Improving Cross-Language Code Clone Detection via Code Representation Learning and Graph Neural Networks

Code clone detection is an important aspect of software development and maintenance. The extensive research in this domain has helped reduce the complexity and increase the robustness of source code, thereby assisting bug detection tools. However, the majority of the clone detection literature is co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on software engineering Ročník 49; číslo 11; s. 4846 - 4868
Hlavní autori: Mehrotra, Nikita, Sharma, Akash, Jindal, Anmol, Purandare, Rahul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.11.2023
IEEE Computer Society
Predmet:
ISSN:0098-5589, 1939-3520
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Code clone detection is an important aspect of software development and maintenance. The extensive research in this domain has helped reduce the complexity and increase the robustness of source code, thereby assisting bug detection tools. However, the majority of the clone detection literature is confined to a single language. With the increasing prevalence of cross-platform applications, functionality replication across multiple languages is common, resulting in code fragments having similar functionality but belonging to different languages. Since such clones are syntactically unrelated, single language clone detection tools are not applicable in their case. In this article, we propose a semi-supervised deep learning-based tool Rubhus , capable of detecting clones across different programming languages. Rubhus uses the control and data flow enriched abstract syntax trees (ASTs) of code fragments to leverage their syntactic and structural information and then applies graph neural networks (GNNs) to extract this information for the task of clone detection. We demonstrate the effectiveness of our proposed system through experiments conducted over datasets consisting of Java, C, and Python programs and evaluate its performance in terms of precision, recall, and F1 score. Our results indicate that Rubhus outperforms the state-of-the-art cross-language clone detection tools.
AbstractList Code clone detection is an important aspect of software development and maintenance. The extensive research in this domain has helped reduce the complexity and increase the robustness of source code, thereby assisting bug detection tools. However, the majority of the clone detection literature is confined to a single language. With the increasing prevalence of cross-platform applications, functionality replication across multiple languages is common, resulting in code fragments having similar functionality but belonging to different languages. Since such clones are syntactically unrelated, single language clone detection tools are not applicable in their case. In this article, we propose a semi-supervised deep learning-based tool Rubhus , capable of detecting clones across different programming languages. Rubhus uses the control and data flow enriched abstract syntax trees (ASTs) of code fragments to leverage their syntactic and structural information and then applies graph neural networks (GNNs) to extract this information for the task of clone detection. We demonstrate the effectiveness of our proposed system through experiments conducted over datasets consisting of Java, C, and Python programs and evaluate its performance in terms of precision, recall, and F1 score. Our results indicate that Rubhus outperforms the state-of-the-art cross-language clone detection tools.
Author Purandare, Rahul
Jindal, Anmol
Mehrotra, Nikita
Sharma, Akash
Author_xml – sequence: 1
  givenname: Nikita
  orcidid: 0000-0002-2554-4798
  surname: Mehrotra
  fullname: Mehrotra, Nikita
  email: nikitam@iiitd.ac.in
  organization: Department of Computer Science Engineering, IIIT Delhi, Delhi, India
– sequence: 2
  givenname: Akash
  surname: Sharma
  fullname: Sharma, Akash
  email: akash17327@iiitd.ac.in
  organization: Department of Computer Science Engineering, IIIT Delhi, Delhi, India
– sequence: 3
  givenname: Anmol
  surname: Jindal
  fullname: Jindal, Anmol
  email: anmol19296@iiitd.ac.in
  organization: Department of Computer Science Engineering, IIIT Delhi, Delhi, India
– sequence: 4
  givenname: Rahul
  orcidid: 0000-0001-8677-0601
  surname: Purandare
  fullname: Purandare, Rahul
  email: rahul@unl.edu.in
  organization: University of Nebraska-Lincoln, Lincoln, NE, USA
BookMark eNp9UD1PwzAQtRBItIWdgSESc4o_4sQeUSilUgUSlNlynUubkjrBSYr49zikA2JguSfd3bt3743Rqa0sIHRF8JQQLG9Xr7MpxZRNGSMkkfEJGhHJZMg4xadohLEUIedCnqNx0-wwxjxJ-AhtF_vaVYfCboLUVU0TLrXddHoDQVplvpReJbiHFkxbVDY4FHoYvEDtoAHb6p_-ErSz_RFts2DudL0NnqBzuvTQflbuvblAZ7kuG7g84gS9PcxW6WO4fJ4v0rtlaKikbUh5LvJ1xIBF_sEsMjSnhGQGJ8IIBhg0J4YkVOMYc020t2eYTKTQgstoHbMJuhnuelsfHTSt2lWds15SUSGxlDSJpN_Cw5bpTTvIVe2KvXZfimDV56l8nqrPUx3z9JT4D8UUg_vW6aL8j3g9EAsA-KVDI0piwb4BlruEFQ
CODEN IESEDJ
CitedBy_id crossref_primary_10_1080_1206212X_2024_2443506
crossref_primary_10_1016_j_csi_2025_103998
crossref_primary_10_1016_j_scico_2024_103112
crossref_primary_10_1016_j_cose_2024_104024
crossref_primary_10_3390_electronics13112111
crossref_primary_10_1016_j_cosrev_2025_100786
crossref_primary_10_1109_ACCESS_2025_3553392
Cites_doi 10.1109/ICPC.2011.26
10.1109/ICSE.2019.00086
10.1109/tse.2021.3105556
10.1587/transinf.2016EDP7334
10.1109/icsme.2018.00021
10.1145/3506696
10.1109/MSR.2019.00078
10.1142/S0218001493000339
10.1145/3377811.3380407
10.1109/ASE.2019.00011
10.1109/IWSC.2017.7880507
10.1109/VLHCC.2018.8506508
10.1109/SANER.2019.8668043
10.24963/ijcai.2018/394
10.1109/SANER.2018.8330250
10.1145/3468264.3468538
10.1109/ICSE.2007.30
10.5555/977395.977673
10.21236/ADA225798
10.1037/0033-2909.114.3.494
10.1145/3524610.3527911
10.1109/TNNLS.2020.2978386
10.1186/s40649-019-0069-y
10.1109/SANER48275.2020.9054857
10.1109/WCRE.2012.50
10.1145/3236024.3236026
10.1145/3360588
10.1186/s40411-017-0035-z
10.1109/CVPR.2018.00745
10.24963/ijcai.2017/423
10.1109/icpc.2019.00021
10.1145/3387904.3389268
10.1109/IWSC55060.2022.00008
10.1109/METRIC.2002.1011328
10.1109/TSE.2019.2940179
10.1109/ASE.2013.6693095
10.1145/2371316.2371380
10.1007/s10664-009-9108-x
10.1109/ase.2019.00099
10.1109/TSE.2002.1019480
10.1109/ICSM.1998.738528
10.1109/MSR.2019.00079
10.1109/WCRE.2001.957835
10.1145/3236024.3236068
10.1145/2884781.2884877
10.1109/ICSME.2014.77
10.1109/ICSTW.2009.18
10.1109/MSP.2017.2693418
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2023
Copyright_xml – notice: Copyright IEEE Computer Society 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
K9.
DOI 10.1109/TSE.2023.3311796
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 4868
ExternalDocumentID 10_1109_TSE_2023_3311796
10242168
Genre orig-research
GrantInformation_xml – fundername: Science and Engineering Research Board (SERB)
  funderid: 10.13039/501100001843
– fundername: Nucleus Software Exports Ltd
– fundername: Department of Science and Technology (DST) (India)
  funderid: 10.13039/501100001409
– fundername: Infosys Center for Artificial Intelligence at IIIT-Delhi
– fundername: Confederation of Indian Industry (CII)
GroupedDBID --Z
-DZ
-~X
.4S
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
7WY
7X7
85S
88E
88I
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABJCF
ABPPZ
ABQJQ
ABUWG
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
ADBBV
AENEX
AETIX
AFKRA
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
ASUFR
ATWAV
AZQEC
BEFXN
BENPR
BEZIV
BFFAM
BGLVJ
BGNUA
BKEBE
BKOMP
BPEOZ
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
E.L
EBS
EDO
EJD
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HMCUK
HZ~
H~9
I-F
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
ITG
ITH
JAVBF
K60
K6V
K6~
K7-
L6V
LAI
M0C
M1P
M1Q
M2O
M2P
M43
M7S
MS~
O9-
OCL
OHT
P2P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q2X
RIA
RIE
RNI
RNS
RXW
RZB
S10
TAE
TN5
TWZ
UHB
UKHRP
UPT
UQL
VH1
WH7
XOL
YYP
YZZ
ZCG
AAYXX
AFFHD
CITATION
JQ2
K9.
ID FETCH-LOGICAL-c292t-25f8fb43e34577d4c2f211dc078c83e0ea51c172a0605a1a352c39798a8594b63
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001111494200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-5589
IngestDate Sun Nov 30 05:19:26 EST 2025
Sat Nov 29 07:39:10 EST 2025
Tue Nov 18 21:45:13 EST 2025
Wed Aug 27 07:40:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-25f8fb43e34577d4c2f211dc078c83e0ea51c172a0605a1a352c39798a8594b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2554-4798
0000-0001-8677-0601
PQID 2890992749
PQPubID 21418
PageCount 23
ParticipantIDs crossref_citationtrail_10_1109_TSE_2023_3311796
proquest_journals_2890992749
crossref_primary_10_1109_TSE_2023_3311796
ieee_primary_10242168
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2023
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References Roy (ref1) 2007
ref12
Chen (ref44)
ref15
ref59
ref14
Fjeldberg (ref10) 2008
ref11
Li (ref5)
Allamanis (ref42); 48.
ref17
ref16
ref19
ref18
Allamanis (ref37) 2017
Guo (ref61)
Kraft (ref3)
ref50
ref47
ref41
ref43
Defferrard (ref68)
Wu (ref13) 1990
ref8
ref7
ref9
ref4
Cheng (ref21)
ref6
ref35
ref34
ref36
ref31
ref75
ref30
ref74
ref32
ref76
Shang (ref53); 48
ref39
Kingma (ref55) 2015
ref38
Glorot (ref54); 9
Lample (ref29)
ref71
Shin (ref45)
Burges (ref46) 2013
ref70
ref73
ref72
(ref51) 2019
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
White (ref2)
ref22
Wang (ref40)
ref66
ref65
Sun (ref24)
ref28
ref27
van Bruggen (ref49)
Kipf (ref33)
ref60
ref62
Fey (ref52)
Vinyals (ref48)
References_xml – volume-title: A survey on software clone detection research
  year: 2007
  ident: ref1
– ident: ref66
  doi: 10.1109/ICPC.2011.26
– start-page: 176
  volume-title: Proc. OSDI
  ident: ref5
  article-title: CP-miner: A tool for finding copy-paste and related bugs in operating system code
– ident: ref34
  doi: 10.1109/ICSE.2019.00086
– ident: ref25
  doi: 10.1109/tse.2021.3105556
– volume-title: Proc. ICLR Workshop Representation Learn. Graphs Manifolds
  ident: ref52
  article-title: Fast graph representation learning with PyTorch Geometric
– ident: ref65
  doi: 10.1587/transinf.2016EDP7334
– ident: ref19
  doi: 10.1109/icsme.2018.00021
– ident: ref62
  doi: 10.1145/3506696
– ident: ref23
  doi: 10.1109/MSR.2019.00078
– ident: ref47
  doi: 10.1142/S0218001493000339
– ident: ref63
  doi: 10.1145/3377811.3380407
– ident: ref70
  doi: 10.1109/ASE.2019.00011
– ident: ref9
  doi: 10.1109/IWSC.2017.7880507
– ident: ref12
  doi: 10.1109/VLHCC.2018.8506508
– ident: ref39
  doi: 10.1109/SANER.2019.8668043
– ident: ref16
  doi: 10.24963/ijcai.2018/394
– ident: ref64
  doi: 10.1109/SANER.2018.8330250
– ident: ref76
  doi: 10.1145/3468264.3468538
– ident: ref15
  doi: 10.1109/ICSE.2007.30
– ident: ref50
  doi: 10.5555/977395.977673
– volume-title: Python: A Dynamic, Open Source Programming Language
  year: 2019
  ident: ref51
– volume-title: Problem-solving transfer among programming languages
  year: 1990
  ident: ref13
  doi: 10.21236/ADA225798
– ident: ref69
  doi: 10.1037/0033-2909.114.3.494
– volume-title: 9th Int. Conf. Learn. Represent. (ICLR)
  ident: ref61
  article-title: GraphCodeBERT: Pre-training code representations with data flow
– volume-title: Proc. 5th Int. Conf. Learn. Representations (ICLR)
  ident: ref33
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref48
  article-title: Order matters: Sequence to sequence for sets
– start-page: 8931
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref45
  article-title: Improving neural program synthesis with inferred execution traces
– ident: ref60
  doi: 10.1145/3524610.3527911
– ident: ref31
  doi: 10.1109/TNNLS.2020.2978386
– volume: 9
  start-page: 249
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist.
  ident: ref54
  article-title: Understanding the difficulty of training deep feedforward neural networks
– ident: ref30
  doi: 10.1186/s40649-019-0069-y
– ident: ref36
  doi: 10.1109/SANER48275.2020.9054857
– volume-title: Zenodo
  ident: ref49
  article-title: Javaparser/javaparser: Release javaparser- parent-3.16.1
– ident: ref20
  doi: 10.1109/WCRE.2012.50
– ident: ref17
  doi: 10.1145/3236024.3236026
– ident: ref38
  doi: 10.1145/3360588
– volume: 48.
  start-page: 2091
  volume-title: Proc. 33nd Int. Conf. Mach. Learn. (ICML)
  ident: ref42
  article-title: A convolutional attention network for extreme summarization of source code
– ident: ref11
  doi: 10.1186/s40411-017-0035-z
– ident: ref28
  doi: 10.1109/CVPR.2018.00745
– start-page: 87
  volume-title: Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng.(ASE)
  ident: ref2
  article-title: Deep learning code fragments for code clone detection
– volume-title: Polyglot programming a business perspective
  year: 2008
  ident: ref10
– ident: ref35
  doi: 10.24963/ijcai.2017/423
– start-page: 54
  volume-title: Proc. 20th Int. Conf. Softw. Eng. Knowl. Eng. (SEKE),
  ident: ref3
  article-title: Cross-language clone detection
– year: 2015
  ident: ref55
  article-title: ADAM: A method for stochastic optimization
– start-page: 696
  volume-title: Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE)
  ident: ref21
  article-title: Mining revision histories to detect cross-language clones without intermediates
– volume-title: Proc. 8th Int. Conf. Learn. Representations (ICLR)
  ident: ref24
  article-title: InfoGraph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization
– ident: ref26
  doi: 10.1109/icpc.2019.00021
– ident: ref43
  doi: 10.1145/3387904.3389268
– ident: ref71
  doi: 10.1109/IWSC55060.2022.00008
– volume-title: Proc. 6th Int. Conf. Learn. Representations (ICLR)
  ident: ref40
  article-title: Dynamic neural program embeddings for program repair
– ident: ref7
  doi: 10.1109/METRIC.2002.1011328
– volume-title: 27th Ann. Conf. Neural Inf. Proc. Sys
  year: 2013
  ident: ref46
  article-title: Distributed representations of words and phrases and their compositionality
– ident: ref41
  doi: 10.1109/TSE.2019.2940179
– ident: ref18
  doi: 10.1109/ASE.2013.6693095
– ident: ref75
  doi: 10.1145/2371316.2371380
– volume: 48
  start-page: 2217
  ident: ref53
  article-title: Understanding and improving convolutional neural networks via concatenated rectified linear units
  publication-title: Proc. 33rd Int. Conf. Mach. Learn. (ICML)
– ident: ref8
  doi: 10.1007/s10664-009-9108-x
– ident: ref22
  doi: 10.1109/ase.2019.00099
– ident: ref67
  doi: 10.1109/TSE.2002.1019480
– ident: ref4
  doi: 10.1109/ICSM.1998.738528
– ident: ref59
  doi: 10.1109/MSR.2019.00079
– ident: ref74
  doi: 10.1109/WCRE.2001.957835
– ident: ref14
  doi: 10.1145/3236024.3236068
– year: 2017
  ident: ref37
  article-title: Learning to represent programs with graphs
– start-page: 5039
  volume-title: Proc. Conf. Empirical Methods Natural Lang. Process.
  ident: ref29
  article-title: Phrase-based & neural unsupervised machine translation
– start-page: 3837
  volume-title: Proc. Adv. Neural Inf. Process. Syst. 29, Annu. Conf. Neural Inf. Process. Syst., Barcelona, Spain
  ident: ref68
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: ref72
  article-title: Rubhus
– ident: ref73
  doi: 10.1145/2884781.2884877
– ident: ref27
  doi: 10.1109/ICSME.2014.77
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref44
  article-title: Neural symbolic reader: Scalable integration of distributed and symbolic representations for reading comprehension
– ident: ref6
  doi: 10.1109/ICSTW.2009.18
– ident: ref32
  doi: 10.1109/MSP.2017.2693418
SSID ssj0005775
ssib053395008
Score 2.5067685
Snippet Code clone detection is an important aspect of software development and maintenance. The extensive research in this domain has helped reduce the complexity and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4846
SubjectTerms abstract syntax trees
Cloning
Codes
cross-language code clone detection
Deep learning
Fragments
Graph neural networks
graph-based neural networks
Graphical representations
Java
Machine learning
Neural networks
Program representation learning
Programming languages
Semantics
Software development
Source code
Source coding
Syntactics
Task analysis
Title Improving Cross-Language Code Clone Detection via Code Representation Learning and Graph Neural Networks
URI https://ieeexplore.ieee.org/document/10242168
https://www.proquest.com/docview/2890992749
Volume 49
WOSCitedRecordID wos001111494200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3520
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005775
  issn: 0098-5589
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uePDi_Jg4nZKDFw_Z2iZtmqPMTQ8yRCfsVtJ86GB0snX7-03SdCqi4KUUmpRHfvl4L--93wPgCjORq1DHSEvJEeEJQ3nIGFJUEUIDbk4M7opN0PE4nU7Zo09Wd7kwSikXfKZ69tX58uVCrO1VmVnh1oGZpA3QoDSpkrU-4zkojWuCzDhOWe2TDFh_8jzs2TLhPYwtA1ry7QxyRVV-7MTueBm1_inYAdj3eiS8qYA_BDuqOAKtukYD9Ev2GLxtbw3gwAqDHvwFJRwspHnMF4WCt6p0EVkF3Mx49eHJRcj6xKQCehrWV8gLCe8syTW0tB5GgnEVR75qg5fRcDK4R766AhIRi0oUxTrVOcEKEzN0kohIG2NQCqMziBSrQPE4FEa94YGxeHjIjaYmrBMw5WnMSJ7gE9AsjIynAGqGMQsxJToRxrzUzGwTPJASq1xERiHrgH493pnw1OO2AsY8cyZIwDKDUGYRyjxCHXC97fFe0W780bZtEfnSrgKjA7o1pplfmKvM-lUZM6Y4O_ul2znYs3-v8g27oFku1-oC7IpNOVstL92c-wDwL9Mp
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Cvri_Jg4nZoHX3zo1jb9yqPM6cRZRCfsraRJqoPRydbt7zdJ06mIgi-l0IQe-eXjLnf3O4ALTFgqnMy3Ms6p5dGAWKlDiCVC4XmhTeWJQXWxiTCOo9GIPJpkdZ0LI4TQwWeirV61L59P2UJdlckVrhyYQbQOG6p0lknX-ozoCEO_osj0_YhUXkmbdIbPvbYqFN7GWHGgBd9OIV1W5cderA-Ym_o_RduFHaNJoqsS-j1YE_k-1KsqDcgs2gN4W90boK4SxhqYK0rUnXL5mExzga5FoWOycrQc0_LDk46RNalJOTJErK-I5hzdKpprpIg9pARxGUk-b8DLTW_Y7VumvoLFXOIWlutnUZZ6WGBPDh33mJtJc5AzqTWwCAtbUN9hUsGhtrR5qEOlrsaUGzCikU-8NMCHUMuljEeAMoIxcXDoZQGTBmZG5EZBbc6xSJkrVbImdKrxTpghH1c1MCaJNkJskkiEEoVQYhBqwuWqx3tJvPFH24ZC5Eu7EowmtCpME7M054nyrBIijXFy_Eu3c9jqDx8GyeAuvj-BbfWnMvuwBbVithCnsMmWxXg-O9Pz7wMbfNZy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Cross-Language+Code+Clone+Detection+via+Code+Representation+Learning+and+Graph+Neural+Networks&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Mehrotra%2C+Nikita&rft.au=Sharma%2C+Akash&rft.au=Jindal%2C+Anmol&rft.au=Purandare%2C+Rahul&rft.date=2023-11-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=49&rft.issue=11&rft.spage=4846&rft.epage=4868&rft_id=info:doi/10.1109%2FTSE.2023.3311796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSE_2023_3311796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon