Predictive and Adaptive Deep Coding for Wireless Image Transmission in Semantic Communication
Semantic communication is a newly emerged communication paradigm that exploits deep learning (DL) models to realize communication processes like source coding and channel coding. Recent advances have demonstrated that DL-based joint source-channel coding (DeepJSCC) can achieve exciting data compress...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on wireless communications Jg. 22; H. 8; S. 1 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1536-1276, 1558-2248 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Semantic communication is a newly emerged communication paradigm that exploits deep learning (DL) models to realize communication processes like source coding and channel coding. Recent advances have demonstrated that DL-based joint source-channel coding (DeepJSCC) can achieve exciting data compression and noise-resiliency performances for wireless image transmission tasks, especially in environments with low channel signal-to-noises (SNRs). However, existing DeepJSCC-based semantic communication frameworks still cannot achieve adaptive code rates for different channel SNRs and image contents, which reduces its flexibility and bandwidth efficiency. In this paper, we propose a predictive and adaptive deep coding (PADC) framework for realizing flexible code rate optimization with a given target transmission quality requirement. PADC is realized by a variable code length enabled DeepJSCC (DeepJSCC-V) model for realizing flexible code length adjustment, an Oracle Network (OraNet) model for predicting peak-signal-to-noise (PSNR) value for an image transmission task according to its contents, channel signal to noise ratio (SNR) and the compression ratio (CR) value, and a CR optimizer aims at finding the minimal data-level or instance-level CR with a PSNR quality constraint. By using the above three modules, PADC can transmit the image data with minimal CR, which greatly increases bandwidth efficiency. Simulation results demonstrate that the proposed DeepJSCC-V model can achieve similar PSNR performances compared with the state-of-the-art Attention-based DeepJSCC (ADJSCC) model, and the proposed OraNet model is able to predict high-quality PSNR values with an average error lower than 0.5dB. Results also demonstrate that the proposed PADC can use nearly minimal bandwidth consumption for wireless image transmission tasks with different channel SNR and image contents, at the same time guaranteeing the PSNR constraint for each image data. |
|---|---|
| AbstractList | Semantic communication is a newly emerged communication paradigm that exploits deep learning (DL) models to realize communication processes like source coding and channel coding. Recent advances have demonstrated that DL-based joint source-channel coding (DeepJSCC) can achieve exciting data compression and noise-resiliency performances for wireless image transmission tasks, especially in environments with low channel signal-to-noises (SNRs). However, existing DeepJSCC-based semantic communication frameworks still cannot achieve adaptive code rates for different channel SNRs and image contents, which reduces its flexibility and bandwidth efficiency. In this paper, we propose a predictive and adaptive deep coding (PADC) framework for realizing flexible code rate optimization with a given target transmission quality requirement. PADC is realized by a variable code length enabled DeepJSCC (DeepJSCC-V) model for realizing flexible code length adjustment, an Oracle Network (OraNet) model for predicting peak-signal-to-noise (PSNR) value for an image transmission task according to its contents, channel signal to noise ratio (SNR) and the compression ratio (CR) value, and a CR optimizer aims at finding the minimal data-level or instance-level CR with a PSNR quality constraint. By using the above three modules, PADC can transmit the image data with minimal CR, which greatly increases bandwidth efficiency. Simulation results demonstrate that the proposed DeepJSCC-V model can achieve similar PSNR performances compared with the state-of-the-art Attention-based DeepJSCC (ADJSCC) model, and the proposed OraNet model is able to predict high-quality PSNR values with an average error lower than 0.5dB. Results also demonstrate that the proposed PADC can use nearly minimal bandwidth consumption for wireless image transmission tasks with different channel SNR and image contents, at the same time guaranteeing the PSNR constraint for each image data. |
| Author | Wang, Ning Shao, Hua Leung, Victor C. M. Zhang, Haijun Zhang, Wenyu Ma, Hui |
| Author_xml | – sequence: 1 givenname: Wenyu orcidid: 0000-0001-5488-2158 surname: Zhang fullname: Zhang, Wenyu organization: Institute of Artificial Intelligence, School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Haijun orcidid: 0000-0002-0236-6482 surname: Zhang fullname: Zhang, Haijun organization: Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Hui orcidid: 0000-0002-2851-0091 surname: Ma fullname: Ma, Hui organization: Institute of Artificial Intelligence, School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Hua orcidid: 0000-0002-1275-2280 surname: Shao fullname: Shao, Hua organization: Institute of Artificial Intelligence, School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China – sequence: 5 givenname: Ning orcidid: 0000-0001-9403-3417 surname: Wang fullname: Wang, Ning organization: School of Information Engineering, Henan Joint International Research Laboratory of Intelligent Networking and Data Analysis, Zhengzhou University, Henan, China – sequence: 6 givenname: Victor C. M. orcidid: 0000-0003-3529-2640 surname: Leung fullname: Leung, Victor C. M. organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| BookMark | eNp9kMtLAzEQh4NUsK3ePXgIeN6ax2Y3eyzrq1BQsNKTLGkyKSnd7JpsBf97t4-DePCUCfP7ZoZvhAa-8YDQNSUTSklxt1iWE0YYn3DG05TIMzSkQsiEsVQO9jXPEsry7AKNYtwQQvNMiCH6eA1gnO7cF2DlDZ4a1R4-9wAtLhvj_BrbJuClC7CFGPGsVmvAi6B8rF2MrvHYefwGtfKd0z1S1zvvtOr6ziU6t2ob4er0jtH748OifE7mL0-zcjpPNCtYl3ChaKGlILlJ7UoyrnVqpWGcKUF4nlEtqF4VRpo8tcDMSmZKG8FlXhgLVvAxuj3ObUPzuYPYVZtmF3y_smIyLShhuSz6VHZM6dDEGMBW2nWHO7ug3LaipNqrrHqV1V5ldVLZg-QP2AZXq_D9H3JzRBwA_IoTKjKZ8h8ij4Fg |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_1016_j_phycom_2025_102763 crossref_primary_10_1109_MCE_2024_3395027 crossref_primary_10_1109_TWC_2024_3519325 crossref_primary_10_1109_TWC_2024_3520870 crossref_primary_10_1109_TCOMM_2024_3511949 crossref_primary_10_1109_MWC_001_2300346 crossref_primary_10_1109_TGRS_2025_3576382 crossref_primary_10_1109_LCOMM_2024_3518538 crossref_primary_10_3390_s25092823 crossref_primary_10_3390_bdcc9090240 crossref_primary_10_1016_j_aej_2025_03_113 crossref_primary_10_1109_TWC_2025_3552255 crossref_primary_10_1117_1_JEI_34_2_023052 crossref_primary_10_1016_j_iot_2024_101383 crossref_primary_10_3390_electronics12224637 crossref_primary_10_1109_TCCN_2023_3326302 crossref_primary_10_1016_j_phycom_2025_102836 crossref_primary_10_1109_JSAC_2025_3559127 crossref_primary_10_1109_JIOT_2025_3581393 crossref_primary_10_1016_j_knosys_2025_114464 crossref_primary_10_1109_ACCESS_2025_3607699 crossref_primary_10_1109_LWC_2024_3449373 crossref_primary_10_1109_TCE_2023_3328905 crossref_primary_10_1109_TIFS_2025_3573192 crossref_primary_10_1016_j_icte_2025_02_010 crossref_primary_10_3390_e27040369 crossref_primary_10_1109_JIOT_2025_3579582 crossref_primary_10_1016_j_dcan_2024_06_001 crossref_primary_10_1109_LSP_2025_3592591 crossref_primary_10_1109_TNSE_2025_3554100 crossref_primary_10_1109_LWC_2024_3460789 crossref_primary_10_1109_TCCN_2024_3422496 crossref_primary_10_3390_s24124005 crossref_primary_10_1109_MCOM_001_2300575 crossref_primary_10_1007_s11071_024_10651_6 crossref_primary_10_1109_JSAC_2025_3559115 crossref_primary_10_1109_TCCN_2024_3522140 crossref_primary_10_1109_COMST_2024_3471685 crossref_primary_10_1109_TCCN_2024_3392803 crossref_primary_10_1109_TCCN_2024_3424842 crossref_primary_10_1038_s41598_025_16753_4 crossref_primary_10_1109_TWC_2024_3381950 crossref_primary_10_1109_TCCN_2024_3438371 crossref_primary_10_1109_TWC_2024_3409735 crossref_primary_10_1109_JSAC_2025_3536557 crossref_primary_10_1109_LWC_2025_3584370 crossref_primary_10_1109_TCOMM_2025_3538830 crossref_primary_10_1038_s41598_025_85602_1 crossref_primary_10_1109_JSAC_2025_3531537 crossref_primary_10_1109_LCOMM_2024_3418389 crossref_primary_10_1109_TCOMM_2024_3480982 crossref_primary_10_1109_TCCN_2024_3520132 crossref_primary_10_1109_TVT_2024_3521948 crossref_primary_10_1007_s11760_025_03826_0 crossref_primary_10_1007_s40435_025_01849_6 crossref_primary_10_1109_ACCESS_2025_3532797 crossref_primary_10_1109_LCOMM_2025_3568427 crossref_primary_10_3390_s24206503 crossref_primary_10_1109_TVT_2024_3396426 crossref_primary_10_1109_TCOMM_2024_3496714 crossref_primary_10_1109_JIOT_2025_3558325 crossref_primary_10_1109_LWC_2025_3557843 crossref_primary_10_1109_JIOT_2024_3477314 crossref_primary_10_1109_TIFS_2024_3516576 crossref_primary_10_1109_LCOMM_2025_3587319 crossref_primary_10_1109_TIFS_2025_3534562 crossref_primary_10_1109_LWC_2025_3526962 crossref_primary_10_1109_LWC_2025_3561012 crossref_primary_10_1109_TCSVT_2025_3539226 |
| Cites_doi | 10.1109/VTC2022-Fall57202.2022.10012843 10.1109/SPAWC.2019.8815416 10.1109/JSAC.2021.3087240 10.1109/TCSVT.2021.3082521 10.1109/JSAIT.2020.2987203 10.1109/TIT.2010.2043769 10.1109/DCC.2000.838192 10.1007/s11263-015-0816-y 10.1109/TVLSI.2020.3034046 10.1016/S0923-5965(01)00024-8 10.1109/TSP.2022.3147307 10.1002/wics.101 10.1109/CVPR.2009.5206848 10.1016/j.eng.2021.11.003 10.1109/TCCN.2019.2919300 10.1109/ICASSP.2018.8461983 10.1109/ISTC.2018.8625377 10.1109/TIT.2017.2674667 10.1109/TCOMM.2009.0901.070075 10.1109/TIT.2003.810631 10.1109/TWC.2021.3090048 10.1109/MCOM.001.2001239 10.1109/CVPR.2016.90 10.1109/26.843191 10.1109/MCOM.001.2200099 10.1109/ICASSP43922.2022.9746335 10.1109/CVPR.2018.00745 10.1002/bltj.20540 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2023.3234408 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TWC_2023_3234408 10015684 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62102021 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2020M680350 funderid: 10.13039/501100002858 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX AETIX AIBXA CITATION EJD H~9 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-35a19c8507d4fb823cc4f8d232a503761c51cb9d8d74fe2db86acd53879dfef53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001050132500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 19:04:39 EDT 2025 Sat Nov 29 06:23:56 EST 2025 Tue Nov 18 22:18:20 EST 2025 Wed Aug 27 02:25:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-35a19c8507d4fb823cc4f8d232a503761c51cb9d8d74fe2db86acd53879dfef53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5488-2158 0000-0003-3529-2640 0000-0002-0236-6482 0000-0002-1275-2280 0000-0002-2851-0091 0000-0001-9403-3417 |
| PQID | 2849102789 |
| PQPubID | 105736 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10015684 crossref_citationtrail_10_1109_TWC_2023_3234408 crossref_primary_10_1109_TWC_2023_3234408 proquest_journals_2849102789 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 tung (ref19) 2021 ref15 ref36 ref11 ref33 ref10 ref32 ref1 ref17 ref16 ref18 franzen (ref34) 0 vangala (ref5) 2015 ref24 ref23 ref26 ref25 ref20 ref22 ref21 krizhevsky (ref30) 2021 ref28 ref27 kingma (ref31) 2014 ref8 ref7 ballé (ref29) 2015 ref9 ref4 ref3 ref6 qin (ref14) 2021 bellard (ref2) 2022 |
| References_xml | – year: 2021 ident: ref19 article-title: DeepJSCC-Q: Channel input constrained deep joint source-channel coding publication-title: arXiv 2111 13042 – ident: ref20 doi: 10.1109/VTC2022-Fall57202.2022.10012843 – year: 2021 ident: ref14 article-title: Semantic communications: Principles and challenges publication-title: arXiv 2201 01389 – ident: ref21 doi: 10.1109/SPAWC.2019.8815416 – ident: ref18 doi: 10.1109/JSAC.2021.3087240 – year: 2015 ident: ref5 article-title: A comparative study of polar code constructions for the AWGN channel publication-title: arXiv 1501 02473 – year: 2015 ident: ref29 article-title: Density modeling of images using a generalized normalization transformation publication-title: arXiv 1511 06281 – ident: ref23 doi: 10.1109/TCSVT.2021.3082521 – ident: ref10 doi: 10.1109/JSAIT.2020.2987203 – ident: ref27 doi: 10.1109/TIT.2010.2043769 – year: 2014 ident: ref31 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref1 doi: 10.1109/DCC.2000.838192 – ident: ref33 doi: 10.1007/s11263-015-0816-y – ident: ref36 doi: 10.1109/TVLSI.2020.3034046 – ident: ref3 doi: 10.1016/S0923-5965(01)00024-8 – year: 0 ident: ref34 publication-title: Kodak dataset – ident: ref4 doi: 10.1109/TSP.2022.3147307 – ident: ref35 doi: 10.1002/wics.101 – ident: ref32 doi: 10.1109/CVPR.2009.5206848 – ident: ref15 doi: 10.1016/j.eng.2021.11.003 – ident: ref9 doi: 10.1109/TCCN.2019.2919300 – ident: ref17 doi: 10.1109/ICASSP.2018.8461983 – year: 2021 ident: ref30 publication-title: The CIFAR dataset – ident: ref6 doi: 10.1109/ISTC.2018.8625377 – ident: ref13 doi: 10.1109/TIT.2017.2674667 – ident: ref12 doi: 10.1109/TCOMM.2009.0901.070075 – ident: ref11 doi: 10.1109/TIT.2003.810631 – ident: ref22 doi: 10.1109/TWC.2021.3090048 – ident: ref7 doi: 10.1109/MCOM.001.2001239 – year: 2022 ident: ref2 publication-title: BPG image format – ident: ref28 doi: 10.1109/CVPR.2016.90 – ident: ref24 doi: 10.1109/26.843191 – ident: ref16 doi: 10.1109/MCOM.001.2200099 – ident: ref26 doi: 10.1109/ICASSP43922.2022.9746335 – ident: ref25 doi: 10.1109/CVPR.2018.00745 – ident: ref8 doi: 10.1002/bltj.20540 |
| SSID | ssj0017655 |
| Score | 2.6935163 |
| Snippet | Semantic communication is a newly emerged communication paradigm that exploits deep learning (DL) models to realize communication processes like source coding... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Bandwidths Codes Communication Compression ratio Data compression Data models Encoding Image coding Image communication Image compression Image transmission joint source channel coding Keywords: Adaptive code length Noise Noise prediction Optimization quality prediction semantic communication Semantics Signal to noise ratio Wireless communication wireless image transmission |
| Title | Predictive and Adaptive Deep Coding for Wireless Image Transmission in Semantic Communication |
| URI | https://ieeexplore.ieee.org/document/10015684 https://www.proquest.com/docview/2849102789 |
| Volume | 22 |
| WOSCitedRecordID | wos001050132500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3Lw4qFbm6ZLchzToZcxcOIuUtLkBQZbN_bh32-SdmNDFLy18FLK-zXvveZ9_BB60NZlJNSYIOQyC2gWqoDrRAYhjQAMU4Zq7ckmWL_PRyMxKJvVfS8MAPjiM2i6S5_L1zO1dkdlrcg3_nJaQRXGWNGstU0ZsLanOLU72BHLsG1OMhSt4Ue36WjCmzGJHcPyng_ypCo_LLF3L73Tf77YGTop40jcKYA_RweQX6DjnemCl-hzsHBZGGfPsMw17mg59zdPAHPcnTmvhW3Mil0F7MRaPPw6tdYFe_dl4XfnaHic4zeYWvWPFd5rJqmh997zsPsSlGwKgSKCrII4kZFQ3MZ_mpqMk1gpari2EZVMQmtmIpVEKhOaa0YNEJ3xtlTa2kMmtAGTxFeoms9yuEbYpS7bhlNixWhkIMu00CSShErShkjWUWuj31SVo8Yd48Uk9b8coUgtIqlDJC0RqaPH7Yp5MWbjD9maQ2BHrlB-HTU2GKblRlym1vvagMi1-978suwWHbmnF0V9DVRdLdZwhw7V12q8XNz7b-wbyy7Pjg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XB68Tp1Dz44kO3Jk3X5FGmojjHwIl7kZLmAoOtG3P6-03SbkxEwbcWTkjJl5xzmnP5AC6VNRkxNSYImcgCmoUyYCoWQUix1iaRhirlySaSTof1-7xbFqv7WhittU8-03X36GP5aiw_3FVZA_vCX0ZXYT2mlOCiXGsRNEianuTUnmFHLZMsopIhb_ReW3VHFF6PSOQ4lr9ZIU-r8kMXewNzt_vPT9uDndKTRNcF9PuwovMD2F7qL3gIb92pi8M4jYZErtC1EhP_cqP1BLXGzm4h67UilwM7tDoPPYysfkHegNkN4G7S0CBHz3pkARhI9K2cpAIvd7e91n1Q8ikEknAyC6JYYC6Z9QAVNRkjkZTUMGV9KhGHVtFgGWOZccVUQo0mKmNNIZXViAlXRps4OoK1fJzrY0AueNk0jBIrRrHRWaa4IlgQKkhTY1GFxnx9U1k2G3ecF8PU_3SEPLWIpA6RtESkCleLEZOi0cYfshWHwJJcsfhVqM0xTMuj-J5a-2tdIlfwe_LLsAvYvO89tdP2Q-fxFLbcTEWKXw3WZtMPfQYb8nM2eJ-e-_32BcCx0tU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+and+Adaptive+Deep+Coding+for+Wireless+Image+Transmission+in+Semantic+Communication&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhang%2C+Wenyu&rft.au=Zhang%2C+Haijun&rft.au=Ma%2C+Hui&rft.au=Shao%2C+Hua&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=22&rft.issue=8&rft.spage=5486&rft_id=info:doi/10.1109%2FTWC.2023.3234408&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |