QoS-Aware Precoder Optimization for Radar Sensing and Multiuser Communications Under Per-Antenna Power Constraints

In this work, we concentrate on designing the precoder for the multiple-input multiple-output (MIMO) dual functional radar-communication (DFRC) system, where the dual-functional waveform is designed for performing multiuser downlink transmission and radar sensing simultaneously. Specifically, consid...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 71; s. 1 - 16
Hlavní autoři: Wang, Chao, Li, Zan, Al-Dhahir, Naofal, Kim, Kyeong Jin, Wong, Kai-Kit
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, we concentrate on designing the precoder for the multiple-input multiple-output (MIMO) dual functional radar-communication (DFRC) system, where the dual-functional waveform is designed for performing multiuser downlink transmission and radar sensing simultaneously. Specifically, considering the signal-independent interference and signal-dependent clutter, we investigate the optimization of transmit precoding for maximizing the sensing signal-to-interference-plus-noise ratio (SINR) at the radar receiver under the constraint of the minimum SINR received at multiple communication users and per-antenna power budget. The formulated problem is challenging to solve due to the nonconovex objective function and nonconvex per-antenna power constraint. In particular, for the signal-independent interference case, we propose a distance-majorization induced algorithm to approximate the nonconvex problem as a sequence of convex problems whose optima can be obtained in closed form. Subsequently, our complexity analysis shows that our proposed algorithm has a much lower computational complexity than the widely-adopted semidefinite relaxation (SDR)-based algorithm. For the signal-dependent clutter case, we employ the fractional programming to transform the nonconvex problem into a sequence of subproblems, and then we propose a distance-majorization based algorithm to obtain the solution of each subproblem in closed form. Finally, simulation results confirm the performance superiority of our proposed algorithms when compared with the SDR-based approach. In conclusion, the novelty of this work is to propose an efficient algorithm for handling the typical problem in designing the DFRC precoder, which achieves better performance with a much lower complexity than the state-of-the-art algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2023.3279580