Hybrid Active-Passive RIS Transmitter Enabled Energy-Efficient Multi-User Communications

A novel hybrid active-passive reconfigurable intelligent surface (RIS) transmitter enabled downlink multi-user communication system is investigated. Specifically, RISs are exploited to serve as transmitter antennas, where each element can flexibly switch between active and passive modes to deliver i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications Jg. 23; H. 9; S. 10653 - 10666
Hauptverfasser: Huang, Ao, Mu, Xidong, Guo, Li, Zhu, Guangyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1276, 1558-2248
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel hybrid active-passive reconfigurable intelligent surface (RIS) transmitter enabled downlink multi-user communication system is investigated. Specifically, RISs are exploited to serve as transmitter antennas, where each element can flexibly switch between active and passive modes to deliver information to multiple users. The system energy efficiency (EE) maximization problem is formulated by jointly optimizing the RIS element scheduling and beamforming coefficients, as well as the power allocation coefficients, subject to the user's individual rate requirement and the maximum RIS amplification power constraint. Using the Dinkelbach relaxation, the original mixed-integer nonlinear programming problem is transformed into a nonfractional optimization problem with a two-layer structure, which is solved by the alternating optimization approach. In particular, an exhaustive search method is proposed to determine the optimal operating mode for each RIS element. Then, the RIS beamforming and power allocation coefficients are properly designed in an alternating manner. To overcome the potentially high complexity caused by exhaustive searching, we further develop a joint RIS element mode and beamforming optimization scheme by exploiting the Big-M formulation technique. Numerical results validate that: 1) The proposed hybrid RIS scheme yields higher EE than the baseline multi-antenna schemes employing fully active/passive RIS or conventional radio frequency chains; 2) Both proposed algorithms are effective in improving the system performance, especially the latter can achieve precise design of RIS elements with low complexity; and 3) For a fixed-size hybrid RIS, maximum EE can be reaped by setting only a minority of elements to operate in the active mode.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2024.3373900