Mixed Skewness Probability Modeling and Extreme Value Predicting for Physical System Input/Output Based on Full Bayesian Generalized Maximum-Likelihood Estimation

Dynamic parameterization of the statistical characteristics of structural systems' measured input and output data is an important task for the digital twin modeling and intelligent risk assessment of transportation infrastructures. Characteristics of mixed skewness probability are common in str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 73; S. 1
Hauptverfasser: Zhang, Xiaonan, Ding, Youliang, Zhao, Hanwei, Yi, Letian, Guo, Tong, Li, Aiqun, Zou, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dynamic parameterization of the statistical characteristics of structural systems' measured input and output data is an important task for the digital twin modeling and intelligent risk assessment of transportation infrastructures. Characteristics of mixed skewness probability are common in structural systems, and its extreme value represents the risk state closest to the critical limit. The generalized extreme value mixture model (GEVMM) can consider multiple factors that interfere with each other, based on which the generalized maximum likelihood estimation (GMLE) of full Bayesian is introduced. The proposed GMLE-GEVMM can conduct the modeling of mixed skewness probability (mainly including strong uni-factor and multi-factor statistical characteristics) by fusing the prior physical information for each parameter. A reliable paradigm for predicting the dynamic extreme value of practical engineering is presented. The proposed methods can overcome the probabilistic modeling problem for complex mixed skewness characteristics, and significantly improve the prediction accuracy of the extreme value of probability. The continuous monitoring data from a real bridge is used for validation. The modeling and predicting results verified the proposed methods' strong applicability and high accuracy for complex probabilistic system input and output characteristics from in-service structures.
AbstractList Dynamic parameterization of the statistical characteristics of structural systems’ measured input and output data is an important task for the digital twin modeling and intelligent risk assessment of transportation infrastructures. Characteristics of mixed skewness probability are common in structural systems, and its extreme value represents the risk state closest to the critical limit. The generalized extreme value mixture model (GEVMM) can consider multiple factors that interfere with each other, based on which the generalized maximum likelihood estimation (GMLE) of full Bayesian is introduced. The proposed GMLE-GEVMM can conduct the modeling of mixed skewness probability (mainly including strong uni-factor and multifactor statistical characteristics) by fusing the prior physical information for each parameter. A reliable paradigm for predicting the dynamic extreme value of practical engineering is presented. The proposed method can overcome the probabilistic modeling problem for complex mixed skewness characteristics and significantly improve the prediction accuracy of the extreme value of probability. The continuous monitoring data from a real bridge is used for validation. The modeling and predicting results verified the proposed methods’ strong applicability and high accuracy for complex probabilistic system input and output characteristics from in-service structures.
Dynamic parameterization of the statistical characteristics of structural systems' measured input and output data is an important task for the digital twin modeling and intelligent risk assessment of transportation infrastructures. Characteristics of mixed skewness probability are common in structural systems, and its extreme value represents the risk state closest to the critical limit. The generalized extreme value mixture model (GEVMM) can consider multiple factors that interfere with each other, based on which the generalized maximum likelihood estimation (GMLE) of full Bayesian is introduced. The proposed GMLE-GEVMM can conduct the modeling of mixed skewness probability (mainly including strong uni-factor and multi-factor statistical characteristics) by fusing the prior physical information for each parameter. A reliable paradigm for predicting the dynamic extreme value of practical engineering is presented. The proposed methods can overcome the probabilistic modeling problem for complex mixed skewness characteristics, and significantly improve the prediction accuracy of the extreme value of probability. The continuous monitoring data from a real bridge is used for validation. The modeling and predicting results verified the proposed methods' strong applicability and high accuracy for complex probabilistic system input and output characteristics from in-service structures.
Author Guo, Tong
Ding, Youliang
Zhang, Xiaonan
Yi, Letian
Zhao, Hanwei
Zou, Yang
Li, Aiqun
Author_xml – sequence: 1
  givenname: Xiaonan
  orcidid: 0009-0006-1504-880X
  surname: Zhang
  fullname: Zhang, Xiaonan
  organization: Key Laboratory of Concrete and Pre-stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China
– sequence: 2
  givenname: Youliang
  orcidid: 0000-0002-0774-426X
  surname: Ding
  fullname: Ding, Youliang
  organization: Key Laboratory of Concrete and Pre-stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China
– sequence: 3
  givenname: Hanwei
  orcidid: 0000-0002-7622-7784
  surname: Zhao
  fullname: Zhao, Hanwei
  organization: Key Laboratory of Concrete and Pre-stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China
– sequence: 4
  givenname: Letian
  orcidid: 0000-0002-4260-6911
  surname: Yi
  fullname: Yi, Letian
  organization: Internet of Things Thrust, Information Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
– sequence: 5
  givenname: Tong
  orcidid: 0000-0001-9228-4941
  surname: Guo
  fullname: Guo, Tong
  organization: Key Laboratory of Concrete and Pre-stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China
– sequence: 6
  givenname: Aiqun
  orcidid: 0000-0003-3565-3725
  surname: Li
  fullname: Li, Aiqun
  organization: Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing, China
– sequence: 7
  givenname: Yang
  orcidid: 0000-0001-6150-6126
  surname: Zou
  fullname: Zou, Yang
  organization: Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
BookMark eNp9kTtv2zAUhYkiBeqk2TN0INBZDl96cGyDJDVgIwHyWAWKumqYUKRLUojVn9NfWrrOUHTodEGcc_hd8hyjI-cdIHRGyZJSIs_vV5slI4wvORe8FuwdWtCyrAtZVewILQihTSFFWX1AxzE-E0LqStQL9GtjdtDjuxd4dRAjvg2-U52xJs1443uwxn3HyvX4cpcCjIAflZ0g26A3Ou3FwQd8-zRHo5XFd3NMMOKV207p_GZKeeCvKmaCd_hqsjafZohGOXwNDoKy5mcWN2pnxmks1uYlE5-8z7yYzKiS8e4jej8oG-H0bZ6gh6vL-4tvxfrmenXxZV1oJlkqWMeaSrFmEI2WfV32FRdDw5VknAjZ84bxssmy1AKGoaK0U5zQmjLNRac18BP0-XDvNvgfE8TUPvspuIxsmSR1ycv8ZdlFDi4dfIwBhnYb8qJhbilp9020uYl230T71kSOVP9EtEl_npaCMvZ_wU-HoAGAvzi84oyV_Dd675pb
CODEN IEIMAO
CitedBy_id crossref_primary_10_1088_1361_6501_add555
crossref_primary_10_3390_buildings14010163
crossref_primary_10_1177_14759217251342195
Cites_doi 10.1016/j.engstruct.2019.01.085
10.1061/(ASCE)CP.1943-5487.0000826
10.1198/016214506000000780
10.1080/03610918.2019.1653914
10.1016/j.measurement.2022.112148
10.1080/15732470500424245
10.1007/s13296-015-9011-9
10.1016/j.asej.2021.10.008
10.1016/j.ymssp.2018.10.014
10.1139/l04-092
10.1002/stc.2637
10.1007/s00477-009-0362-7
10.1002/stc.3118
10.1007/s00773-022-00904-7
10.3390/s22093247
10.1007/s13349-015-0103-1
10.1016/j.ress.2022.108442
10.1109/TIM.2020.3013130
10.1029/1999WR900330
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TITS.2021.3130025
10.1061/(ASCE)CF.1943-5509.0000909
10.1109/TKDE.2021.3108831
10.1016/j.ymssp.2019.04.001
10.1016/j.strusafe.2006.11.006
10.1080/15732479.2021.1924797
10.1109/TIM.2020.2972172
10.1007/s10489-022-03644-8
10.1109/JSEN.2023.3294912
10.1080/03610918.2016.1152365
10.1177/1369433220960275
10.1061/(ASCE)BE.1943-5592.0001327
10.1061/(ASCE)BE.1943-5592.0001700
10.1017/S0305004100015681
10.1016/j.aap.2018.12.013
10.1109/TIM.2022.3225001
10.1016/j.engstruct.2016.07.052
10.2307/2347483
10.1002/2017WR020403
10.1002/stc.2254
10.1016/j.strusafe.2014.05.005
10.12989/sss.2016.17.6.995
10.1109/TITS.2022.3140276
10.1080/15732479.2016.1158194
10.1029/2001WR000502
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3343742
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2023_3343742
10363225
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52008099; 52378288; 51978154
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2021YFF0500900
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-2b286a28f48c9d75d634f83a923049d38235828f9c4eff611ba301712c34bcce3
IEDL.DBID RIE
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001134473500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:20:55 EDT 2025
Tue Nov 18 22:14:29 EST 2025
Sat Nov 29 04:38:43 EST 2025
Wed Aug 27 02:35:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-2b286a28f48c9d75d634f83a923049d38235828f9c4eff611ba301712c34bcce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0774-426X
0000-0001-9228-4941
0000-0001-6150-6126
0009-0006-1504-880X
0000-0002-4260-6911
0000-0002-7622-7784
0000-0003-3565-3725
0000-0001-7906-1815
PQID 2907535764
PQPubID 85462
PageCount 1
ParticipantIDs crossref_primary_10_1109_TIM_2023_3343742
proquest_journals_2907535764
ieee_primary_10363225
crossref_citationtrail_10_1109_TIM_2023_3343742
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref47
ref42
ref41
ref44
ref43
(ref48) 2015
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
Stoneking (ref40) 2014
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Guo (ref13) 2008; 38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Zhao (ref11) 2018; 5
ref28
ref27
ref29
References_xml – ident: ref38
  doi: 10.1016/j.engstruct.2019.01.085
– ident: ref5
  doi: 10.1061/(ASCE)CP.1943-5487.0000826
– ident: ref33
  doi: 10.1198/016214506000000780
– ident: ref45
  doi: 10.1080/03610918.2019.1653914
– ident: ref21
  doi: 10.1016/j.measurement.2022.112148
– ident: ref26
  doi: 10.1080/15732470500424245
– ident: ref25
  doi: 10.1007/s13296-015-9011-9
– volume-title: Code for Design of Concrete Structures
  year: 2015
  ident: ref48
– ident: ref7
  doi: 10.1016/j.asej.2021.10.008
– ident: ref8
  doi: 10.1016/j.ymssp.2018.10.014
– ident: ref27
  doi: 10.1139/l04-092
– ident: ref14
  doi: 10.1002/stc.2637
– ident: ref42
  doi: 10.1007/s00477-009-0362-7
– ident: ref49
  doi: 10.1002/stc.3118
– ident: ref20
  doi: 10.1007/s00773-022-00904-7
– ident: ref47
  doi: 10.3390/s22093247
– ident: ref10
  doi: 10.1007/s13349-015-0103-1
– ident: ref31
  doi: 10.1016/j.ress.2022.108442
– ident: ref1
  doi: 10.1109/TIM.2020.3013130
– ident: ref41
  doi: 10.1029/1999WR900330
– ident: ref44
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref2
  doi: 10.1109/TITS.2021.3130025
– ident: ref15
  doi: 10.1061/(ASCE)CF.1943-5509.0000909
– ident: ref18
  doi: 10.1109/TKDE.2021.3108831
– ident: ref19
  doi: 10.1016/j.ymssp.2019.04.001
– ident: ref30
  doi: 10.1016/j.strusafe.2006.11.006
– ident: ref37
  doi: 10.1080/15732479.2021.1924797
– ident: ref36
  doi: 10.1109/TIM.2020.2972172
– ident: ref12
  doi: 10.1007/s10489-022-03644-8
– ident: ref17
  doi: 10.1109/JSEN.2023.3294912
– ident: ref39
  doi: 10.1080/03610918.2016.1152365
– ident: ref28
  doi: 10.1177/1369433220960275
– ident: ref46
  doi: 10.1061/(ASCE)BE.1943-5592.0001327
– ident: ref29
  doi: 10.1061/(ASCE)BE.1943-5592.0001700
– ident: ref43
  doi: 10.1017/S0305004100015681
– volume: 38
  start-page: 763
  issue: 5
  year: 2008
  ident: ref13
  article-title: Multiple-peaked probabilistic vehicle load model for highway bridge reliability assessment
  publication-title: J. Southeast Univ. Natural Sci. Ed., Article
– ident: ref22
  doi: 10.1016/j.aap.2018.12.013
– ident: ref4
  doi: 10.1109/TIM.2022.3225001
– year: 2014
  ident: ref40
  article-title: Bayesian inference of Gaussian mixture models with noninformative priors
  publication-title: arXiv:1405.4895
– ident: ref23
  doi: 10.1016/j.engstruct.2016.07.052
– volume: 5
  start-page: 79
  issue: 1
  year: 2018
  ident: ref11
  article-title: RAMS evaluation for a steel-truss arch high-speed railway bridge based on SHM system
  publication-title: Struct. Monitor. Maintenance, Article
– ident: ref32
  doi: 10.2307/2347483
– ident: ref35
  doi: 10.1002/2017WR020403
– ident: ref24
  doi: 10.1002/stc.2254
– ident: ref6
  doi: 10.1016/j.strusafe.2014.05.005
– ident: ref9
  doi: 10.12989/sss.2016.17.6.995
– ident: ref3
  doi: 10.1109/TITS.2022.3140276
– ident: ref16
  doi: 10.1080/15732479.2016.1158194
– ident: ref34
  doi: 10.1029/2001WR000502
SSID ssj0007647
Score 2.591521
Snippet Dynamic parameterization of the statistical characteristics of structural systems' measured input and output data is an important task for the digital twin...
Dynamic parameterization of the statistical characteristics of structural systems’ measured input and output data is an important task for the digital twin...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Bayes methods
Bayesian analysis
Bridges
Digital twin
Digital twins
Extreme value prediction
Extreme values
Intelligent monitoring
Load modeling
Maximum likelihood estimation
Mixed probability modeling
Modelling
Parameterization
Parameterization of dynamic system
Predictive models
Probabilistic logic
Probabilistic models
Probability theory
Risk assessment
Skewness
Statistical analysis
Transportation infrastructures
Vehicle dynamics
Title Mixed Skewness Probability Modeling and Extreme Value Predicting for Physical System Input/Output Based on Full Bayesian Generalized Maximum-Likelihood Estimation
URI https://ieeexplore.ieee.org/document/10363225
https://www.proquest.com/docview/2907535764
Volume 73
WOSCitedRecordID wos001134473500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKKlI5lJaC2BYqH7j0kN2sbZL42KJFILGwEg9xixx7LEVAFu0m7dKf01_aGSeLqFAr9ZREsZ1I8_CMZ-YbxvYdIFOgHRDFGUCkCjBRhlIUaWHSwnjnbcDZvj5Nz86ymxs96YrVQy0MAITkM-jTbYjlu6lt6KgMJVwmxIArbCVNk7ZY60ntpolqATKHKMFoFixjkrEeXJ6M-9QmvC-lkqkSf-xBoanKC00ctpejjf_8sXfsbWdH8q8t4d-zV1BtsvVn6IKbbC1kd9r5B_ZrXC7A8Ytb-EGajU9mKMUhK_aRUzM0KknnpnJ8tKjpvJBfm7sGcBhFcSgvmqNpyycdSXmLcs5PqoemHpw3NV74N9wNHZ9WnHxafHoEqs7kHap1-RNfjs2ivG_uo9PyFr9IcMp8hAqmrZ3cYldHo8vD46hrzhBZoUUdiUJkiRGZV5nVLj1wiVQ-k0aHwJ2j8CJF5Ly2CrxPhsPCSMLmEVaqwlqQ22y1mlaww_gBWvg-sbhTOqky9IcMrgA2UTGk0sdFjw2W5Mpth1xODTTu8uDBxDpHAudE4LwjcI99eZrx0KJ2_GPsFhH02biWlj22u2SJvJPreS40mlgSfTT18S_TPrE3uLpqT2l22Wo9a2CPvbbf63I--xxY9jfvTusB
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdggIAHPrYhCgP8wAsPaVPbS-JHQJ1W0ZZKlGlvkWOfpWhbOrUJdPw5_KXcOek0hEDiKYlix5Huw3e-u98x9tYBMgXaAVGcAUSqABNlKEWRFiYtjHfeBpztk0k6m2Wnp3reFauHWhgACMln0KfbEMt3S9vQURlKuEyIAW-zO9Q6qyvXula8aaJaiMwhyjAaBtuoZKwHi_G0T43C-1IqmSrx2y4U2qr8oYvDBnP0-D9_7Ql71FmS_H1L-qfsFlS77OENfMFddi_kd9r1Hvs5LTfg-Jcz-E66jc9XKMchL_aKUzs0KkrnpnJ8tKnpxJCfmPMGcBjFcSgzmqNxy-cdUXmLc87H1WVTDz43NV74B9wPHV9WnLxafLoCqs_kHa51-QNfTs2mvGguokl5hisSoDIfoYppqyf32dej0eLjcdS1Z4is0KKORCGyxIjMq8xqlx66RCqfSaND6M5RgJFicl5bBd4nw2FhJKHzCCtVYS3IZ2ynWlbwnPFDtPF9YnGvdFJl6BEZ_ALYRMWQSh8XPTbYkiu3HXY5tdA4z4MPE-scCZwTgfOOwD327nrGZYvb8Y-x-0TQG-NaWvbYwZYl8k6y17nQaGRJ9NLUi79Me8PuHy-mk3wynn16yR7gSqo9szlgO_WqgVfsrv1Wl-vV68C-vwBRU-5K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+Skewness+Probability+Modeling+and+Extreme+Value+Predicting+for+Physical+System+Input%E2%80%93Output+Based+on+Full+Bayesian+Generalized+Maximum-Likelihood+Estimation&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Xiaonan&rft.au=Ding%2C+Youliang&rft.au=Zhao%2C+Hanwei&rft.au=Yi%2C+Letian&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft_id=info:doi/10.1109%2FTIM.2023.3343742&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon