A Two-level Coordination Strategy for Distribution Network Balancing

Uncertain distributed energy resources and uneven load allocation cause the three-phase unbalance in distribution networks (DNs), which may harm the health of power equipment and increase the operational cost. There are emerging opportunities to balance three-phase DNs with a number of power electro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on smart grid Ročník 15; číslo 1; s. 1
Hlavní autoři: Cui, Xueyuan, Ruan, Guangchun, Vallee, Francois, Toubeau, Jean-Francois, Wang, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1949-3053, 1949-3061
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Uncertain distributed energy resources and uneven load allocation cause the three-phase unbalance in distribution networks (DNs), which may harm the health of power equipment and increase the operational cost. There are emerging opportunities to balance three-phase DNs with a number of power electronic devices installed in the system. In this paper, we propose a novel two-level coordination strategy to improve the network balancing performance, where soft open points (SOPs) and phase switch devices (PSDs) are hierarchically coordinated in the network. At the upper level, a new type of SOPs with the function of phase switching is designed to explore the cross-phase power transfer ability; at the lower level, PSDs are utilized to flexibly allocate individual loads to specific phases. The two-level coordination strategy is typically formulated as a mixed-integer nonlinear programming (MINLP) problem. To solve the model accurately and efficiently, we develop a successive linearization algorithm to approximate it to a mixed-integer linear programming (MILP) problem at each iteration. On this basis, we propose a heuristic time-independent fixing algorithm to further ease the computational burden by eliminating a large number of integer variables in the MILP problem. Numerical simulations are conducted to validate the effectiveness, accuracy, and efficiency of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2023.3274564