1zo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Task+Offloading+for+Vehicular+Fog+Computing+Based+on+Multi-Agent+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Hou%2C+Yukai&rft.au=Wei%2C+Zhiwei&rft.au=Zhang%2C+Rongqing&rft.au=Cheng%2C+Xiang&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=4&rft.spage=3074&rft_id=info:doi/10.1109%2FTWC.2023.3305321&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon