Mixed Skewness Probability Modeling and Extreme Value Predicting for Physical System Input/Output Based on Full Bayesian Generalized Maximum-Likelihood Estimation
Dynamic parameterization of the statistical characteristics of structural systems' measured input and output data is an important task for the digital twin modeling and intelligent risk assessment of transportation infrastructures. Characteristics of mixed skewness probability are common in str...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 73; S. 1 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Dynamic parameterization of the statistical characteristics of structural systems' measured input and output data is an important task for the digital twin modeling and intelligent risk assessment of transportation infrastructures. Characteristics of mixed skewness probability are common in structural systems, and its extreme value represents the risk state closest to the critical limit. The generalized extreme value mixture model (GEVMM) can consider multiple factors that interfere with each other, based on which the generalized maximum likelihood estimation (GMLE) of full Bayesian is introduced. The proposed GMLE-GEVMM can conduct the modeling of mixed skewness probability (mainly including strong uni-factor and multi-factor statistical characteristics) by fusing the prior physical information for each parameter. A reliable paradigm for predicting the dynamic extreme value of practical engineering is presented. The proposed methods can overcome the probabilistic modeling problem for complex mixed skewness characteristics, and significantly improve the prediction accuracy of the extreme value of probability. The continuous monitoring data from a real bridge is used for validation. The modeling and predicting results verified the proposed methods' strong applicability and high accuracy for complex probabilistic system input and output characteristics from in-service structures. |
|---|---|
| AbstractList | Dynamic parameterization of the statistical characteristics of structural systems’ measured input and output data is an important task for the digital twin modeling and intelligent risk assessment of transportation infrastructures. Characteristics of mixed skewness probability are common in structural systems, and its extreme value represents the risk state closest to the critical limit. The generalized extreme value mixture model (GEVMM) can consider multiple factors that interfere with each other, based on which the generalized maximum likelihood estimation (GMLE) of full Bayesian is introduced. The proposed GMLE-GEVMM can conduct the modeling of mixed skewness probability (mainly including strong uni-factor and multifactor statistical characteristics) by fusing the prior physical information for each parameter. A reliable paradigm for predicting the dynamic extreme value of practical engineering is presented. The proposed method can overcome the probabilistic modeling problem for complex mixed skewness characteristics and significantly improve the prediction accuracy of the extreme value of probability. The continuous monitoring data from a real bridge is used for validation. The modeling and predicting results verified the proposed methods’ strong applicability and high accuracy for complex probabilistic system input and output characteristics from in-service structures. Dynamic parameterization of the statistical characteristics of structural systems' measured input and output data is an important task for the digital twin modeling and intelligent risk assessment of transportation infrastructures. Characteristics of mixed skewness probability are common in structural systems, and its extreme value represents the risk state closest to the critical limit. The generalized extreme value mixture model (GEVMM) can consider multiple factors that interfere with each other, based on which the generalized maximum likelihood estimation (GMLE) of full Bayesian is introduced. The proposed GMLE-GEVMM can conduct the modeling of mixed skewness probability (mainly including strong uni-factor and multi-factor statistical characteristics) by fusing the prior physical information for each parameter. A reliable paradigm for predicting the dynamic extreme value of practical engineering is presented. The proposed methods can overcome the probabilistic modeling problem for complex mixed skewness characteristics, and significantly improve the prediction accuracy of the extreme value of probability. The continuous monitoring data from a real bridge is used for validation. The modeling and predicting results verified the proposed methods' strong applicability and high accuracy for complex probabilistic system input and output characteristics from in-service structures. |
| Author | Guo, Tong Ding, Youliang Zhang, Xiaonan Yi, Letian Zhao, Hanwei Zou, Yang Li, Aiqun |
| Author_xml | – sequence: 1 givenname: Xiaonan orcidid: 0009-0006-1504-880X surname: Zhang fullname: Zhang, Xiaonan organization: Key Laboratory of Concrete and Pre-stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China – sequence: 2 givenname: Youliang orcidid: 0000-0002-0774-426X surname: Ding fullname: Ding, Youliang organization: Key Laboratory of Concrete and Pre-stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China – sequence: 3 givenname: Hanwei orcidid: 0000-0002-7622-7784 surname: Zhao fullname: Zhao, Hanwei organization: Key Laboratory of Concrete and Pre-stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China – sequence: 4 givenname: Letian orcidid: 0000-0002-4260-6911 surname: Yi fullname: Yi, Letian organization: Internet of Things Thrust, Information Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China – sequence: 5 givenname: Tong orcidid: 0000-0001-9228-4941 surname: Guo fullname: Guo, Tong organization: Key Laboratory of Concrete and Pre-stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China – sequence: 6 givenname: Aiqun orcidid: 0000-0003-3565-3725 surname: Li fullname: Li, Aiqun organization: Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing, China – sequence: 7 givenname: Yang orcidid: 0000-0001-6150-6126 surname: Zou fullname: Zou, Yang organization: Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand |
| BookMark | eNp9kTtv2zAUhYkiBeqk2TN0INBZDl96cGyDJDVgIwHyWAWKumqYUKRLUojVn9NfWrrOUHTodEGcc_hd8hyjI-cdIHRGyZJSIs_vV5slI4wvORe8FuwdWtCyrAtZVewILQihTSFFWX1AxzE-E0LqStQL9GtjdtDjuxd4dRAjvg2-U52xJs1443uwxn3HyvX4cpcCjIAflZ0g26A3Ou3FwQd8-zRHo5XFd3NMMOKV207p_GZKeeCvKmaCd_hqsjafZohGOXwNDoKy5mcWN2pnxmks1uYlE5-8z7yYzKiS8e4jej8oG-H0bZ6gh6vL-4tvxfrmenXxZV1oJlkqWMeaSrFmEI2WfV32FRdDw5VknAjZ84bxssmy1AKGoaK0U5zQmjLNRac18BP0-XDvNvgfE8TUPvspuIxsmSR1ycv8ZdlFDi4dfIwBhnYb8qJhbilp9020uYl230T71kSOVP9EtEl_npaCMvZ_wU-HoAGAvzi84oyV_Dd675pb |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1088_1361_6501_add555 crossref_primary_10_3390_buildings14010163 crossref_primary_10_1177_14759217251342195 |
| Cites_doi | 10.1016/j.engstruct.2019.01.085 10.1061/(ASCE)CP.1943-5487.0000826 10.1198/016214506000000780 10.1080/03610918.2019.1653914 10.1016/j.measurement.2022.112148 10.1080/15732470500424245 10.1007/s13296-015-9011-9 10.1016/j.asej.2021.10.008 10.1016/j.ymssp.2018.10.014 10.1139/l04-092 10.1002/stc.2637 10.1007/s00477-009-0362-7 10.1002/stc.3118 10.1007/s00773-022-00904-7 10.3390/s22093247 10.1007/s13349-015-0103-1 10.1016/j.ress.2022.108442 10.1109/TIM.2020.3013130 10.1029/1999WR900330 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TITS.2021.3130025 10.1061/(ASCE)CF.1943-5509.0000909 10.1109/TKDE.2021.3108831 10.1016/j.ymssp.2019.04.001 10.1016/j.strusafe.2006.11.006 10.1080/15732479.2021.1924797 10.1109/TIM.2020.2972172 10.1007/s10489-022-03644-8 10.1109/JSEN.2023.3294912 10.1080/03610918.2016.1152365 10.1177/1369433220960275 10.1061/(ASCE)BE.1943-5592.0001327 10.1061/(ASCE)BE.1943-5592.0001700 10.1017/S0305004100015681 10.1016/j.aap.2018.12.013 10.1109/TIM.2022.3225001 10.1016/j.engstruct.2016.07.052 10.2307/2347483 10.1002/2017WR020403 10.1002/stc.2254 10.1016/j.strusafe.2014.05.005 10.12989/sss.2016.17.6.995 10.1109/TITS.2022.3140276 10.1080/15732479.2016.1158194 10.1029/2001WR000502 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2023.3343742 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIM_2023_3343742 10363225 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52008099; 52378288; 51978154 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2021YFF0500900 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH VH1 VJK 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-2b286a28f48c9d75d634f83a923049d38235828f9c4eff611ba301712c34bcce3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001134473500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:20:55 EDT 2025 Tue Nov 18 22:14:29 EST 2025 Sat Nov 29 04:38:43 EST 2025 Wed Aug 27 02:35:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-2b286a28f48c9d75d634f83a923049d38235828f9c4eff611ba301712c34bcce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0774-426X 0000-0001-9228-4941 0000-0001-6150-6126 0009-0006-1504-880X 0000-0002-4260-6911 0000-0002-7622-7784 0000-0003-3565-3725 0000-0001-7906-1815 |
| PQID | 2907535764 |
| PQPubID | 85462 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2023_3343742 proquest_journals_2907535764 ieee_primary_10363225 crossref_citationtrail_10_1109_TIM_2023_3343742 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref47 ref42 ref41 ref44 ref43 (ref48) 2015 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 Stoneking (ref40) 2014 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Guo (ref13) 2008; 38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Zhao (ref11) 2018; 5 ref28 ref27 ref29 |
| References_xml | – ident: ref38 doi: 10.1016/j.engstruct.2019.01.085 – ident: ref5 doi: 10.1061/(ASCE)CP.1943-5487.0000826 – ident: ref33 doi: 10.1198/016214506000000780 – ident: ref45 doi: 10.1080/03610918.2019.1653914 – ident: ref21 doi: 10.1016/j.measurement.2022.112148 – ident: ref26 doi: 10.1080/15732470500424245 – ident: ref25 doi: 10.1007/s13296-015-9011-9 – volume-title: Code for Design of Concrete Structures year: 2015 ident: ref48 – ident: ref7 doi: 10.1016/j.asej.2021.10.008 – ident: ref8 doi: 10.1016/j.ymssp.2018.10.014 – ident: ref27 doi: 10.1139/l04-092 – ident: ref14 doi: 10.1002/stc.2637 – ident: ref42 doi: 10.1007/s00477-009-0362-7 – ident: ref49 doi: 10.1002/stc.3118 – ident: ref20 doi: 10.1007/s00773-022-00904-7 – ident: ref47 doi: 10.3390/s22093247 – ident: ref10 doi: 10.1007/s13349-015-0103-1 – ident: ref31 doi: 10.1016/j.ress.2022.108442 – ident: ref1 doi: 10.1109/TIM.2020.3013130 – ident: ref41 doi: 10.1029/1999WR900330 – ident: ref44 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref2 doi: 10.1109/TITS.2021.3130025 – ident: ref15 doi: 10.1061/(ASCE)CF.1943-5509.0000909 – ident: ref18 doi: 10.1109/TKDE.2021.3108831 – ident: ref19 doi: 10.1016/j.ymssp.2019.04.001 – ident: ref30 doi: 10.1016/j.strusafe.2006.11.006 – ident: ref37 doi: 10.1080/15732479.2021.1924797 – ident: ref36 doi: 10.1109/TIM.2020.2972172 – ident: ref12 doi: 10.1007/s10489-022-03644-8 – ident: ref17 doi: 10.1109/JSEN.2023.3294912 – ident: ref39 doi: 10.1080/03610918.2016.1152365 – ident: ref28 doi: 10.1177/1369433220960275 – ident: ref46 doi: 10.1061/(ASCE)BE.1943-5592.0001327 – ident: ref29 doi: 10.1061/(ASCE)BE.1943-5592.0001700 – ident: ref43 doi: 10.1017/S0305004100015681 – volume: 38 start-page: 763 issue: 5 year: 2008 ident: ref13 article-title: Multiple-peaked probabilistic vehicle load model for highway bridge reliability assessment publication-title: J. Southeast Univ. Natural Sci. Ed., Article – ident: ref22 doi: 10.1016/j.aap.2018.12.013 – ident: ref4 doi: 10.1109/TIM.2022.3225001 – year: 2014 ident: ref40 article-title: Bayesian inference of Gaussian mixture models with noninformative priors publication-title: arXiv:1405.4895 – ident: ref23 doi: 10.1016/j.engstruct.2016.07.052 – volume: 5 start-page: 79 issue: 1 year: 2018 ident: ref11 article-title: RAMS evaluation for a steel-truss arch high-speed railway bridge based on SHM system publication-title: Struct. Monitor. Maintenance, Article – ident: ref32 doi: 10.2307/2347483 – ident: ref35 doi: 10.1002/2017WR020403 – ident: ref24 doi: 10.1002/stc.2254 – ident: ref6 doi: 10.1016/j.strusafe.2014.05.005 – ident: ref9 doi: 10.12989/sss.2016.17.6.995 – ident: ref3 doi: 10.1109/TITS.2022.3140276 – ident: ref16 doi: 10.1080/15732479.2016.1158194 – ident: ref34 doi: 10.1029/2001WR000502 |
| SSID | ssj0007647 |
| Score | 2.591521 |
| Snippet | Dynamic parameterization of the statistical characteristics of structural systems' measured input and output data is an important task for the digital twin... Dynamic parameterization of the statistical characteristics of structural systems’ measured input and output data is an important task for the digital twin... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Bayes methods Bayesian analysis Bridges Digital twin Digital twins Extreme value prediction Extreme values Intelligent monitoring Load modeling Maximum likelihood estimation Mixed probability modeling Modelling Parameterization Parameterization of dynamic system Predictive models Probabilistic logic Probabilistic models Probability theory Risk assessment Skewness Statistical analysis Transportation infrastructures Vehicle dynamics |
| Title | Mixed Skewness Probability Modeling and Extreme Value Predicting for Physical System Input/Output Based on Full Bayesian Generalized Maximum-Likelihood Estimation |
| URI | https://ieeexplore.ieee.org/document/10363225 https://www.proquest.com/docview/2907535764 |
| Volume | 73 |
| WOSCitedRecordID | wos001134473500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKKlI5lJaC2BYqH7j0kN2sbZL42KJFILGwEg9xixx7LEVAFu0m7dKf01_aGSeLqFAr9ZREsZ1I8_CMZ-YbxvYdIFOgHRDFGUCkCjBRhlIUaWHSwnjnbcDZvj5Nz86ymxs96YrVQy0MAITkM-jTbYjlu6lt6KgMJVwmxIArbCVNk7ZY60ntpolqATKHKMFoFixjkrEeXJ6M-9QmvC-lkqkSf-xBoanKC00ctpejjf_8sXfsbWdH8q8t4d-zV1BtsvVn6IKbbC1kd9r5B_ZrXC7A8Ytb-EGajU9mKMUhK_aRUzM0KknnpnJ8tKjpvJBfm7sGcBhFcSgvmqNpyycdSXmLcs5PqoemHpw3NV74N9wNHZ9WnHxafHoEqs7kHap1-RNfjs2ivG_uo9PyFr9IcMp8hAqmrZ3cYldHo8vD46hrzhBZoUUdiUJkiRGZV5nVLj1wiVQ-k0aHwJ2j8CJF5Ly2CrxPhsPCSMLmEVaqwlqQ22y1mlaww_gBWvg-sbhTOqky9IcMrgA2UTGk0sdFjw2W5Mpth1xODTTu8uDBxDpHAudE4LwjcI99eZrx0KJ2_GPsFhH02biWlj22u2SJvJPreS40mlgSfTT18S_TPrE3uLpqT2l22Wo9a2CPvbbf63I--xxY9jfvTusB |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdggIAHPrYhCgP8wAsPaVPbS-JHQJ1W0ZZKlGlvkWOfpWhbOrUJdPw5_KXcOek0hEDiKYlix5Huw3e-u98x9tYBMgXaAVGcAUSqABNlKEWRFiYtjHfeBpztk0k6m2Wnp3reFauHWhgACMln0KfbEMt3S9vQURlKuEyIAW-zO9Q6qyvXula8aaJaiMwhyjAaBtuoZKwHi_G0T43C-1IqmSrx2y4U2qr8oYvDBnP0-D9_7Ql71FmS_H1L-qfsFlS77OENfMFddi_kd9r1Hvs5LTfg-Jcz-E66jc9XKMchL_aKUzs0KkrnpnJ8tKnpxJCfmPMGcBjFcSgzmqNxy-cdUXmLc87H1WVTDz43NV74B9wPHV9WnLxafLoCqs_kHa51-QNfTs2mvGguokl5hisSoDIfoYppqyf32dej0eLjcdS1Z4is0KKORCGyxIjMq8xqlx66RCqfSaND6M5RgJFicl5bBd4nw2FhJKHzCCtVYS3IZ2ynWlbwnPFDtPF9YnGvdFJl6BEZ_ALYRMWQSh8XPTbYkiu3HXY5tdA4z4MPE-scCZwTgfOOwD327nrGZYvb8Y-x-0TQG-NaWvbYwZYl8k6y17nQaGRJ9NLUi79Me8PuHy-mk3wynn16yR7gSqo9szlgO_WqgVfsrv1Wl-vV68C-vwBRU-5K |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+Skewness+Probability+Modeling+and+Extreme+Value+Predicting+for+Physical+System+Input%E2%80%93Output+Based+on+Full+Bayesian+Generalized+Maximum-Likelihood+Estimation&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Xiaonan&rft.au=Ding%2C+Youliang&rft.au=Zhao%2C+Hanwei&rft.au=Yi%2C+Letian&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft_id=info:doi/10.1109%2FTIM.2023.3343742&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |