Multi-Access Distributed Computing

Coded distributed computing (CDC) is a new technique proposed with the purpose of decreasing the intense data exchange required for parallelizing distributed computing systems. Under the famous MapReduce paradigm, this coded approach has been shown to decrease this communication overhead by a factor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 70; no. 5; pp. 3385 - 3398
Main Authors: Brunero, Federico, Elia, Petros
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Coded distributed computing (CDC) is a new technique proposed with the purpose of decreasing the intense data exchange required for parallelizing distributed computing systems. Under the famous MapReduce paradigm, this coded approach has been shown to decrease this communication overhead by a factor that is linearly proportional to the overall computation load during the mapping phase. In this paper, we propose multi-access distributed computing (MADC) as a generalization of the original CDC model, where now mappers (nodes in charge of the map functions) and reducers (nodes in charge of the reduce functions) are distinct computing nodes that are connected through a multi-access network topology. Focusing on the MADC setting with combinatorial topology, which implies <inline-formula> <tex-math notation="LaTeX">\Lambda </tex-math></inline-formula> mappers and <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> reducers such that there is a unique reducer connected to any <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> mappers, we propose a coded scheme and an information-theoretic converse, which jointly identify the optimal inter-reducer communication load, as a function of the computation load, to within a constant gap of 1.5. Additionally, a modified coded scheme and converse identify the optimal max-link communication load across all existing links to within a gap of 4.
AbstractList Coded distributed computing (CDC) is a new technique proposed with the purpose of decreasing the intense data exchange required for parallelizing distributed computing systems. Under the famous MapReduce paradigm, this coded approach has been shown to decrease this communication overhead by a factor that is linearly proportional to the overall computation load during the mapping phase. In this paper, we propose multi-access distributed computing (MADC) as a generalization of the original CDC model, where now mappers (nodes in charge of the map functions) and reducers (nodes in charge of the reduce functions) are distinct computing nodes that are connected through a multi-access network topology. Focusing on the MADC setting with combinatorial topology, which implies <inline-formula> <tex-math notation="LaTeX">\Lambda </tex-math></inline-formula> mappers and <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> reducers such that there is a unique reducer connected to any <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> mappers, we propose a coded scheme and an information-theoretic converse, which jointly identify the optimal inter-reducer communication load, as a function of the computation load, to within a constant gap of 1.5. Additionally, a modified coded scheme and converse identify the optimal max-link communication load across all existing links to within a gap of 4.
Coded distributed computing (CDC) is a new technique proposed with the purpose of decreasing the intense data exchange required for parallelizing distributed computing systems. Under the famous MapReduce paradigm, this coded approach has been shown to decrease this communication overhead by a factor that is linearly proportional to the overall computation load during the mapping phase. In this paper, we propose multi-access distributed computing (MADC) as a generalization of the original CDC model, where now mappers (nodes in charge of the map functions) and reducers (nodes in charge of the reduce functions) are distinct computing nodes that are connected through a multi-access network topology. Focusing on the MADC setting with combinatorial topology, which implies [Formula Omitted] mappers and [Formula Omitted] reducers such that there is a unique reducer connected to any [Formula Omitted] mappers, we propose a coded scheme and an information-theoretic converse, which jointly identify the optimal inter-reducer communication load, as a function of the computation load, to within a constant gap of 1.5. Additionally, a modified coded scheme and converse identify the optimal max-link communication load across all existing links to within a gap of 4.
Author Elia, Petros
Brunero, Federico
Author_xml – sequence: 1
  givenname: Federico
  orcidid: 0000-0002-6980-3827
  surname: Brunero
  fullname: Brunero, Federico
  email: federico.brunero@huawei.com
  organization: Communication Systems Department, EURECOM, Sophia Antipolis, France
– sequence: 2
  givenname: Petros
  orcidid: 0000-0002-3531-120X
  surname: Elia
  fullname: Elia, Petros
  email: elia@eurecom.fr
  organization: Communication Systems Department, EURECOM, Sophia Antipolis, France
BookMark eNp9kD1PwzAQhi1UJNrCzsBQwZxw_krssSpflYpYsluOYyNXbVJsZ-Df46odEAPT6aT3eU_3zNCkH3qL0C2GEmOQj826KQkQVlJaU0zEBZpizutCVpxN0BQAi0IyJq7QLMZtXhnHZIru38dd8sXSGBvj4snHFHw7JtstVsP-MCbff16jS6d30d6c5xw1L8_N6q3YfLyuV8tNYYgkqWDashqgho6YfEy4zgGTnRNC147zluvWEdoyLoxlkriWda4iIFqwHbiaztHDqfYQhq_RxqS2wxj6fFFRYKwiuRNyqjqlTBhiDNYp45NOfuhT0H6nMKijDpV1qKMOddaRQfgDHoLf6_D9H3J3Qry19lc8vyArSX8AWttrdQ
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2025_3556384
Cites_doi 10.1109/ISWCS.2018.8491052
10.1145/1327452.1327492
10.1109/GLOBECOM42002.2020.9322245
10.1109/CLOUD.2013.107
10.1109/ITW48936.2021.9611394
10.1109/ITW.2018.8613519
10.1109/TIT.2022.3158828
10.1109/ASAP.2014.6868624
10.1109/TCOMM.2021.3087788
10.1109/TIT.2017.2736066
10.1109/TIT.2014.2306938
10.1109/ISIT.2018.8437653
10.5555/1863103.1863113
10.1145/1723112.1723129
10.1109/TCOMM.2021.3087628
10.1109/ISIT.2018.8437333
10.14257/ijgdc.2014.7.4.13
10.1109/TIT.2015.2504556
10.1109/TNET.2017.2702605
10.23919/WiOpt56218.2022.9930597
10.1109/TIT.2017.2756959
10.1109/TIT.2022.3193723
10.1109/COMST.2021.3091684
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2024.3373128
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 3398
ExternalDocumentID 10_1109_TIT_2024_3373128
10458969
Genre orig-research
GrantInformation_xml – fundername: European Research Council (ERC) through the EU Horizon 2020 Research and Innovation Program
  grantid: 725929 (Project DUALITY)
  funderid: 10.13039/100010663
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-4ae470070d2c0188fdf049df88a7f55b5abf23b458ce492fb4df6208b0ed0f73
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001217153500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 30 04:50:05 EST 2025
Sat Nov 29 03:31:51 EST 2025
Tue Nov 18 22:17:42 EST 2025
Wed Aug 27 02:06:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-4ae470070d2c0188fdf049df88a7f55b5abf23b458ce492fb4df6208b0ed0f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3531-120X
0000-0002-6980-3827
PQID 3044621880
PQPubID 36024
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TIT_2024_3373128
ieee_primary_10458969
crossref_primary_10_1109_TIT_2024_3373128
proquest_journals_3044621880
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/ISWCS.2018.8491052
– ident: ref1
  doi: 10.1145/1327452.1327492
– ident: ref12
  doi: 10.1109/GLOBECOM42002.2020.9322245
– ident: ref5
  doi: 10.1109/CLOUD.2013.107
– ident: ref21
  doi: 10.1109/ITW48936.2021.9611394
– ident: ref16
  doi: 10.1109/ITW.2018.8613519
– ident: ref17
  doi: 10.1109/TIT.2022.3158828
– ident: ref20
  doi: 10.1109/ASAP.2014.6868624
– ident: ref10
  doi: 10.1109/TCOMM.2021.3087788
– ident: ref3
  doi: 10.1109/TIT.2017.2736066
– ident: ref7
  doi: 10.1109/TIT.2014.2306938
– ident: ref13
  doi: 10.1109/ISIT.2018.8437653
– ident: ref2
  doi: 10.5555/1863103.1863113
– ident: ref19
  doi: 10.1145/1723112.1723129
– ident: ref9
  doi: 10.1109/TCOMM.2021.3087628
– ident: ref11
  doi: 10.1109/ISIT.2018.8437333
– ident: ref4
  doi: 10.14257/ijgdc.2014.7.4.13
– ident: ref8
  doi: 10.1109/TIT.2015.2504556
– ident: ref14
  doi: 10.1109/TNET.2017.2702605
– ident: ref23
  doi: 10.23919/WiOpt56218.2022.9930597
– ident: ref6
  doi: 10.1109/TIT.2017.2756959
– ident: ref22
  doi: 10.1109/TIT.2022.3193723
– ident: ref18
  doi: 10.1109/COMST.2021.3091684
SSID ssj0014512
Score 2.471267
Snippet Coded distributed computing (CDC) is a new technique proposed with the purpose of decreasing the intense data exchange required for parallelizing distributed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3385
SubjectTerms Coded distributed computing
coded multicasting
Combinatorial analysis
Communication
communication complexity
communication load
Computational modeling
Computer networks
Costs
Data exchange
Distributed computing
Distributed processing
Information theory
information-theoretic converse
Load modeling
MapReduce
Measurement
multi-access distributed computing (MADC)
Network topologies
Nodes
Parallel processing
Topology
Title Multi-Access Distributed Computing
URI https://ieeexplore.ieee.org/document/10458969
https://www.proquest.com/docview/3044621880
Volume 70
WOSCitedRecordID wos001217153500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH644UEPTufE6ZQiXjx0S_OjaY9DHXoZHnrYreQnCLLJ1vn3m6TtGIiCt0KTkn7p68vLy_s-gPuEWeeULI6dNxAx1VTEkhARK-eLBNLMMquD2ASfz7PFIn9ritVDLYwxJhw-M2N_GXL5eqW2fqvMWThlWZ7mHehwntbFWruUAWVJTQ2eOAt2QUebk0T5pHgtXCSI6ZgQThIvvL7ng4Koyo8_cXAvs94_B3YKJ806MprWE38GB2bZh16r0RA1JtuH4z3CwXO4C_W28TSoJEZPnjTX610ZHdU9XaMBFLPn4vElblQSHJ45rmIqDOWetUdj5d49s9q6Vb-2WSa4ZUwyIS0m0g1QGZpjK6m2KUaZREYjy8kFdJerpbmEKBXGICYlSQSlVrjghiOsmFLuBjWcDmHSwlaqhkHcC1l8lCGSQHnpgC490GUD9BAedj0-a_aMP9oOPLB77WpMhzBqp6Zs7GtTEp-Hxp5L7uqXbtdw5J9en00cQbdab80NHKqv6n2zvg2fzjcttr-o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBaq1YrRrEi4e0m300ybGopcVaPOTQW9gnCNJKH_5-dzdJKYiCt0B2yebbTGZnZ-f7AO4jZqxTMji03oCHVFEeCkJ4KK0v4kgxw4zyYhPxZJJMp-lbWazua2G01v7wme64S5_LV3O5dltl1sIpS9Jeugt7jFKMinKtTdKAsqggB4-sDduwo8pKorSbjTIbC2LaISQmkZNe3_JCXlblx7_YO5hB_Z9DO4HjciUZ9IupP4UdPWtAvVJpCEqjbcDRFuXgGdz5ituw73USgydHm-sUr7QKip62UROywXP2OAxLnQSLaIpXIeWaxo63R2Fp3z0xyth1vzJJwmPDmGBcGEyEHaDUNMVGUGV6GCUCaYVMTM6hNpvP9AUEPa41YkKQiFNquA1vYoQlk9LeoDqmLehWsOWy5BB3UhYfuY8lUJpboHMHdF4C3YKHTY_Pgj_jj7ZNB-xWuwLTFrSrqclLC1vmxGWisWOTu_yl2y0cDLPXcT4eTV6u4NA9qTip2IbaarHW17Avv1bvy8WN_4y-AVR7wu8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Access+Distributed+Computing&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Brunero%2C+Federico&rft.au=Elia%2C+Petros&rft.date=2024-05-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=70&rft.issue=5&rft.spage=3385&rft.epage=3398&rft_id=info:doi/10.1109%2FTIT.2024.3373128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2024_3373128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon