DRGCN-BiLSTM: An Electrocardiogram Heartbeat Classification Using Dynamic Spatial-Temporal Graph Convolutional and Bidirectional Long-Short Term Memory Technique

An automated cardiac rhythm classification using electrocardiograms is crucial for accurate and timely diagnosis of cardiovascular disease. Recent advances in deep learning have facilitated automated arrhythmias recognition, surpassing traditional ECG methods that depend on manual feature extraction...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on consumer electronics Ročník 71; číslo 1; s. 579 - 593
Hlavní autori: Sharma, Neenu, Joshi, Deepak
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0098-3063, 1558-4127
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An automated cardiac rhythm classification using electrocardiograms is crucial for accurate and timely diagnosis of cardiovascular disease. Recent advances in deep learning have facilitated automated arrhythmias recognition, surpassing traditional ECG methods that depend on manual feature extraction. Despite significant progress in existing arrhythmias classification techniques, the current method fails to utilize spatial-temporal interaction and task-specific features include temporal dependencies among observations and a significantly imbalanced class distribution in the dataset. Thus, the accuracy of network-based ECG heart-beat classification still requires improvements. To address this issue, an effective classification algorithm combined with synthetic minority oversampling technique (SMOTE)-Tomek, dynamic perceptive region spatial-temporal graph convolutional network with bidirectional long-short term memory (DRGCN-BiLSTM) is proposed for effective intelligent arrhythmia recognition. This <inline-formula> <tex-math notation="LaTeX"> \mathrm {DRGCN\_BiLSTM} </tex-math></inline-formula> model employs a trainable weighted <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-neighborhood graph to capture the pattern of time series within ECG segments. The SMOTE-Tomek technique addresses data imbalance, while BiLSTM captures temporal features from the graph network. The presented technique was validated on the MIT-BIH arrhythmia database, comprising a total of 109,253 ECG beats and the experimental results demonstrate the average accuracy of 99.92% respectively. The proposed method achieves superior performance as compared to state-of-the-art techniques, which results in better diagnosis of heart-related problems.
AbstractList An automated cardiac rhythm classification using electrocardiograms is crucial for accurate and timely diagnosis of cardiovascular disease. Recent advances in deep learning have facilitated automated arrhythmias recognition, surpassing traditional ECG methods that depend on manual feature extraction. Despite significant progress in existing arrhythmias classification techniques, the current method fails to utilize spatial-temporal interaction and task-specific features include temporal dependencies among observations and a significantly imbalanced class distribution in the dataset. Thus, the accuracy of network-based ECG heart-beat classification still requires improvements. To address this issue, an effective classification algorithm combined with synthetic minority oversampling technique (SMOTE)-Tomek, dynamic perceptive region spatial-temporal graph convolutional network with bidirectional long-short term memory (DRGCN-BiLSTM) is proposed for effective intelligent arrhythmia recognition. This [Formula Omitted] model employs a trainable weighted [Formula Omitted]-neighborhood graph to capture the pattern of time series within ECG segments. The SMOTE-Tomek technique addresses data imbalance, while BiLSTM captures temporal features from the graph network. The presented technique was validated on the MIT-BIH arrhythmia database, comprising a total of 109,253 ECG beats and the experimental results demonstrate the average accuracy of 99.92% respectively. The proposed method achieves superior performance as compared to state-of-the-art techniques, which results in better diagnosis of heart-related problems.
An automated cardiac rhythm classification using electrocardiograms is crucial for accurate and timely diagnosis of cardiovascular disease. Recent advances in deep learning have facilitated automated arrhythmias recognition, surpassing traditional ECG methods that depend on manual feature extraction. Despite significant progress in existing arrhythmias classification techniques, the current method fails to utilize spatial-temporal interaction and task-specific features include temporal dependencies among observations and a significantly imbalanced class distribution in the dataset. Thus, the accuracy of network-based ECG heart-beat classification still requires improvements. To address this issue, an effective classification algorithm combined with synthetic minority oversampling technique (SMOTE)-Tomek, dynamic perceptive region spatial-temporal graph convolutional network with bidirectional long-short term memory (DRGCN-BiLSTM) is proposed for effective intelligent arrhythmia recognition. This <inline-formula> <tex-math notation="LaTeX"> \mathrm {DRGCN\_BiLSTM} </tex-math></inline-formula> model employs a trainable weighted <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-neighborhood graph to capture the pattern of time series within ECG segments. The SMOTE-Tomek technique addresses data imbalance, while BiLSTM captures temporal features from the graph network. The presented technique was validated on the MIT-BIH arrhythmia database, comprising a total of 109,253 ECG beats and the experimental results demonstrate the average accuracy of 99.92% respectively. The proposed method achieves superior performance as compared to state-of-the-art techniques, which results in better diagnosis of heart-related problems.
Author Joshi, Deepak
Sharma, Neenu
Author_xml – sequence: 1
  givenname: Neenu
  orcidid: 0000-0003-1866-2507
  surname: Sharma
  fullname: Sharma, Neenu
  email: neenus.ec.19@nitj.ac.in
  organization: Centre for Biomedical Engineering Department, Indian Institute of Technology at Delhi, New Delhi, India
– sequence: 2
  givenname: Deepak
  orcidid: 0000-0002-7978-6493
  surname: Joshi
  fullname: Joshi, Deepak
  email: Deepak.Joshi@cbme.iitd.ac.in
  organization: Centre for Biomedical Engineering Department, Indian Institute of Technology at Delhi, New Delhi, India
BookMark eNp9kTFv2zAQhYkiBeqk3Tt0INBZ7omULLJborhOAacFamUWaOpkM5BIlaQD-Of0n5auMxQZMhAkHt7Hd7h3SS6ss0jIxxzmeQ7yS1Mv5wxYOedlAaIq35BZXpYiK3JWXZAZgBQZhwV_Ry5DeATIi5KJGflz-2tV_8huzHrT3H-l15YuB9TRO618Z9zOq5HeofJxiyrSelAhmN5oFY2z9CEYu6O3R6tGo-lmSqoasgbHyXk10JVX057Wzj654XACkqZsR29MZ3wKOStrZ3fZZu98pA36kd7j6PwxvfXemt8HfE_e9moI-OH5viIP35ZNfZetf66-19frTDPJYsarDvi275nWiJ3EigOigG7Ra50WJJjO2aJLR4NALQVyrLpCipIXuBVQ8Cvy-fzv5F2KDbF9dAefJgwtZ7kUMnkgueDs0t6F4LFvJ29G5Y9tDu2piDYV0Z6KaJ-LSMjiBaJN_LfA6JUZXgM_nUGDiP_liEqWEvhfsLOZwQ
CODEN ITCEDA
CitedBy_id crossref_primary_10_1007_s42044_025_00292_2
Cites_doi 10.1109/MSP.2012.2235192
10.1109/JBHI.2018.2871510
10.1016/j.iswa.2024.200385
10.1109/TIM.2022.3194906
10.1109/TBME.2004.827359
10.1109/ACCESS.2023.3291352
10.1073/pnas.0709247105
10.1016/j.knosys.2024.111906
10.1109/TAI.2023.3324627
10.1109/LSENS.2020.3006756
10.3390/electronics9010135
10.1016/j.cmpb.2020.105740
10.1016/j.cmpb.2015.06.003
10.1007/s00500-013-1079-6
10.1109/TCE.2023.3341696
10.1109/TITS.2019.2935152
10.1177/20552076241234624
10.3390/ijerph191710707
10.1016/j.procs.2018.05.045
10.1109/JBHI.2019.2942938
10.14257/astl.2017.143.54
10.1109/TKDE.2022.3179646
10.1613/jair.953
10.48550/ARXIV.1609.02907
10.1109/TCE.2018.2877481
10.1109/TAI.2021.3083689
10.1109/TIM.2023.3241997
10.1109/TCE.2024.3423468
10.1016/j.eswa.2023.119711
10.1016/j.compbiomed.2013.11.019
10.1109/51.932724
10.1016/j.inffus.2019.06.024
10.1109/TIM.2020.3033072
10.1016/j.eswa.2022.117663
10.3390/bioengineering5020035
10.1109/ICMEW.2017.8026250
10.1007/978-3-030-16660-1_94
10.1016/j.imu.2018.06.002
10.1007/978-3-031-51455-5_52
10.1155/2019/3130527
10.1016/S0002-9149(97)00436-0
10.1049/itr2.12025
10.1016/j.amjcard.2013.12.026
10.1109/TNN.2008.2012031
10.1109/TIE.2020.3040669
10.1186/s12911-024-02415-4
10.22489/CinC.2020.135
10.1016/j.bspc.2024.106348
10.1016/j.compbiomed.2023.106641
10.1109/TBME.2016.2539421
10.1109/TIM.2022.3231278
10.1109/TCE.2018.2875799
10.1016/j.compbiomed.2022.105325
10.1109/TCE.2023.3237715
10.1109/TAFFC.2018.2817622
10.1016/j.asoc.2020.106383
10.62441/nano-ntp.v20is7.4
10.1109/EMBC53108.2024.10781976
10.1016/j.artmed.2020.101856
10.1109/TIM.2024.3376017
10.1109/TCE.2021.3129316
10.1007/s11760-023-02972-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2025.3540875
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 593
ExternalDocumentID 10_1109_TCE_2025_3540875
10879590
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c292t-37d03bff2cceed9e730ee80d6fcc11082c126d126c08ec98e3e7d498534eb8043
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001511609900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3063
IngestDate Thu Nov 27 15:42:19 EST 2025
Sat Nov 29 07:51:39 EST 2025
Tue Nov 18 22:03:06 EST 2025
Wed Aug 27 01:45:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-37d03bff2cceed9e730ee80d6fcc11082c126d126c08ec98e3e7d498534eb8043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1866-2507
0000-0002-7978-6493
PQID 3219890430
PQPubID 85469
PageCount 15
ParticipantIDs ieee_primary_10879590
crossref_primary_10_1109_TCE_2025_3540875
crossref_citationtrail_10_1109_TCE_2025_3540875
proquest_journals_3219890430
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Oliveira (ref26) 2024
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref31
  doi: 10.1109/MSP.2012.2235192
– ident: ref53
  doi: 10.1109/JBHI.2018.2871510
– ident: ref23
  doi: 10.1016/j.iswa.2024.200385
– ident: ref59
  doi: 10.1109/TIM.2022.3194906
– ident: ref52
  doi: 10.1109/TBME.2004.827359
– ident: ref20
  doi: 10.1109/ACCESS.2023.3291352
– ident: ref45
  doi: 10.1073/pnas.0709247105
– ident: ref25
  doi: 10.1016/j.knosys.2024.111906
– ident: ref4
  doi: 10.1109/TAI.2023.3324627
– ident: ref56
  doi: 10.1109/LSENS.2020.3006756
– ident: ref55
  doi: 10.3390/electronics9010135
– ident: ref51
  doi: 10.1016/j.cmpb.2020.105740
– ident: ref37
  doi: 10.1016/j.cmpb.2015.06.003
– ident: ref46
  doi: 10.1007/s00500-013-1079-6
– ident: ref5
  doi: 10.1109/TCE.2023.3341696
– ident: ref28
  doi: 10.1109/TITS.2019.2935152
– ident: ref42
  doi: 10.1177/20552076241234624
– ident: ref7
  doi: 10.3390/ijerph191710707
– ident: ref15
  doi: 10.1016/j.procs.2018.05.045
– ident: ref54
  doi: 10.1109/JBHI.2019.2942938
– ident: ref48
  doi: 10.14257/astl.2017.143.54
– ident: ref29
  doi: 10.1109/TKDE.2022.3179646
– ident: ref41
  doi: 10.1613/jair.953
– ident: ref30
  doi: 10.48550/ARXIV.1609.02907
– ident: ref34
  doi: 10.1109/TCE.2018.2877481
– ident: ref58
  doi: 10.1109/TAI.2021.3083689
– ident: ref14
  doi: 10.1109/TIM.2023.3241997
– ident: ref35
  doi: 10.1109/TCE.2024.3423468
– ident: ref61
  doi: 10.1016/j.eswa.2023.119711
– ident: ref16
  doi: 10.1016/j.compbiomed.2013.11.019
– ident: ref40
  doi: 10.1109/51.932724
– year: 2024
  ident: ref26
  article-title: Leveraging visibility graphs for enhanced arrhythmia classification with graph convolutional networks
  publication-title: arXiv:2404.15367
– ident: ref13
  doi: 10.1016/j.inffus.2019.06.024
– ident: ref57
  doi: 10.1109/TIM.2020.3033072
– ident: ref44
  doi: 10.1016/j.eswa.2022.117663
– ident: ref19
  doi: 10.3390/bioengineering5020035
– ident: ref47
  doi: 10.1109/ICMEW.2017.8026250
– ident: ref50
  doi: 10.1007/978-3-030-16660-1_94
– ident: ref49
  doi: 10.1016/j.imu.2018.06.002
– ident: ref22
  doi: 10.1007/978-3-031-51455-5_52
– ident: ref38
  doi: 10.1155/2019/3130527
– ident: ref39
  doi: 10.1016/S0002-9149(97)00436-0
– ident: ref32
  doi: 10.1049/itr2.12025
– ident: ref36
  doi: 10.1016/j.amjcard.2013.12.026
– ident: ref18
  doi: 10.1109/TNN.2008.2012031
– ident: ref8
  doi: 10.1109/TIE.2020.3040669
– ident: ref62
  doi: 10.1186/s12911-024-02415-4
– ident: ref24
  doi: 10.22489/CinC.2020.135
– ident: ref21
  doi: 10.1016/j.bspc.2024.106348
– ident: ref12
  doi: 10.1016/j.compbiomed.2023.106641
– ident: ref17
  doi: 10.1109/TBME.2016.2539421
– ident: ref10
  doi: 10.1109/TIM.2022.3231278
– ident: ref1
  doi: 10.1109/TCE.2018.2875799
– ident: ref60
  doi: 10.1016/j.compbiomed.2022.105325
– ident: ref3
  doi: 10.1109/TCE.2023.3237715
– ident: ref9
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref43
  doi: 10.1016/j.asoc.2020.106383
– ident: ref63
  doi: 10.62441/nano-ntp.v20is7.4
– ident: ref27
  doi: 10.1109/EMBC53108.2024.10781976
– ident: ref11
  doi: 10.1016/j.artmed.2020.101856
– ident: ref2
  doi: 10.1109/TIM.2024.3376017
– ident: ref6
  doi: 10.1109/TCE.2021.3129316
– ident: ref33
  doi: 10.1007/s11760-023-02972-7
SSID ssj0014528
Score 2.4323375
Snippet An automated cardiac rhythm classification using electrocardiograms is crucial for accurate and timely diagnosis of cardiovascular disease. Recent advances in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 579
SubjectTerms Accuracy
Arrhythmia
arrhythmias classification
Artificial neural networks
Automation
Bidirectional long short term memory
BiLSTM
Cardiac arrhythmia
Classification
Deep learning
Diagnosis
Electrocardiogram
Electrocardiography
Feature extraction
graph convolutional network
Heart
Heart beat
Machine learning
Pattern recognition
Support vector machines
Title DRGCN-BiLSTM: An Electrocardiogram Heartbeat Classification Using Dynamic Spatial-Temporal Graph Convolutional and Bidirectional Long-Short Term Memory Technique
URI https://ieeexplore.ieee.org/document/10879590
https://www.proquest.com/docview/3219890430
Volume 71
WOSCitedRecordID wos001511609900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-4127
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014528
  issn: 0098-3063
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBt1hf5ODFQ3RN0ibxprXqoRbRVbwt3WSqhbIVrQV_jv_UTLIrBVGQZWEJ2WVhJjOTyTffELLvciUTrQTLtQMmrTpmmBlkVlnZlI7rXkhlP3RUt6sfH81NWaweamEAIIDP4BAfw1m-G9l3TJX5FR5aY_sd-qxSKhZrfR8ZyAbXFUGmj4NFdSaZmKO01fY7Qd44xCRHgBRO-aDQVOWHJQ7u5WLpnz-2TBbLOJKeRsGvkBkoVsnCFLvgGvk8v71sddnZoHOXXp_Q04K2Y88bGzCoCMuiV17Rx7m3xzR0x0TcUBAVDVACeh771VNsXOwVlaWRyGpIL5HnmrZGxaRUXT_WKxw9G0QfGUc6o-KJ3T37CJ-m3gPQa4T1ftC04o1dJ_cX7bR1xcqODMxyw8feGrlE5P0-t-hbDXjzAKAT1-xbi_UE3B7zpvO3TTRYo0GActL4kEBCrhMpNkitGBWwSSgX0qlmLoy_ZK5AQ6PfazirexaMAlEnR5WMMlvSlWPXjGEWti2JybxUM5RqVkq1Tg6-33iJVB1_zF1HKU7NiwKsk51KD7JyMb9lgiOwDMnRtn55bZvM49cjmnuH1Mav77BL5uxkPHh73Qt6-gU18-eJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEA5ihdYHta3F82cefOlDdC_JXhLf9Dw96d4hdVt8W26TuXoge6Kn0D_H_9RMsisHxYIsC0vIsgszmZlMvvmGkH1XKploJVipHTBpVZthZpBZZWVHOq5HIZX9O1PDob6-Npd1sXqohQGAAD6DA3wMZ_luah8xVeZXeGiN7XfoH1IpeTuWa70eGsiU64Yi00fCojmVTMxh3u35vSBPDzDNEUCFc14otFX5xxYHB3O2-s5fWyMrdSRJj6PoP5MFqL6Q5Tl-wa_k-fTneXfITibZVT44oscV7cWuNzagUBGYRfte1Welt8g09MdE5FAQFg1gAnoaO9ZTbF3sVZXlkcrqlp4j0zXtTqunWnn92Khy9GQSvWQcyabVH3Z142N8mnsfQAcI7P1L84Y5dp38Ouvl3T6rezIwyw2feXvkElGOx9yidzXgDQSATlxnbC1WFHDb5h3nb5tosEaDAOWk8UGBhFInUnwji9W0gg1CuZBOdUph_CVLBRrS8Sh1Vo8sGAWiRQ4bGRW2JizHvhm3Rdi4JKbwUi1QqkUt1Rb5_vrGXSTr-M_cdZTi3LwowBbZbvSgqJfzQyE4QsuQHm3zjdf2yMd-PsiK7GL4Y4t8wi9FbPc2WZzdP8IOWbJPs8nD_W7Q2Rdi6-rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DRGCN-BiLSTM%3A+An+Electrocardiogram+Heartbeat+Classification+Using+Dynamic+Spatial-Temporal+Graph+Convolutional+and+Bidirectional+Long-Short+Term+Memory+Technique&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Sharma%2C+Neenu&rft.au=Joshi%2C+Deepak&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=0098-3063&rft.volume=71&rft.issue=1&rft.spage=579&rft.epage=593&rft_id=info:doi/10.1109%2FTCE.2025.3540875&rft.externalDocID=10879590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon