Improving Cross-Language Code Clone Detection via Code Representation Learning and Graph Neural Networks
Code clone detection is an important aspect of software development and maintenance. The extensive research in this domain has helped reduce the complexity and increase the robustness of source code, thereby assisting bug detection tools. However, the majority of the clone detection literature is co...
Uložené v:
| Vydané v: | IEEE transactions on software engineering Ročník 49; číslo 11; s. 4846 - 4868 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.11.2023
IEEE Computer Society |
| Predmet: | |
| ISSN: | 0098-5589, 1939-3520 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Code clone detection is an important aspect of software development and maintenance. The extensive research in this domain has helped reduce the complexity and increase the robustness of source code, thereby assisting bug detection tools. However, the majority of the clone detection literature is confined to a single language. With the increasing prevalence of cross-platform applications, functionality replication across multiple languages is common, resulting in code fragments having similar functionality but belonging to different languages. Since such clones are syntactically unrelated, single language clone detection tools are not applicable in their case. In this article, we propose a semi-supervised deep learning-based tool Rubhus , capable of detecting clones across different programming languages. Rubhus uses the control and data flow enriched abstract syntax trees (ASTs) of code fragments to leverage their syntactic and structural information and then applies graph neural networks (GNNs) to extract this information for the task of clone detection. We demonstrate the effectiveness of our proposed system through experiments conducted over datasets consisting of Java, C, and Python programs and evaluate its performance in terms of precision, recall, and F1 score. Our results indicate that Rubhus outperforms the state-of-the-art cross-language clone detection tools. |
|---|---|
| AbstractList | Code clone detection is an important aspect of software development and maintenance. The extensive research in this domain has helped reduce the complexity and increase the robustness of source code, thereby assisting bug detection tools. However, the majority of the clone detection literature is confined to a single language. With the increasing prevalence of cross-platform applications, functionality replication across multiple languages is common, resulting in code fragments having similar functionality but belonging to different languages. Since such clones are syntactically unrelated, single language clone detection tools are not applicable in their case. In this article, we propose a semi-supervised deep learning-based tool Rubhus , capable of detecting clones across different programming languages. Rubhus uses the control and data flow enriched abstract syntax trees (ASTs) of code fragments to leverage their syntactic and structural information and then applies graph neural networks (GNNs) to extract this information for the task of clone detection. We demonstrate the effectiveness of our proposed system through experiments conducted over datasets consisting of Java, C, and Python programs and evaluate its performance in terms of precision, recall, and F1 score. Our results indicate that Rubhus outperforms the state-of-the-art cross-language clone detection tools. |
| Author | Purandare, Rahul Jindal, Anmol Mehrotra, Nikita Sharma, Akash |
| Author_xml | – sequence: 1 givenname: Nikita orcidid: 0000-0002-2554-4798 surname: Mehrotra fullname: Mehrotra, Nikita email: nikitam@iiitd.ac.in organization: Department of Computer Science Engineering, IIIT Delhi, Delhi, India – sequence: 2 givenname: Akash surname: Sharma fullname: Sharma, Akash email: akash17327@iiitd.ac.in organization: Department of Computer Science Engineering, IIIT Delhi, Delhi, India – sequence: 3 givenname: Anmol surname: Jindal fullname: Jindal, Anmol email: anmol19296@iiitd.ac.in organization: Department of Computer Science Engineering, IIIT Delhi, Delhi, India – sequence: 4 givenname: Rahul orcidid: 0000-0001-8677-0601 surname: Purandare fullname: Purandare, Rahul email: rahul@unl.edu.in organization: University of Nebraska-Lincoln, Lincoln, NE, USA |
| BookMark | eNp9UD1PwzAQtRBItIWdgSESc4o_4sQeUSilUgUSlNlynUubkjrBSYr49zikA2JguSfd3bt3743Rqa0sIHRF8JQQLG9Xr7MpxZRNGSMkkfEJGhHJZMg4xadohLEUIedCnqNx0-wwxjxJ-AhtF_vaVYfCboLUVU0TLrXddHoDQVplvpReJbiHFkxbVDY4FHoYvEDtoAHb6p_-ErSz_RFts2DudL0NnqBzuvTQflbuvblAZ7kuG7g84gS9PcxW6WO4fJ4v0rtlaKikbUh5LvJ1xIBF_sEsMjSnhGQGJ8IIBhg0J4YkVOMYc020t2eYTKTQgstoHbMJuhnuelsfHTSt2lWds15SUSGxlDSJpN_Cw5bpTTvIVe2KvXZfimDV56l8nqrPUx3z9JT4D8UUg_vW6aL8j3g9EAsA-KVDI0piwb4BlruEFQ |
| CODEN | IESEDJ |
| CitedBy_id | crossref_primary_10_1080_1206212X_2024_2443506 crossref_primary_10_1016_j_csi_2025_103998 crossref_primary_10_1016_j_scico_2024_103112 crossref_primary_10_1016_j_cose_2024_104024 crossref_primary_10_3390_electronics13112111 crossref_primary_10_1016_j_cosrev_2025_100786 crossref_primary_10_1109_ACCESS_2025_3553392 |
| Cites_doi | 10.1109/ICPC.2011.26 10.1109/ICSE.2019.00086 10.1109/tse.2021.3105556 10.1587/transinf.2016EDP7334 10.1109/icsme.2018.00021 10.1145/3506696 10.1109/MSR.2019.00078 10.1142/S0218001493000339 10.1145/3377811.3380407 10.1109/ASE.2019.00011 10.1109/IWSC.2017.7880507 10.1109/VLHCC.2018.8506508 10.1109/SANER.2019.8668043 10.24963/ijcai.2018/394 10.1109/SANER.2018.8330250 10.1145/3468264.3468538 10.1109/ICSE.2007.30 10.5555/977395.977673 10.21236/ADA225798 10.1037/0033-2909.114.3.494 10.1145/3524610.3527911 10.1109/TNNLS.2020.2978386 10.1186/s40649-019-0069-y 10.1109/SANER48275.2020.9054857 10.1109/WCRE.2012.50 10.1145/3236024.3236026 10.1145/3360588 10.1186/s40411-017-0035-z 10.1109/CVPR.2018.00745 10.24963/ijcai.2017/423 10.1109/icpc.2019.00021 10.1145/3387904.3389268 10.1109/IWSC55060.2022.00008 10.1109/METRIC.2002.1011328 10.1109/TSE.2019.2940179 10.1109/ASE.2013.6693095 10.1145/2371316.2371380 10.1007/s10664-009-9108-x 10.1109/ase.2019.00099 10.1109/TSE.2002.1019480 10.1109/ICSM.1998.738528 10.1109/MSR.2019.00079 10.1109/WCRE.2001.957835 10.1145/3236024.3236068 10.1145/2884781.2884877 10.1109/ICSME.2014.77 10.1109/ICSTW.2009.18 10.1109/MSP.2017.2693418 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2023 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2023 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
| DOI | 10.1109/TSE.2023.3311796 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1939-3520 |
| EndPage | 4868 |
| ExternalDocumentID | 10_1109_TSE_2023_3311796 10242168 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science and Engineering Research Board (SERB) funderid: 10.13039/501100001843 – fundername: Nucleus Software Exports Ltd – fundername: Department of Science and Technology (DST) (India) funderid: 10.13039/501100001409 – fundername: Infosys Center for Artificial Intelligence at IIIT-Delhi – fundername: Confederation of Indian Industry (CII) |
| GroupedDBID | --Z -DZ -~X .4S .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 7WY 7X7 85S 88E 88I 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABJCF ABPPZ ABQJQ ABUWG ABVLG ACGFO ACGOD ACIWK ACNCT ADBBV AENEX AETIX AFKRA AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ASUFR ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BKOMP BPEOZ BPHCQ BVXVI CCPQU CS3 DU5 DWQXO E.L EBS EDO EJD FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HMCUK HZ~ H~9 I-F IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M1P M1Q M2O M2P M43 M7S MS~ O9- OCL OHT P2P P62 PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q2X RIA RIE RNI RNS RXW RZB S10 TAE TN5 TWZ UHB UKHRP UPT UQL VH1 WH7 XOL YYP YZZ ZCG AAYXX AFFHD CITATION JQ2 K9. |
| ID | FETCH-LOGICAL-c292t-25f8fb43e34577d4c2f211dc078c83e0ea51c172a0605a1a352c39798a8594b63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001111494200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-5589 |
| IngestDate | Sun Nov 30 05:19:26 EST 2025 Sat Nov 29 07:39:10 EST 2025 Tue Nov 18 21:45:13 EST 2025 Wed Aug 27 07:40:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-25f8fb43e34577d4c2f211dc078c83e0ea51c172a0605a1a352c39798a8594b63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2554-4798 0000-0001-8677-0601 |
| PQID | 2890992749 |
| PQPubID | 21418 |
| PageCount | 23 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSE_2023_3311796 proquest_journals_2890992749 crossref_primary_10_1109_TSE_2023_3311796 ieee_primary_10242168 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on software engineering |
| PublicationTitleAbbrev | TSE |
| PublicationYear | 2023 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | Roy (ref1) 2007 ref12 Chen (ref44) ref15 ref59 ref14 Fjeldberg (ref10) 2008 ref11 Li (ref5) Allamanis (ref42); 48. ref17 ref16 ref19 ref18 Allamanis (ref37) 2017 Guo (ref61) Kraft (ref3) ref50 ref47 ref41 ref43 Defferrard (ref68) Wu (ref13) 1990 ref8 ref7 ref9 ref4 Cheng (ref21) ref6 ref35 ref34 ref36 ref31 ref75 ref30 ref74 ref32 ref76 Shang (ref53); 48 ref39 Kingma (ref55) 2015 ref38 Glorot (ref54); 9 Lample (ref29) ref71 Shin (ref45) Burges (ref46) 2013 ref70 ref73 ref72 (ref51) 2019 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 White (ref2) ref22 Wang (ref40) ref66 ref65 Sun (ref24) ref28 ref27 van Bruggen (ref49) Kipf (ref33) ref60 ref62 Fey (ref52) Vinyals (ref48) |
| References_xml | – volume-title: A survey on software clone detection research year: 2007 ident: ref1 – ident: ref66 doi: 10.1109/ICPC.2011.26 – start-page: 176 volume-title: Proc. OSDI ident: ref5 article-title: CP-miner: A tool for finding copy-paste and related bugs in operating system code – ident: ref34 doi: 10.1109/ICSE.2019.00086 – ident: ref25 doi: 10.1109/tse.2021.3105556 – volume-title: Proc. ICLR Workshop Representation Learn. Graphs Manifolds ident: ref52 article-title: Fast graph representation learning with PyTorch Geometric – ident: ref65 doi: 10.1587/transinf.2016EDP7334 – ident: ref19 doi: 10.1109/icsme.2018.00021 – ident: ref62 doi: 10.1145/3506696 – ident: ref23 doi: 10.1109/MSR.2019.00078 – ident: ref47 doi: 10.1142/S0218001493000339 – ident: ref63 doi: 10.1145/3377811.3380407 – ident: ref70 doi: 10.1109/ASE.2019.00011 – ident: ref9 doi: 10.1109/IWSC.2017.7880507 – ident: ref12 doi: 10.1109/VLHCC.2018.8506508 – ident: ref39 doi: 10.1109/SANER.2019.8668043 – ident: ref16 doi: 10.24963/ijcai.2018/394 – ident: ref64 doi: 10.1109/SANER.2018.8330250 – ident: ref76 doi: 10.1145/3468264.3468538 – ident: ref15 doi: 10.1109/ICSE.2007.30 – ident: ref50 doi: 10.5555/977395.977673 – volume-title: Python: A Dynamic, Open Source Programming Language year: 2019 ident: ref51 – volume-title: Problem-solving transfer among programming languages year: 1990 ident: ref13 doi: 10.21236/ADA225798 – ident: ref69 doi: 10.1037/0033-2909.114.3.494 – volume-title: 9th Int. Conf. Learn. Represent. (ICLR) ident: ref61 article-title: GraphCodeBERT: Pre-training code representations with data flow – volume-title: Proc. 5th Int. Conf. Learn. Representations (ICLR) ident: ref33 article-title: Semi-supervised classification with graph convolutional networks – ident: ref48 article-title: Order matters: Sequence to sequence for sets – start-page: 8931 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. (NIPS) ident: ref45 article-title: Improving neural program synthesis with inferred execution traces – ident: ref60 doi: 10.1145/3524610.3527911 – ident: ref31 doi: 10.1109/TNNLS.2020.2978386 – volume: 9 start-page: 249 volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist. ident: ref54 article-title: Understanding the difficulty of training deep feedforward neural networks – ident: ref30 doi: 10.1186/s40649-019-0069-y – ident: ref36 doi: 10.1109/SANER48275.2020.9054857 – volume-title: Zenodo ident: ref49 article-title: Javaparser/javaparser: Release javaparser- parent-3.16.1 – ident: ref20 doi: 10.1109/WCRE.2012.50 – ident: ref17 doi: 10.1145/3236024.3236026 – ident: ref38 doi: 10.1145/3360588 – volume: 48. start-page: 2091 volume-title: Proc. 33nd Int. Conf. Mach. Learn. (ICML) ident: ref42 article-title: A convolutional attention network for extreme summarization of source code – ident: ref11 doi: 10.1186/s40411-017-0035-z – ident: ref28 doi: 10.1109/CVPR.2018.00745 – start-page: 87 volume-title: Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng.(ASE) ident: ref2 article-title: Deep learning code fragments for code clone detection – volume-title: Polyglot programming a business perspective year: 2008 ident: ref10 – ident: ref35 doi: 10.24963/ijcai.2017/423 – start-page: 54 volume-title: Proc. 20th Int. Conf. Softw. Eng. Knowl. Eng. (SEKE), ident: ref3 article-title: Cross-language clone detection – year: 2015 ident: ref55 article-title: ADAM: A method for stochastic optimization – start-page: 696 volume-title: Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE) ident: ref21 article-title: Mining revision histories to detect cross-language clones without intermediates – volume-title: Proc. 8th Int. Conf. Learn. Representations (ICLR) ident: ref24 article-title: InfoGraph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization – ident: ref26 doi: 10.1109/icpc.2019.00021 – ident: ref43 doi: 10.1145/3387904.3389268 – ident: ref71 doi: 10.1109/IWSC55060.2022.00008 – volume-title: Proc. 6th Int. Conf. Learn. Representations (ICLR) ident: ref40 article-title: Dynamic neural program embeddings for program repair – ident: ref7 doi: 10.1109/METRIC.2002.1011328 – volume-title: 27th Ann. Conf. Neural Inf. Proc. Sys year: 2013 ident: ref46 article-title: Distributed representations of words and phrases and their compositionality – ident: ref41 doi: 10.1109/TSE.2019.2940179 – ident: ref18 doi: 10.1109/ASE.2013.6693095 – ident: ref75 doi: 10.1145/2371316.2371380 – volume: 48 start-page: 2217 ident: ref53 article-title: Understanding and improving convolutional neural networks via concatenated rectified linear units publication-title: Proc. 33rd Int. Conf. Mach. Learn. (ICML) – ident: ref8 doi: 10.1007/s10664-009-9108-x – ident: ref22 doi: 10.1109/ase.2019.00099 – ident: ref67 doi: 10.1109/TSE.2002.1019480 – ident: ref4 doi: 10.1109/ICSM.1998.738528 – ident: ref59 doi: 10.1109/MSR.2019.00079 – ident: ref74 doi: 10.1109/WCRE.2001.957835 – ident: ref14 doi: 10.1145/3236024.3236068 – year: 2017 ident: ref37 article-title: Learning to represent programs with graphs – start-page: 5039 volume-title: Proc. Conf. Empirical Methods Natural Lang. Process. ident: ref29 article-title: Phrase-based & neural unsupervised machine translation – start-page: 3837 volume-title: Proc. Adv. Neural Inf. Process. Syst. 29, Annu. Conf. Neural Inf. Process. Syst., Barcelona, Spain ident: ref68 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – ident: ref72 article-title: Rubhus – ident: ref73 doi: 10.1145/2884781.2884877 – ident: ref27 doi: 10.1109/ICSME.2014.77 – volume-title: Proc. Int. Conf. Learn. Representations ident: ref44 article-title: Neural symbolic reader: Scalable integration of distributed and symbolic representations for reading comprehension – ident: ref6 doi: 10.1109/ICSTW.2009.18 – ident: ref32 doi: 10.1109/MSP.2017.2693418 |
| SSID | ssj0005775 ssib053395008 |
| Score | 2.5067685 |
| Snippet | Code clone detection is an important aspect of software development and maintenance. The extensive research in this domain has helped reduce the complexity and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4846 |
| SubjectTerms | abstract syntax trees Cloning Codes cross-language code clone detection Deep learning Fragments Graph neural networks graph-based neural networks Graphical representations Java Machine learning Neural networks Program representation learning Programming languages Semantics Software development Source code Source coding Syntactics Task analysis |
| Title | Improving Cross-Language Code Clone Detection via Code Representation Learning and Graph Neural Networks |
| URI | https://ieeexplore.ieee.org/document/10242168 https://www.proquest.com/docview/2890992749 |
| Volume | 49 |
| WOSCitedRecordID | wos001111494200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005775 issn: 0098-5589 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uePDi_Jg4nZKDFw_Z2iZtmqPMTQ8yRCfsVtJ86GB0snX7-03SdCqi4KUUmpRHfvl4L--93wPgCjORq1DHSEvJEeEJQ3nIGFJUEUIDbk4M7opN0PE4nU7Zo09Wd7kwSikXfKZ69tX58uVCrO1VmVnh1oGZpA3QoDSpkrU-4zkojWuCzDhOWe2TDFh_8jzs2TLhPYwtA1ry7QxyRVV-7MTueBm1_inYAdj3eiS8qYA_BDuqOAKtukYD9Ev2GLxtbw3gwAqDHvwFJRwspHnMF4WCt6p0EVkF3Mx49eHJRcj6xKQCehrWV8gLCe8syTW0tB5GgnEVR75qg5fRcDK4R766AhIRi0oUxTrVOcEKEzN0kohIG2NQCqMziBSrQPE4FEa94YGxeHjIjaYmrBMw5WnMSJ7gE9AsjIynAGqGMQsxJToRxrzUzGwTPJASq1xERiHrgH493pnw1OO2AsY8cyZIwDKDUGYRyjxCHXC97fFe0W780bZtEfnSrgKjA7o1pplfmKvM-lUZM6Y4O_ul2znYs3-v8g27oFku1-oC7IpNOVstL92c-wDwL9Mp |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Cvri_Jg4nZoHX3zo1jb9yqPM6cRZRCfsraRJqoPRydbt7zdJ06mIgi-l0IQe-eXjLnf3O4ALTFgqnMy3Ms6p5dGAWKlDiCVC4XmhTeWJQXWxiTCOo9GIPJpkdZ0LI4TQwWeirV61L59P2UJdlckVrhyYQbQOG6p0lknX-ozoCEO_osj0_YhUXkmbdIbPvbYqFN7GWHGgBd9OIV1W5cderA-Ym_o_RduFHaNJoqsS-j1YE_k-1KsqDcgs2gN4W90boK4SxhqYK0rUnXL5mExzga5FoWOycrQc0_LDk46RNalJOTJErK-I5hzdKpprpIg9pARxGUk-b8DLTW_Y7VumvoLFXOIWlutnUZZ6WGBPDh33mJtJc5AzqTWwCAtbUN9hUsGhtrR5qEOlrsaUGzCikU-8NMCHUMuljEeAMoIxcXDoZQGTBmZG5EZBbc6xSJkrVbImdKrxTpghH1c1MCaJNkJskkiEEoVQYhBqwuWqx3tJvPFH24ZC5Eu7EowmtCpME7M054nyrBIijXFy_Eu3c9jqDx8GyeAuvj-BbfWnMvuwBbVithCnsMmWxXg-O9Pz7wMbfNZy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Cross-Language+Code+Clone+Detection+via+Code+Representation+Learning+and+Graph+Neural+Networks&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Mehrotra%2C+Nikita&rft.au=Sharma%2C+Akash&rft.au=Jindal%2C+Anmol&rft.au=Purandare%2C+Rahul&rft.date=2023-11-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=49&rft.issue=11&rft.spage=4846&rft.epage=4868&rft_id=info:doi/10.1109%2FTSE.2023.3311796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSE_2023_3311796 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |