Transformer-Empowered Predictive Beamforming for Rate-Splitting Multiple Access in Non-Terrestrial Networks

Existing Rate-Splitting Multiple Access (RSMA) techniques offer a promise for Non-Terrestrial Networks (NTNs) by managing interference and ensuring reliable data transmission. However, precoder design remains a crucial bottleneck, demanding accurate Channel State Information (CSI) feedback and compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications Jg. 23; H. 12; S. 19776 - 19788
Hauptverfasser: Zhang, Shengyu, Zhang, Shiyao, Yuan, Weijie, Quek, Tony Q. S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1276, 1558-2248
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Existing Rate-Splitting Multiple Access (RSMA) techniques offer a promise for Non-Terrestrial Networks (NTNs) by managing interference and ensuring reliable data transmission. However, precoder design remains a crucial bottleneck, demanding accurate Channel State Information (CSI) feedback and complex optimization, which are challenging in practical deployment. Motivated by this, this paper proposes a novel Deep Learning (DL)-based method to predict the precoder design from the historical CSI directly. In particular, we first establish a predictive beamforming protocol for precoder design using historical CSI, bypassing the need for constant feedback and reducing complexity. Subsequently, we formulate a general problem for precoder design, with the Weighted Ergodic Sum Rate (WESR) serving as the objective function. Solving this problem is particularly challenging due to the dynamic nature of wireless channels in NTNs. To address this, we designed a fusion model, named TranCN, which harnesses the strengths of Transformers and Convolutional Neural Networks (CNNs) to extract spatial-temporal features from historical CSI, thereby enhancing precoder performance. Simulation results demonstrate that our predictive beamforming scheme enables RSMA to adapt to dynamic channel conditions using historical CSI, surpassing baseline methods and improving data transmission resilience.
AbstractList Existing Rate-Splitting Multiple Access (RSMA) techniques offer a promise for Non-Terrestrial Networks (NTNs) by managing interference and ensuring reliable data transmission. However, precoder design remains a crucial bottleneck, demanding accurate Channel State Information (CSI) feedback and complex optimization, which are challenging in practical deployment. Motivated by this, this paper proposes a novel Deep Learning (DL)-based method to predict the precoder design from the historical CSI directly. In particular, we first establish a predictive beamforming protocol for precoder design using historical CSI, bypassing the need for constant feedback and reducing complexity. Subsequently, we formulate a general problem for precoder design, with the Weighted Ergodic Sum Rate (WESR) serving as the objective function. Solving this problem is particularly challenging due to the dynamic nature of wireless channels in NTNs. To address this, we designed a fusion model, named TranCN, which harnesses the strengths of Transformers and Convolutional Neural Networks (CNNs) to extract spatial-temporal features from historical CSI, thereby enhancing precoder performance. Simulation results demonstrate that our predictive beamforming scheme enables RSMA to adapt to dynamic channel conditions using historical CSI, surpassing baseline methods and improving data transmission resilience.
Author Zhang, Shengyu
Zhang, Shiyao
Quek, Tony Q. S.
Yuan, Weijie
Author_xml – sequence: 1
  givenname: Shengyu
  orcidid: 0000-0002-6727-8336
  surname: Zhang
  fullname: Zhang, Shengyu
  email: shengyu_zhang@sutd.edu.sg
  organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Tampines, Singapore
– sequence: 2
  givenname: Shiyao
  orcidid: 0000-0002-0004-1801
  surname: Zhang
  fullname: Zhang, Shiyao
  email: zhangsy@sustech.edu.cn
  organization: Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Weijie
  orcidid: 0000-0002-2158-0046
  surname: Yuan
  fullname: Yuan, Weijie
  email: yuanwj@sustech.edu.cn
  organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Tony Q. S.
  orcidid: 0000-0002-4037-3149
  surname: Quek
  fullname: Quek, Tony Q. S.
  email: tonyquek@sutd.edu.sg
  organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Tampines, Singapore
BookMark eNp9UMlOwzAQtVCRaAt3DhwscU7xktjJsVRlkcoiCOIYuc4EuU3jYLtU_D2J2gPiwGXeaOa9Wd4IDRrbAELnlEwoJdlV_j6bMMLiCY9TISQ_QkOaJGnEWJwO-pyLiDIpTtDI-xUhVIokGaJ17lTjK-s24KL5prU7cFDi5y4YHcwX4GtQm75vmg_cIX5RAaLXtjYh9KWHbR1MWwOeag3eY9PgR9tEOTgHPjijavwIYWfd2p-i40rVHs4OOEZvN_N8dhctnm7vZ9NFpFnGQsQqxUByzcqSp8u0TJWikgiSxVpIKTNR0Spd8kyVIu5eB0WY1jKjwEqWESH4GF3u57bOfm67K4qV3bqmW1lwGnPCpOSkY4k9SzvrvYOq0CaoYGwTnDJ1QUnRG1t0xha9scXB2E5I_ghbZzbKff8nudhLDAD8osuYMpryH10lhqY
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_JIOT_2025_3565413
crossref_primary_10_1109_JSTSP_2025_3532040
crossref_primary_10_1016_j_eng_2025_05_013
crossref_primary_10_1109_OJCOMS_2025_3586560
crossref_primary_10_1109_TWC_2025_3552052
Cites_doi 10.23919/JCIN.2022.9906941
10.1109/JIOT.2022.3224847
10.1109/COMST.2021.3078433
10.1109/TWC.2022.3192980
10.1109/TWC.2020.2988917
10.1016/j.dcan.2022.09.022
10.1109/LCOMM.2018.2855935
10.1109/LCOMM.2011.101011.111319
10.1109/TCOMM.2019.2943168
10.1109/ACCESS.2021.3051306
10.1109/TWC.2004.842979
10.48550/ARXIV.1706.03762
10.1109/TNNLS.2014.2306420
10.1109/LWC.2020.3045150
10.1109/JSAC.2022.3191334
10.1109/JSAC.2022.3180803
10.1109/MWC.005.2200408
10.1109/OJCOMS.2023.3240163
10.1109/TWC.2020.2969627
10.1109/TWC.2022.3219890
10.1109/TWC.2022.3178171
10.1109/TCOMM.2020.3037596
10.1109/COMST.2022.3191937
10.1186/s13638-018-1104-7
10.1002/SERIES1345
10.1109/LWC.2020.3009951
10.1109/JSAC.2023.3240716
10.1109/JSAC.2023.3242718
10.1109/ICC40277.2020.9148836
10.1109/LWC.2020.3001916
10.1109/CVPR.2015.7299173
10.1109/JSAC.2020.3000803
10.1109/TWC.2005.850327
10.1109/TWC.2020.3033776
10.1109/COMST.2021.3131332
10.1109/LWC.2022.3196408
10.1016/j.comcom.2022.02.015
10.1109/TWC.2003.811182
10.1109/TVT.2020.2999752
10.1109/TMC.2023.3282243
10.1109/JSAC.2023.3280984
10.1002/9781118032701
10.1109/MWC.008.2200157
10.1109/TCOMM.2021.3131573
10.1109/TVT.2021.3107835
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2024.3486673
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 19788
ExternalDocumentID 10_1109_TWC_2024_3486673
10741218
Genre orig-research
GrantInformation_xml – fundername: Guangdong Provincial Natural Science Foundation
  grantid: 2024A151510098
– fundername: National Research Foundation, Singapore, and the Infocomm Media Development Authority under its Future Communications Research and Development Program
– fundername: National Natural Science Foundation of China
  grantid: 62471208
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-2fa2e73c2dd38b8d8aa1706094c677796f1f8b39ad64110ea02cc791e2d290663
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001376936400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 12:15:49 EDT 2025
Tue Nov 18 21:09:36 EST 2025
Sat Nov 29 06:24:02 EST 2025
Wed Aug 27 02:33:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-2fa2e73c2dd38b8d8aa1706094c677796f1f8b39ad64110ea02cc791e2d290663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0004-1801
0000-0002-6727-8336
0000-0002-2158-0046
0000-0002-4037-3149
PQID 3143027730
PQPubID 105736
PageCount 13
ParticipantIDs ieee_primary_10741218
proquest_journals_3143027730
crossref_primary_10_1109_TWC_2024_3486673
crossref_citationtrail_10_1109_TWC_2024_3486673
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Xu (ref39) 2023
ref40
Guo (ref32) 2023
References_xml – ident: ref28
  doi: 10.23919/JCIN.2022.9906941
– ident: ref1
  doi: 10.1109/JIOT.2022.3224847
– ident: ref6
  doi: 10.1109/COMST.2021.3078433
– ident: ref11
  doi: 10.1109/TWC.2022.3192980
– ident: ref40
  doi: 10.1109/TWC.2020.2988917
– ident: ref4
  doi: 10.1016/j.dcan.2022.09.022
– ident: ref8
  doi: 10.1109/LCOMM.2018.2855935
– ident: ref16
  doi: 10.1109/LCOMM.2011.101011.111319
– ident: ref46
  doi: 10.1109/TCOMM.2019.2943168
– ident: ref41
  doi: 10.1109/ACCESS.2021.3051306
– ident: ref17
  doi: 10.1109/TWC.2004.842979
– ident: ref43
  doi: 10.48550/ARXIV.1706.03762
– ident: ref21
  doi: 10.1109/TNNLS.2014.2306420
– year: 2023
  ident: ref32
  article-title: Dual-path transformer based neural beamformer for target speech extraction
  publication-title: arXiv:2308.15990
– ident: ref26
  doi: 10.1109/LWC.2020.3045150
– ident: ref23
  doi: 10.1109/JSAC.2022.3191334
– ident: ref27
  doi: 10.1109/JSAC.2022.3180803
– ident: ref33
  doi: 10.1109/MWC.005.2200408
– ident: ref7
  doi: 10.1109/OJCOMS.2023.3240163
– ident: ref20
  doi: 10.1109/TWC.2020.2969627
– ident: ref29
  doi: 10.1109/TWC.2022.3219890
– ident: ref38
  doi: 10.1109/TWC.2022.3178171
– ident: ref10
  doi: 10.1109/TCOMM.2020.3037596
– ident: ref14
  doi: 10.1109/COMST.2022.3191937
– ident: ref34
  doi: 10.1186/s13638-018-1104-7
– ident: ref44
  doi: 10.1002/SERIES1345
– ident: ref25
  doi: 10.1109/LWC.2020.3009951
– ident: ref13
  doi: 10.1109/JSAC.2023.3240716
– ident: ref15
  doi: 10.1109/JSAC.2023.3242718
– ident: ref22
  doi: 10.1109/ICC40277.2020.9148836
– ident: ref9
  doi: 10.1109/LWC.2020.3001916
– ident: ref45
  doi: 10.1109/CVPR.2015.7299173
– ident: ref36
  doi: 10.1109/JSAC.2020.3000803
– ident: ref18
  doi: 10.1109/TWC.2005.850327
– ident: ref24
  doi: 10.1109/TWC.2020.3033776
– ident: ref2
  doi: 10.1109/COMST.2021.3131332
– ident: ref12
  doi: 10.1109/LWC.2022.3196408
– ident: ref3
  doi: 10.1016/j.comcom.2022.02.015
– ident: ref42
  doi: 10.1109/TWC.2003.811182
– ident: ref37
  doi: 10.1109/TVT.2020.2999752
– ident: ref5
  doi: 10.1109/TMC.2023.3282243
– ident: ref31
  doi: 10.1109/JSAC.2023.3280984
– ident: ref47
  doi: 10.1002/9781118032701
– ident: ref30
  doi: 10.1109/MWC.008.2200157
– ident: ref35
  doi: 10.1109/TCOMM.2021.3131573
– year: 2023
  ident: ref39
  article-title: Distributed rate-splitting multiple access for multilayer satellite communications
  publication-title: arXiv:2307.07382
– ident: ref19
  doi: 10.1109/TVT.2021.3107835
SSID ssj0017655
Score 2.5053942
Snippet Existing Rate-Splitting Multiple Access (RSMA) techniques offer a promise for Non-Terrestrial Networks (NTNs) by managing interference and ensuring reliable...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19776
SubjectTerms Accuracy
Array signal processing
Artificial neural networks
Beamforming
Complexity
Convolutional neural networks
Data transmission
Design optimization
Feedback
Harnesses
Interference
Low earth orbit satellites
Machine learning
Multiple access
Non-terrestrial networks (NTNs)
predictive beamforming
Predictive models
Protocols
rate-splitting multiple access (RSMA)
Resource management
Satellites
Splitting
Transformers
Title Transformer-Empowered Predictive Beamforming for Rate-Splitting Multiple Access in Non-Terrestrial Networks
URI https://ieeexplore.ieee.org/document/10741218
https://www.proquest.com/docview/3143027730
Volume 23
WOSCitedRecordID wos001376936400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl48ZBtTWrSHKdMvDiGTtytpMkriK4b-_DvNy_thiIKnlroSyn5vZe89H38CLlUUWyUVwUmnJIsNhAxY68zDBc6oznPZOQC2YTq95PRSA-qYvVQCwMAIfkMWngbYvluYpf4q6yNyYOR35M2yaZSsizWWocMlAwUp96CkVhGrWOSHd0evtz6kyCPWyJOkOby2x4USFV-rMRhe7nb--eH7ZPdyo-k3RL4A7IBxSHZ-dJd8Ii8DVdOKcxYbzxFPjRwdDDD2AyucvQGzBife3Hqr_TRO57sybulIRmaPlTJhrQbWBXpa0H7k4INIRB6oObSfplFPq-T57ve8PaeVdwKzHLNF4znhoMSljsnkixxiTGhkY6OrVRKaZlHeZIJbZyM_RyC6XBrlY6AO2wQL8UxqRWTAk4IjbUxufWG70fGOs-SPNdYQS7BAAiXNEh7NduprRqPI__FexoOIB2denxSxCet8GmQq_WIadl04w_ZOuLxRa6EokGaK0TTyiznqfDeIQatRef0l2FnZBvfXiasNEltMVvCOdmyH4vX-ewiaNwnVb_UNg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6dLDtoe22lGX90kNf9qAmljzLesxKS0pTU1qP9c3I0hlKGyfkY3__dLITOsYGe7LBJ2z0u5NOvo8fwKmKYqO8KnDpVMJjgxE39mtJ4UJntBBlErlANqGyLH140LdtsXqohUHEkHyGZ3QbYvlualf0q6xPyYOR35NewTZRZ7XlWpuggUoCyam3YaKWUZuo5ED38x_n_iwo4jMZp0R0-dsuFGhV_liLwwZzufufn7YHO60nyYYN9O9hC-sP8O5Ff8GP8JSv3VKc84vJjBjR0LHbOUVnaJ1j39BM6LkXZ_7K7rzrye-9YxrSodlNm27IhoFXkT3WLJvWPMdA6UG6y7Imj3zRhe-XF_n5iLfsCtwKLZZcVEagklY4J9MydakxoZWOjm2ilNJJFVVpKbVxSeznEM1AWKt0hMJRi_hE7kOnntb4CVisjamsN30_MtZVmVaVphryBA2idGkP-uvZLmzbepwYMJ6LcAQZ6MLjUxA-RYtPD75sRsyathv_kO0SHi_kGih6cLhGtGgNc1FI7x9S2FoOPv9l2Am8GeU342J8lV0fwFt6U5O-cgid5XyFR_Da_lw-LubHQft-AYuD138
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformer-Empowered+Predictive+Beamforming+for+Rate-Splitting+Multiple+Access+in+Non-Terrestrial+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhang%2C+Shengyu&rft.au=Zhang%2C+Shiyao&rft.au=Yuan%2C+Weijie&rft.au=Quek%2C+Tony+Q.+S.&rft.date=2024-12-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=23&rft.issue=12&rft.spage=19776&rft.epage=19788&rft_id=info:doi/10.1109%2FTWC.2024.3486673&rft.externalDocID=10741218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon