Transformer-Empowered Predictive Beamforming for Rate-Splitting Multiple Access in Non-Terrestrial Networks
Existing Rate-Splitting Multiple Access (RSMA) techniques offer a promise for Non-Terrestrial Networks (NTNs) by managing interference and ensuring reliable data transmission. However, precoder design remains a crucial bottleneck, demanding accurate Channel State Information (CSI) feedback and compl...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on wireless communications Jg. 23; H. 12; S. 19776 - 19788 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1536-1276, 1558-2248 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Existing Rate-Splitting Multiple Access (RSMA) techniques offer a promise for Non-Terrestrial Networks (NTNs) by managing interference and ensuring reliable data transmission. However, precoder design remains a crucial bottleneck, demanding accurate Channel State Information (CSI) feedback and complex optimization, which are challenging in practical deployment. Motivated by this, this paper proposes a novel Deep Learning (DL)-based method to predict the precoder design from the historical CSI directly. In particular, we first establish a predictive beamforming protocol for precoder design using historical CSI, bypassing the need for constant feedback and reducing complexity. Subsequently, we formulate a general problem for precoder design, with the Weighted Ergodic Sum Rate (WESR) serving as the objective function. Solving this problem is particularly challenging due to the dynamic nature of wireless channels in NTNs. To address this, we designed a fusion model, named TranCN, which harnesses the strengths of Transformers and Convolutional Neural Networks (CNNs) to extract spatial-temporal features from historical CSI, thereby enhancing precoder performance. Simulation results demonstrate that our predictive beamforming scheme enables RSMA to adapt to dynamic channel conditions using historical CSI, surpassing baseline methods and improving data transmission resilience. |
|---|---|
| AbstractList | Existing Rate-Splitting Multiple Access (RSMA) techniques offer a promise for Non-Terrestrial Networks (NTNs) by managing interference and ensuring reliable data transmission. However, precoder design remains a crucial bottleneck, demanding accurate Channel State Information (CSI) feedback and complex optimization, which are challenging in practical deployment. Motivated by this, this paper proposes a novel Deep Learning (DL)-based method to predict the precoder design from the historical CSI directly. In particular, we first establish a predictive beamforming protocol for precoder design using historical CSI, bypassing the need for constant feedback and reducing complexity. Subsequently, we formulate a general problem for precoder design, with the Weighted Ergodic Sum Rate (WESR) serving as the objective function. Solving this problem is particularly challenging due to the dynamic nature of wireless channels in NTNs. To address this, we designed a fusion model, named TranCN, which harnesses the strengths of Transformers and Convolutional Neural Networks (CNNs) to extract spatial-temporal features from historical CSI, thereby enhancing precoder performance. Simulation results demonstrate that our predictive beamforming scheme enables RSMA to adapt to dynamic channel conditions using historical CSI, surpassing baseline methods and improving data transmission resilience. |
| Author | Zhang, Shengyu Zhang, Shiyao Quek, Tony Q. S. Yuan, Weijie |
| Author_xml | – sequence: 1 givenname: Shengyu orcidid: 0000-0002-6727-8336 surname: Zhang fullname: Zhang, Shengyu email: shengyu_zhang@sutd.edu.sg organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Tampines, Singapore – sequence: 2 givenname: Shiyao orcidid: 0000-0002-0004-1801 surname: Zhang fullname: Zhang, Shiyao email: zhangsy@sustech.edu.cn organization: Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Weijie orcidid: 0000-0002-2158-0046 surname: Yuan fullname: Yuan, Weijie email: yuanwj@sustech.edu.cn organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China – sequence: 4 givenname: Tony Q. S. orcidid: 0000-0002-4037-3149 surname: Quek fullname: Quek, Tony Q. S. email: tonyquek@sutd.edu.sg organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Tampines, Singapore |
| BookMark | eNp9UMlOwzAQtVCRaAt3DhwscU7xktjJsVRlkcoiCOIYuc4EuU3jYLtU_D2J2gPiwGXeaOa9Wd4IDRrbAELnlEwoJdlV_j6bMMLiCY9TISQ_QkOaJGnEWJwO-pyLiDIpTtDI-xUhVIokGaJ17lTjK-s24KL5prU7cFDi5y4YHcwX4GtQm75vmg_cIX5RAaLXtjYh9KWHbR1MWwOeag3eY9PgR9tEOTgHPjijavwIYWfd2p-i40rVHs4OOEZvN_N8dhctnm7vZ9NFpFnGQsQqxUByzcqSp8u0TJWikgiSxVpIKTNR0Spd8kyVIu5eB0WY1jKjwEqWESH4GF3u57bOfm67K4qV3bqmW1lwGnPCpOSkY4k9SzvrvYOq0CaoYGwTnDJ1QUnRG1t0xha9scXB2E5I_ghbZzbKff8nudhLDAD8osuYMpryH10lhqY |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_1109_JIOT_2025_3565413 crossref_primary_10_1109_JSTSP_2025_3532040 crossref_primary_10_1016_j_eng_2025_05_013 crossref_primary_10_1109_OJCOMS_2025_3586560 crossref_primary_10_1109_TWC_2025_3552052 |
| Cites_doi | 10.23919/JCIN.2022.9906941 10.1109/JIOT.2022.3224847 10.1109/COMST.2021.3078433 10.1109/TWC.2022.3192980 10.1109/TWC.2020.2988917 10.1016/j.dcan.2022.09.022 10.1109/LCOMM.2018.2855935 10.1109/LCOMM.2011.101011.111319 10.1109/TCOMM.2019.2943168 10.1109/ACCESS.2021.3051306 10.1109/TWC.2004.842979 10.48550/ARXIV.1706.03762 10.1109/TNNLS.2014.2306420 10.1109/LWC.2020.3045150 10.1109/JSAC.2022.3191334 10.1109/JSAC.2022.3180803 10.1109/MWC.005.2200408 10.1109/OJCOMS.2023.3240163 10.1109/TWC.2020.2969627 10.1109/TWC.2022.3219890 10.1109/TWC.2022.3178171 10.1109/TCOMM.2020.3037596 10.1109/COMST.2022.3191937 10.1186/s13638-018-1104-7 10.1002/SERIES1345 10.1109/LWC.2020.3009951 10.1109/JSAC.2023.3240716 10.1109/JSAC.2023.3242718 10.1109/ICC40277.2020.9148836 10.1109/LWC.2020.3001916 10.1109/CVPR.2015.7299173 10.1109/JSAC.2020.3000803 10.1109/TWC.2005.850327 10.1109/TWC.2020.3033776 10.1109/COMST.2021.3131332 10.1109/LWC.2022.3196408 10.1016/j.comcom.2022.02.015 10.1109/TWC.2003.811182 10.1109/TVT.2020.2999752 10.1109/TMC.2023.3282243 10.1109/JSAC.2023.3280984 10.1002/9781118032701 10.1109/MWC.008.2200157 10.1109/TCOMM.2021.3131573 10.1109/TVT.2021.3107835 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2024.3486673 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 19788 |
| ExternalDocumentID | 10_1109_TWC_2024_3486673 10741218 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Guangdong Provincial Natural Science Foundation grantid: 2024A151510098 – fundername: National Research Foundation, Singapore, and the Infocomm Media Development Authority under its Future Communications Research and Development Program – fundername: National Natural Science Foundation of China grantid: 62471208 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-2fa2e73c2dd38b8d8aa1706094c677796f1f8b39ad64110ea02cc791e2d290663 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001376936400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 12:15:49 EDT 2025 Tue Nov 18 21:09:36 EST 2025 Sat Nov 29 06:24:02 EST 2025 Wed Aug 27 02:33:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-2fa2e73c2dd38b8d8aa1706094c677796f1f8b39ad64110ea02cc791e2d290663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0004-1801 0000-0002-6727-8336 0000-0002-2158-0046 0000-0002-4037-3149 |
| PQID | 3143027730 |
| PQPubID | 105736 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10741218 proquest_journals_3143027730 crossref_primary_10_1109_TWC_2024_3486673 crossref_citationtrail_10_1109_TWC_2024_3486673 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Xu (ref39) 2023 ref40 Guo (ref32) 2023 |
| References_xml | – ident: ref28 doi: 10.23919/JCIN.2022.9906941 – ident: ref1 doi: 10.1109/JIOT.2022.3224847 – ident: ref6 doi: 10.1109/COMST.2021.3078433 – ident: ref11 doi: 10.1109/TWC.2022.3192980 – ident: ref40 doi: 10.1109/TWC.2020.2988917 – ident: ref4 doi: 10.1016/j.dcan.2022.09.022 – ident: ref8 doi: 10.1109/LCOMM.2018.2855935 – ident: ref16 doi: 10.1109/LCOMM.2011.101011.111319 – ident: ref46 doi: 10.1109/TCOMM.2019.2943168 – ident: ref41 doi: 10.1109/ACCESS.2021.3051306 – ident: ref17 doi: 10.1109/TWC.2004.842979 – ident: ref43 doi: 10.48550/ARXIV.1706.03762 – ident: ref21 doi: 10.1109/TNNLS.2014.2306420 – year: 2023 ident: ref32 article-title: Dual-path transformer based neural beamformer for target speech extraction publication-title: arXiv:2308.15990 – ident: ref26 doi: 10.1109/LWC.2020.3045150 – ident: ref23 doi: 10.1109/JSAC.2022.3191334 – ident: ref27 doi: 10.1109/JSAC.2022.3180803 – ident: ref33 doi: 10.1109/MWC.005.2200408 – ident: ref7 doi: 10.1109/OJCOMS.2023.3240163 – ident: ref20 doi: 10.1109/TWC.2020.2969627 – ident: ref29 doi: 10.1109/TWC.2022.3219890 – ident: ref38 doi: 10.1109/TWC.2022.3178171 – ident: ref10 doi: 10.1109/TCOMM.2020.3037596 – ident: ref14 doi: 10.1109/COMST.2022.3191937 – ident: ref34 doi: 10.1186/s13638-018-1104-7 – ident: ref44 doi: 10.1002/SERIES1345 – ident: ref25 doi: 10.1109/LWC.2020.3009951 – ident: ref13 doi: 10.1109/JSAC.2023.3240716 – ident: ref15 doi: 10.1109/JSAC.2023.3242718 – ident: ref22 doi: 10.1109/ICC40277.2020.9148836 – ident: ref9 doi: 10.1109/LWC.2020.3001916 – ident: ref45 doi: 10.1109/CVPR.2015.7299173 – ident: ref36 doi: 10.1109/JSAC.2020.3000803 – ident: ref18 doi: 10.1109/TWC.2005.850327 – ident: ref24 doi: 10.1109/TWC.2020.3033776 – ident: ref2 doi: 10.1109/COMST.2021.3131332 – ident: ref12 doi: 10.1109/LWC.2022.3196408 – ident: ref3 doi: 10.1016/j.comcom.2022.02.015 – ident: ref42 doi: 10.1109/TWC.2003.811182 – ident: ref37 doi: 10.1109/TVT.2020.2999752 – ident: ref5 doi: 10.1109/TMC.2023.3282243 – ident: ref31 doi: 10.1109/JSAC.2023.3280984 – ident: ref47 doi: 10.1002/9781118032701 – ident: ref30 doi: 10.1109/MWC.008.2200157 – ident: ref35 doi: 10.1109/TCOMM.2021.3131573 – year: 2023 ident: ref39 article-title: Distributed rate-splitting multiple access for multilayer satellite communications publication-title: arXiv:2307.07382 – ident: ref19 doi: 10.1109/TVT.2021.3107835 |
| SSID | ssj0017655 |
| Score | 2.5053942 |
| Snippet | Existing Rate-Splitting Multiple Access (RSMA) techniques offer a promise for Non-Terrestrial Networks (NTNs) by managing interference and ensuring reliable... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 19776 |
| SubjectTerms | Accuracy Array signal processing Artificial neural networks Beamforming Complexity Convolutional neural networks Data transmission Design optimization Feedback Harnesses Interference Low earth orbit satellites Machine learning Multiple access Non-terrestrial networks (NTNs) predictive beamforming Predictive models Protocols rate-splitting multiple access (RSMA) Resource management Satellites Splitting Transformers |
| Title | Transformer-Empowered Predictive Beamforming for Rate-Splitting Multiple Access in Non-Terrestrial Networks |
| URI | https://ieeexplore.ieee.org/document/10741218 https://www.proquest.com/docview/3143027730 |
| Volume | 23 |
| WOSCitedRecordID | wos001376936400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl48ZBtTWrSHKdMvDiGTtytpMkriK4b-_DvNy_thiIKnlroSyn5vZe89H38CLlUUWyUVwUmnJIsNhAxY68zDBc6oznPZOQC2YTq95PRSA-qYvVQCwMAIfkMWngbYvluYpf4q6yNyYOR35M2yaZSsizWWocMlAwUp96CkVhGrWOSHd0evtz6kyCPWyJOkOby2x4USFV-rMRhe7nb--eH7ZPdyo-k3RL4A7IBxSHZ-dJd8Ii8DVdOKcxYbzxFPjRwdDDD2AyucvQGzBife3Hqr_TRO57sybulIRmaPlTJhrQbWBXpa0H7k4INIRB6oObSfplFPq-T57ve8PaeVdwKzHLNF4znhoMSljsnkixxiTGhkY6OrVRKaZlHeZIJbZyM_RyC6XBrlY6AO2wQL8UxqRWTAk4IjbUxufWG70fGOs-SPNdYQS7BAAiXNEh7NduprRqPI__FexoOIB2denxSxCet8GmQq_WIadl04w_ZOuLxRa6EokGaK0TTyiznqfDeIQatRef0l2FnZBvfXiasNEltMVvCOdmyH4vX-ewiaNwnVb_UNg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6dLDtoe22lGX90kNf9qAmljzLesxKS0pTU1qP9c3I0hlKGyfkY3__dLITOsYGe7LBJ2z0u5NOvo8fwKmKYqO8KnDpVMJjgxE39mtJ4UJntBBlErlANqGyLH140LdtsXqohUHEkHyGZ3QbYvlualf0q6xPyYOR35NewTZRZ7XlWpuggUoCyam3YaKWUZuo5ED38x_n_iwo4jMZp0R0-dsuFGhV_liLwwZzufufn7YHO60nyYYN9O9hC-sP8O5Ff8GP8JSv3VKc84vJjBjR0LHbOUVnaJ1j39BM6LkXZ_7K7rzrye-9YxrSodlNm27IhoFXkT3WLJvWPMdA6UG6y7Imj3zRhe-XF_n5iLfsCtwKLZZcVEagklY4J9MydakxoZWOjm2ilNJJFVVpKbVxSeznEM1AWKt0hMJRi_hE7kOnntb4CVisjamsN30_MtZVmVaVphryBA2idGkP-uvZLmzbepwYMJ6LcAQZ6MLjUxA-RYtPD75sRsyathv_kO0SHi_kGih6cLhGtGgNc1FI7x9S2FoOPv9l2Am8GeU342J8lV0fwFt6U5O-cgid5XyFR_Da_lw-LubHQft-AYuD138 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformer-Empowered+Predictive+Beamforming+for+Rate-Splitting+Multiple+Access+in+Non-Terrestrial+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhang%2C+Shengyu&rft.au=Zhang%2C+Shiyao&rft.au=Yuan%2C+Weijie&rft.au=Quek%2C+Tony+Q.+S.&rft.date=2024-12-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=23&rft.issue=12&rft.spage=19776&rft.epage=19788&rft_id=info:doi/10.1109%2FTWC.2024.3486673&rft.externalDocID=10741218 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |