An Information-Theoretic Branch-and-Prune Algorithm for Discrete Phase Optimization of RIS in Massive MIMO

In this paper, we consider passive RIS-assisted multi-user communication between wireless nodes to improve the blocked line-of-sight (LOS) link performance. The wireless nodes are assumed to be equipped with Massive Multiple-Input Multiple-Output antennas, hybrid precoder, combiner, and low-resoluti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology Ročník 72; číslo 6; s. 7395 - 7410
Hlavní autori: Ahmed, I. Zakir, Sadjadpour, Hamid R., Yousefi, Shahram
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider passive RIS-assisted multi-user communication between wireless nodes to improve the blocked line-of-sight (LOS) link performance. The wireless nodes are assumed to be equipped with Massive Multiple-Input Multiple-Output antennas, hybrid precoder, combiner, and low-resolution analog-to-digital converters (ADCs). We first derive the expression for the Cramer-Rao lower bound (CRLB) of the Mean Squared Error (MSE) of the received and combined signal at the intended receiver under interference. By appropriate design of the hybrid precoder, combiner, and RIS phase settings, it can be shown that the MSE achieves the CRLB. We further show that minimizing the MSE w.r.t. the phase settings of the RIS is equivalent to maximizing the throughput and energy efficiency of the system. We then propose a novel Information-Directed Branch-and-Prune (IDBP) algorithm to derive the phase settings of the RIS. We, for the first time in the literature, use an information-theoretic measure to decide on the pruning rules in a tree-search algorithm to arrive at the RIS phase-setting solution, which is vastly different compared to the traditional branch-and-bound algorithm that uses bounds of the cost function to define the pruning rules. In addition, we provide the theoretical guarantees of the near-optimality of the RIS phase-setting solution thus obtained using the Asymptotic Equipartition property. This also ensures near-optimal throughput and MSE performance.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2023.3237682