Ultra-Low-Complexity Algorithms With Structurally Optimal Multi-Group Multicast Beamforming in Large-Scale Systems

In this work, we propose ultra-low-complexity design solutions for multi-group multicast beamforming in large-scale systems. For the quality-of-service (QoS) problem, by utilizing the optimal multicast beamforming structure obtained recently in [2], we convert the original problem into a non-convex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 71; S. 1626 - 1641
Hauptverfasser: Zhang, Chong, Dong, Min, Liang, Ben
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this work, we propose ultra-low-complexity design solutions for multi-group multicast beamforming in large-scale systems. For the quality-of-service (QoS) problem, by utilizing the optimal multicast beamforming structure obtained recently in [2], we convert the original problem into a non-convex weight optimization problem of a lower dimension and propose two fast first-order algorithms to solve it. Both algorithms are based on successive convex approximation (SCA) and provide fast iterative updates to solve each SCA subproblem. The first algorithm uses a saddle point reformulation in the dual domain and applies the extragradient method with an adaptive step-size procedure to find the saddle point with simple closed-form updates. The second algorithm adopts the alternating direction method of multipliers (ADMM) method by converting each SCA subproblem into a favorable ADMM structure. The structure leads to simple closed-form ADMM updates, where the problem in each update block can be further decomposed into parallel subproblems of small sizes, for which closed-form solutions are obtained. We also propose efficient initialization methods to obtain favorable initial points that facilitate fast convergence. Furthermore, taking advantage of the proposed fast algorithms, for the max-min fair (MMF) problem, we propose a simple closed-form scaling scheme that directly uses the solution obtained from the QoS problem, avoiding the conventional computationally expensive method that iteratively solves the inverse QoS problem. We further develop lower and upper bounds on the performance of this scaling scheme. Simulation results show that the proposed algorithms offer near-optimal performance with substantially lower computational complexity than the state-of-the-art algorithms for large-scale systems.
AbstractList In this work, we propose ultra-low-complexity design solutions for multi-group multicast beamforming in large-scale systems. For the quality-of-service (QoS) problem, by utilizing the optimal multicast beamforming structure obtained recently in [2], we convert the original problem into a non-convex weight optimization problem of a lower dimension and propose two fast first-order algorithms to solve it. Both algorithms are based on successive convex approximation (SCA) and provide fast iterative updates to solve each SCA subproblem. The first algorithm uses a saddle point reformulation in the dual domain and applies the extragradient method with an adaptive step-size procedure to find the saddle point with simple closed-form updates. The second algorithm adopts the alternating direction method of multipliers (ADMM) method by converting each SCA subproblem into a favorable ADMM structure. The structure leads to simple closed-form ADMM updates, where the problem in each update block can be further decomposed into parallel subproblems of small sizes, for which closed-form solutions are obtained. We also propose efficient initialization methods to obtain favorable initial points that facilitate fast convergence. Furthermore, taking advantage of the proposed fast algorithms, for the max-min fair (MMF) problem, we propose a simple closed-form scaling scheme that directly uses the solution obtained from the QoS problem, avoiding the conventional computationally expensive method that iteratively solves the inverse QoS problem. We further develop lower and upper bounds on the performance of this scaling scheme. Simulation results show that the proposed algorithms offer near-optimal performance with substantially lower computational complexity than the state-of-the-art algorithms for large-scale systems.
Author Zhang, Chong
Dong, Min
Liang, Ben
Author_xml – sequence: 1
  givenname: Chong
  orcidid: 0000-0001-7159-7199
  surname: Zhang
  fullname: Zhang, Chong
  email: chongzhang@ece.utoronto.ca
  organization: Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
– sequence: 2
  givenname: Min
  orcidid: 0000-0002-7223-8865
  surname: Dong
  fullname: Dong, Min
  email: min.dong@ontariotechu.ca
  organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada
– sequence: 3
  givenname: Ben
  orcidid: 0000-0002-1800-1322
  surname: Liang
  fullname: Liang, Ben
  email: liang@ece.utoronto.ca
  organization: Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
BookMark eNp9kLtPwzAYxC0EEs-dgcESs4sfcWqPUPGSgkBqK9gi13GKkRMH2xH0vydVOiAGprvh7jt9v2Ow3_rWAHBO8IQQLK8W85cJxZRNGM25EHwPHBGZEYSzab4_eMwZ4mL6dgiOY_zAmGSZzI9AWLoUFCr8F5r5pnPm26YNvHZrH2x6byJ8HQTOU-h16oNybgOfu2Qb5eBT75JF98H33ei1igneGNXUPjS2XUPbwkKFtUFzrZyB801Mpomn4KBWLpqznZ6A5d3tYvaAiuf7x9l1gTSVNCG2qhg1mmhFiCA8N5oxqmpZESGZXOHK8EzUHAtDSca0liuWK1oLWtWU15VgJ-ByvNsF_9mbmMoP34d2mCypIFRkdDrNhxQeUzr4GIOpyy4M74VNSXC5JVsOZMst2XJHdqjkfyraJpWsbweU1v1XvBiL1hjzawdLQRhnPxlKiew
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_JIOT_2025_3529532
crossref_primary_10_1109_TSP_2025_3581486
crossref_primary_10_1109_TCOMM_2024_3385919
crossref_primary_10_1109_TWC_2025_3534086
crossref_primary_10_1109_TSP_2024_3351478
crossref_primary_10_1109_TNNLS_2024_3495836
Cites_doi 10.1109/SPAWC.2018.8446030
10.1109/TSP.2006.872578
10.1109/TWC.2017.2672751
10.1109/LSP.2014.2370033
10.1109/TSP.2017.2690386
10.1109/TSP.2011.2167618
10.1109/TCOMM.2017.2679708
10.1109/TSP.2020.2979545
10.1109/SPAWC.2018.8445878
10.1109/TWC.2017.2744629
10.1109/TVT.2019.2957994
10.1287/opre.26.4.681
10.1080/03155986.1991.11732174
10.1016/0041-5553(87)90058-9
10.1109/GLOCOM.2015.7417526
10.1109/CAMSAP.2013.6714115
10.1109/TSP.2020.2994753
10.1109/TSP.2018.2864636
10.1109/ICASSP39728.2021.9414396
10.1109/SPAWC.2015.7227042
10.1109/JSAC.2014.2328144
10.1109/TSP.2011.2169061
10.1109/LSP.2013.2293840
10.1109/TSP.2007.909010
10.1109/TWC.2018.2854554
10.1017/CBO9780511804441
10.1109/TSP.2009.2016262
10.1561/2200000016
10.1109/TWC.2012.101112.112295
10.1109/SPAWC51858.2021.9593125
10.1109/ICASSP.2018.8462123
10.1109/MCOM.2014.6736761
10.1109/TSP.2014.2345340
10.1109/MSP.2010.936019
10.1109/GLOCOM.2009.5425297
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2023.3265885
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1641
ExternalDocumentID 10_1109_TSP_2023_3265885
10098135
Genre orig-research
GrantInformation_xml – fundername: Discovery Grants
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-3bd32ec1ca118156ec332af9d18939b0de548f508e2143cc9b36a2f82df25fd83
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988464400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:16:27 EDT 2025
Sat Nov 29 04:10:57 EST 2025
Tue Nov 18 22:26:36 EST 2025
Wed Aug 27 02:18:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-3bd32ec1ca118156ec332af9d18939b0de548f508e2143cc9b36a2f82df25fd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7159-7199
0000-0002-1800-1322
0000-0002-7223-8865
PQID 2812842776
PQPubID 85478
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TSP_2023_3265885
crossref_primary_10_1109_TSP_2023_3265885
ieee_primary_10098135
proquest_journals_2812842776
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
Korpelevich (ref33) 1977; 13
ref16
ref19
ref18
ref24
Facchinei (ref34) 2003
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.1109/SPAWC.2018.8446030
– ident: ref4
  doi: 10.1109/TSP.2006.872578
– ident: ref22
  doi: 10.1109/TWC.2017.2672751
– volume: 13
  start-page: 35
  year: 1977
  ident: ref33
  article-title: The extragradient method for finding saddle points and other problems
  publication-title: Matecon
– ident: ref16
  doi: 10.1109/LSP.2014.2370033
– ident: ref19
  doi: 10.1109/TSP.2017.2690386
– ident: ref9
  doi: 10.1109/TSP.2011.2167618
– ident: ref21
  doi: 10.1109/TCOMM.2017.2679708
– ident: ref20
  doi: 10.1109/TSP.2020.2979545
– ident: ref31
  doi: 10.1109/SPAWC.2018.8445878
– ident: ref30
  doi: 10.1109/TWC.2017.2744629
– ident: ref32
  doi: 10.1109/TVT.2019.2957994
– ident: ref14
  doi: 10.1287/opre.26.4.681
– ident: ref36
  doi: 10.1080/03155986.1991.11732174
– ident: ref35
  doi: 10.1016/0041-5553(87)90058-9
– ident: ref26
  doi: 10.1109/GLOCOM.2015.7417526
– ident: ref10
  doi: 10.1109/CAMSAP.2013.6714115
– ident: ref2
  doi: 10.1109/TSP.2020.2994753
– ident: ref27
  doi: 10.1109/TSP.2018.2864636
– ident: ref1
  doi: 10.1109/ICASSP39728.2021.9414396
– ident: ref17
  doi: 10.1109/SPAWC.2015.7227042
– ident: ref25
  doi: 10.1109/JSAC.2014.2328144
– ident: ref12
  doi: 10.1109/TSP.2011.2169061
– ident: ref15
  doi: 10.1109/LSP.2013.2293840
– volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
  year: 2003
  ident: ref34
– ident: ref5
  doi: 10.1109/TSP.2007.909010
– ident: ref28
  doi: 10.1109/TWC.2018.2854554
– ident: ref18
  doi: 10.1017/CBO9780511804441
– ident: ref11
  doi: 10.1109/TSP.2009.2016262
– ident: ref37
  doi: 10.1561/2200000016
– ident: ref8
  doi: 10.1109/TWC.2012.101112.112295
– ident: ref29
  doi: 10.1109/SPAWC51858.2021.9593125
– ident: ref23
  doi: 10.1109/ICASSP.2018.8462123
– ident: ref3
  doi: 10.1109/MCOM.2014.6736761
– ident: ref6
  doi: 10.1109/TSP.2014.2345340
– ident: ref13
  doi: 10.1109/MSP.2010.936019
– ident: ref7
  doi: 10.1109/GLOCOM.2009.5425297
SSID ssj0014496
Score 2.5391893
Snippet In this work, we propose ultra-low-complexity design solutions for multi-group multicast beamforming in large-scale systems. For the quality-of-service (QoS)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1626
SubjectTerms Algorithms
Alternating direction method of multipliers
Array signal processing
Beamforming
Closed form solutions
Complexity
Computational complexity
Exact solutions
extragradient algorithm
First order algorithms
Interference
Iterative methods
large-scale optimization
low complexity
Multicast algorithms
multicast beamforming
Multicasting
optimal beamforming structure
Optimization
Quality of service
Saddle points
Signal processing algorithms
Upper bounds
Title Ultra-Low-Complexity Algorithms With Structurally Optimal Multi-Group Multicast Beamforming in Large-Scale Systems
URI https://ieeexplore.ieee.org/document/10098135
https://www.proquest.com/docview/2812842776
Volume 71
WOSCitedRecordID wos000988464400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA46POjBb3E6JQcvHjLXpG2S4xTFw5iDKe5W8lUd7EO2quzf-ybtZCAKnppDEkqfJnneJO_zIHRBqbZaCkUsc4LEDsIdDbScGEF16nJtU5UHswne7YrBQPaqZPWQC-OcC5fPXNMXw1m-nZp3v1UGI7wlRcSSdbTOOS-Ttb6PDOI4mHEBX2AkEXywPJNsyavHfq_pbcKbwFUS4W2TV9agYKryYyYOy8vdzj9fbBdtVzwSt0vg99Cam-yjrRV1wQM0exoVM0U600_iR71XviwWuD16mc6Gxet4jp_hgftBQNaLb4wW-AEmkDF0G9JySdiXKstGzQt87dTYc1zoHQ8nuOMvkZM-gOxwJXx-iJ7ubh9v7kllsUAMlbQgTFtGnYmM8gmoSeoMY1Tl0kbAY6RuWQcRTQ4kzlEgVsZIzVJFc0FtTpPcCnaEapPpxB0jrGNquVAQcUQ6VlGsNTc2lTaWIrdKqjq6Wn70zFT6494GY5SFOKQlM4Ap8zBlFUx1dPnd4q3U3vij7qGHZaVeiUgdNZbAZtXonGdU-FWZcp6e_NLsFG363su9lgaqARTuDG2Yj2I4n52HH-8LgxvYYw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT9swFL3iS2J7gLGB1gGbH3jhwaWxncR-ZGgItK5DahF9i_wVqNSPqc028e937aSoEmIST_FD7EQ5sX2u7XsOwAljxhklNXXcSyo8hjsGaTm1kpnMl8ZluoxmE3mvJ4dDddMkq8dcGO99PHzm26EY9_LdzP4OS2XYwztKJjxdh81UCJbU6VpPmwZCRDsuZAycpjIfLnclO-ps0L9pB6PwNrKVVAbj5JVZKNqqPBuL4wRzufvKV3sHOw2TJOc19Huw5qfv4e2KvuAHmN-Oq7mm3dlfGvp90L6sHsn5-H42H1UPkwW5wwvpRwnZIL8xfiQ_cQiZYLMxMZfGlam6bPWiIl-9ngSWi62T0ZR0wzFy2keYPWmkz_fh9vLb4OKKNiYL1DLFKsqN48zbxOqQgppm3nLOdKlcgkxGmY7zGNOUSOM8Q2plrTI806yUzJUsLZ3kB7AxnU39RyBGMJdLjTFHYoROhDG5dZlyQsnSaaVbcLb86IVtFMiDEca4iJFIRxUIUxFgKhqYWnD6VONXrb7xn3v3Aywr99WItOBoCWzR9M9FwWSYl1meZ59eqPYFtq8GP7pF97r3_RDehCfVKy9HsIGw-GPYsn-q0WL-Of6E_wDqo9uq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Low-Complexity+Algorithms+With+Structurally+Optimal+Multi-Group+Multicast+Beamforming+in+Large-Scale+Systems&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Zhang%2C+Chong&rft.au=Dong%2C+Min&rft.au=Liang%2C+Ben&rft.date=2023&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=71&rft.spage=1626&rft.epage=1641&rft_id=info:doi/10.1109%2FTSP.2023.3265885&rft.externalDocID=10098135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon