Data-Driven Robust Optimization for Steam Systems in Ethylene Plants under Uncertainty
In an ethylene plant, steam system provides shaft power to compressors and pumps and heats the process streams. Modeling and optimization of a steam system is a powerful tool to bring benefits and save energy for ethylene plants. However, the uncertainty of device efficiencies and the fluctuation of...
Uloženo v:
| Vydáno v: | Processes Ročník 7; číslo 10; s. 744 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
2019
|
| Témata: | |
| ISSN: | 2227-9717, 2227-9717 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In an ethylene plant, steam system provides shaft power to compressors and pumps and heats the process streams. Modeling and optimization of a steam system is a powerful tool to bring benefits and save energy for ethylene plants. However, the uncertainty of device efficiencies and the fluctuation of the process demands cause great difficulties to traditional mathematical programming methods, which could result in suboptimal or infeasible solution. The growing data-driven optimization approaches offer new techniques to eliminate uncertainty in the process system engineering community. A data-driven robust optimization (DDRO) methodology is proposed to deal with uncertainty in the optimization of steam system in an ethylene plant. A hybrid model of extraction–exhausting steam turbine is developed, and its coefficients are considered as uncertain parameters. A deterministic mixed integer linear programming model of the steam system is formulated based on the model of the components to minimize the operating cost of the ethylene plant. The uncertain parameter set of the proposed model is derived from the historical data, and the Dirichlet process mixture model is employed to capture the features for the construction of the uncertainty set. In combination with the derived uncertainty set, a data-driven conic quadratic mixed-integer programming model is reformulated for the optimization of the steam system under uncertainty. An actual case study is utilized to validate the performance of the proposed DDRO method. |
|---|---|
| AbstractList | In an ethylene plant, steam system provides shaft power to compressors and pumps and heats the process streams. Modeling and optimization of a steam system is a powerful tool to bring benefits and save energy for ethylene plants. However, the uncertainty of device efficiencies and the fluctuation of the process demands cause great difficulties to traditional mathematical programming methods, which could result in suboptimal or infeasible solution. The growing data-driven optimization approaches offer new techniques to eliminate uncertainty in the process system engineering community. A data-driven robust optimization (DDRO) methodology is proposed to deal with uncertainty in the optimization of steam system in an ethylene plant. A hybrid model of extraction–exhausting steam turbine is developed, and its coefficients are considered as uncertain parameters. A deterministic mixed integer linear programming model of the steam system is formulated based on the model of the components to minimize the operating cost of the ethylene plant. The uncertain parameter set of the proposed model is derived from the historical data, and the Dirichlet process mixture model is employed to capture the features for the construction of the uncertainty set. In combination with the derived uncertainty set, a data-driven conic quadratic mixed-integer programming model is reformulated for the optimization of the steam system under uncertainty. An actual case study is utilized to validate the performance of the proposed DDRO method. |
| Author | Zhong, Weimin Du, Wenli Zhao, Liang |
| Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0002-3361-0783 surname: Zhao fullname: Zhao, Liang – sequence: 2 givenname: Weimin surname: Zhong fullname: Zhong, Weimin – sequence: 3 givenname: Wenli surname: Du fullname: Du, Wenli |
| BookMark | eNptkM1OwzAQhC1UJErpgTewxIlDqL2x4-aI2vIjVQJRyjVyEke4SuxgO0jh6UkpQgixl93DN7uzc4pGxhqF0DklV3GcklnrBCVEMHaExgAgolRQMfo1n6Cp9zsyVErjOU_G6GUpg4yWTr8rg59s3vmAH9qgG_0hg7YGV9bhTVCywZveB9V4rA1ehde-Vkbhx1qa4HFnSuXw1hTKBalN6M_QcSVrr6bffYK2N6vnxV20fri9X1yvowJSCBEAlyByxhWRpYIyYXRvrZozyVNQhJJEsqRisoSSMgF5ngvKISElEYSneTxBF4e9rbNvnfIh29nOmeFkBpwTYHEMYqBmB6pw1nunqqzQ4eu94KSuM0qyfX7ZT36D4vKPonW6ka7_h_0EjptxEw |
| CitedBy_id | crossref_primary_10_1016_j_conengprac_2022_105160 crossref_primary_10_1002_adsu_202400064 crossref_primary_10_1007_s41660_023_00354_7 crossref_primary_10_3390_pr8050622 crossref_primary_10_3390_pr8111495 crossref_primary_10_3390_ijerph182212267 crossref_primary_10_1007_s11081_021_09659_3 crossref_primary_10_1016_j_apenergy_2024_124595 crossref_primary_10_3390_pr11113171 crossref_primary_10_3390_en15207491 crossref_primary_10_3390_pr12030446 |
| Cites_doi | 10.1016/S0009-2509(97)00431-4 10.1016/j.compchemeng.2019.03.034 10.1002/aic.15792 10.1007/s10107-017-1125-8 10.1515/9781400831050 10.1287/mnsc.6.1.73 10.1016/0098-1354(83)85023-6 10.1109/ACC.2015.7171991 10.3390/pr7050312 10.1021/acs.iecr.8b05247 10.1021/ie970383i 10.1016/j.compchemeng.2003.09.017 10.1016/j.energy.2011.03.056 10.1021/acs.iecr.7b00111 10.1109/CDC.2016.7799219 10.1214/06-BA104 10.1016/j.apenergy.2016.05.036 10.1016/j.ces.2010.01.016 10.1205/cherd06062 10.1016/j.compchemeng.2017.12.002 10.1016/j.compchemeng.2017.07.004 10.1002/aic.15717 10.1016/S1004-9541(13)60530-3 10.1002/aic.14523 10.1021/ie402438t 10.3390/pr4040052 10.1002/aic.16500 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/pr7100744 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Biological Science Collection Biological Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | 10_3390_pr7100744 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c292t-225a27b45e0ade2d6410091f84a592e0106a46f4ad2d1472bbb715260d07059b3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495436200106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Fri Jul 25 12:15:41 EDT 2025 Sat Nov 29 07:19:49 EST 2025 Tue Nov 18 21:41:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-225a27b45e0ade2d6410091f84a592e0106a46f4ad2d1472bbb715260d07059b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3361-0783 |
| OpenAccessLink | https://www.proquest.com/docview/2550243327?pq-origsite=%requestingapplication% |
| PQID | 2550243327 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_2550243327 crossref_citationtrail_10_3390_pr7100744 crossref_primary_10_3390_pr7100744 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-00-00 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 2019-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Papoulias (ref_7) 1983; 7 Aguilar (ref_24) 2007; 85 Shang (ref_26) 2018; 110 ref_14 Ning (ref_21) 2017; 63 ref_13 ref_12 ref_10 Li (ref_2) 2013; 21 Zhao (ref_19) 2018; 65 Shang (ref_20) 2017; 106 Qin (ref_16) 2014; 60 Bertsimas (ref_17) 2017; 167 Charnes (ref_11) 1959; 6 Blei (ref_28) 2006; 1 Sun (ref_15) 2017; 186 (ref_25) 2010; 65 Luo (ref_4) 2011; 36 Ning (ref_18) 2019; 125 ref_23 Mavromatis (ref_6) 1998; 53 Li (ref_5) 2014; 53 Ning (ref_22) 2017; 63 ref_27 Sahinidis (ref_9) 2004; 28 Shen (ref_3) 2019; 58 Xu (ref_1) 2017; 56 Iyer (ref_8) 1998; 37 |
| References_xml | – volume: 53 start-page: 1585 year: 1998 ident: ref_6 article-title: Conceptual optimisation of utility networks for operational variations—I. targets and level optimisation publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(97)00431-4 – volume: 125 start-page: 434 year: 2019 ident: ref_18 article-title: Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.03.034 – volume: 63 start-page: 4343 year: 2017 ident: ref_21 article-title: A data-driven multistage adaptive robust optimization framework for planning and scheduling under uncertainty publication-title: AICHE J. doi: 10.1002/aic.15792 – volume: 167 start-page: 235 year: 2017 ident: ref_17 article-title: Data-driven robust optimization publication-title: Math. Program. doi: 10.1007/s10107-017-1125-8 – ident: ref_10 doi: 10.1515/9781400831050 – volume: 6 start-page: 73 year: 1959 ident: ref_11 article-title: Chance-constrained programming publication-title: Manag. Sci. doi: 10.1287/mnsc.6.1.73 – volume: 7 start-page: 707 year: 1983 ident: ref_7 article-title: A structural optimization approach in process synthesis—II: Heat recovery networks publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(83)85023-6 – ident: ref_27 doi: 10.1109/ACC.2015.7171991 – ident: ref_14 doi: 10.3390/pr7050312 – volume: 58 start-page: 1686 year: 2019 ident: ref_3 article-title: Modeling and Optimization of a Large-Scale Ethylene Plant Energy System with Energy Structure Analysis and Management publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05247 – volume: 37 start-page: 474 year: 1998 ident: ref_8 article-title: A bilevel decomposition algorithm for long-range planning of process networks publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie970383i – volume: 28 start-page: 971 year: 2004 ident: ref_9 article-title: Optimization under uncertainty: State-of-the-art and opportunities publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.09.017 – volume: 36 start-page: 3501 year: 2011 ident: ref_4 article-title: Modeling and optimization of a utility system containing multiple extractions steam turbines publication-title: Energy doi: 10.1016/j.energy.2011.03.056 – volume: 56 start-page: 7984 year: 2017 ident: ref_1 article-title: Process Synthesis of Mixed Refrigerant System for Ethylene Plants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b00111 – ident: ref_23 doi: 10.1109/CDC.2016.7799219 – volume: 1 start-page: 121 year: 2006 ident: ref_28 article-title: Variational inference for Dirichlet process mixtures publication-title: Bayesian Anal. doi: 10.1214/06-BA104 – ident: ref_12 – volume: 186 start-page: 450 year: 2017 ident: ref_15 article-title: Site utility system optimization with operation adjustment under uncertainty publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.036 – volume: 65 start-page: 2811 year: 2010 ident: ref_25 article-title: Modelling the power production of single and multiple extraction steam turbines publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.01.016 – volume: 85 start-page: 1136 year: 2007 ident: ref_24 article-title: Design and optimization of flexible utility systems subject to variable conditions: Part 1: Modelling framework publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd06062 – volume: 110 start-page: 53 year: 2018 ident: ref_26 article-title: Distributionally robust optimization for planning and scheduling under uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.12.002 – volume: 106 start-page: 464 year: 2017 ident: ref_20 article-title: Data-driven robust optimization based on kernel learning publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.07.004 – volume: 63 start-page: 3790 year: 2017 ident: ref_22 article-title: Data-driven adaptive nested robust optimization: General modeling framework and efficient computational algorithm for decision making under uncertainty publication-title: AICHE J. doi: 10.1002/aic.15717 – volume: 21 start-page: 520 year: 2013 ident: ref_2 article-title: Modeling and Optimization of the Steam Turbine Network of an Ethylene Plant publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(13)60530-3 – volume: 60 start-page: 3092 year: 2014 ident: ref_16 article-title: Process data analytics in the era of big data publication-title: AICHE J. doi: 10.1002/aic.14523 – volume: 53 start-page: 11021 year: 2014 ident: ref_5 article-title: Modeling and Optimization of a Steam System in a Chemical Plant Containing Multiple Direct Drive Steam Turbines publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie402438t – ident: ref_13 doi: 10.3390/pr4040052 – volume: 65 start-page: e16500 year: 2018 ident: ref_19 article-title: Operational optimization of industrial steam systems under uncertainty using data-driven adaptive robust optimization publication-title: AICHE J. doi: 10.1002/aic.16500 |
| SSID | ssj0000913856 |
| Score | 2.1288776 |
| Snippet | In an ethylene plant, steam system provides shaft power to compressors and pumps and heats the process streams. Modeling and optimization of a steam system is... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 744 |
| SubjectTerms | Boilers Case studies Compressors Dirichlet problem Efficiency Ethylene Heat exchangers Hypothesis testing Integer programming Linear programming Mathematical models Mathematical programming Mixed integer Operating costs Optimization Optimization techniques Parameter uncertainty Plant extracts Power Robustness (mathematics) Steam electric power generation Steam pressure Steam turbines Turbines Valves |
| Title | Data-Driven Robust Optimization for Steam Systems in Ethylene Plants under Uncertainty |
| URI | https://www.proquest.com/docview/2550243327 |
| Volume | 7 |
| WOSCitedRecordID | wos000495436200106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HeDAY4B4ThHiAIdCm6btekLAhkCIUU0MwalKmkyaBNtoCxIXfjv2lg2QEBcO7SVRVcX2Z8dxPgPsx9oPtXSFE8lAO8JzMyd2jY-6HCgMjwKeCT1sNhE1m7WHhzixCbfCllWOMXEI1LqfUY78GENfIs_zeXQyeHGoaxSdrtoWGtMwS0xlqOezZ41m0ppkWYj1shaEI0ohH_f3x4Oc-GwiIX46op84PHQuF0v__a1lWLRhJTsd6cEKTJleBRa-kQ1WYMWaccEOLNf04Src12UpnXpOmMdaffValOwWUeTZXs9kGNMyqvl9ZpbbnHV7rIHSRW9lGLU8KgtGF9Fy1saPD-sLyvc1aF807s4vHdtqwcl4zEsHrVrySInAuFIbrkOUGq5dpyZkEHNDG0cpwo6QmmtPRFwpFaHnD12NkBHEyl-HmV6_ZzaAac8zSnRCgZAuIuMp4hgUCp9AYfSQbcLBeN3TzPKQUzuMpxT3IySidCKiTdibTB2MyDd-m7Qzlkxq7a9Iv8Sy9ffwNsxjCBSPkio7MFPmr2YX5rK3slvkVatOVZi-PjuqUl1oQu-PBo4kVzfJ4yfBOtkz |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NS8NAEB1qFdSD3-JH1UUU9BBMNpukOYiorSitVUSlt7ib3YKgbU2i4p_yNzrbbKqCePPgIacsS5J9eTM7O_MGYCuUri-5zayAe9Jijh1boa1cxLIn0D3yaMzkoNlE0GpV2-3wsgTvRS2MTqssOHFA1LIX6xj5Hrq-WjzPpcFB_8nSXaP06WrRQiOHRUO9veKWLd0_q-H6blN6Ur8-PrVMVwErpiHNLAQwp4FgnrK5VFT6-IBoNDtVxr2QKr1H4szvMC6pdFhAhRABGjnflvh3eKFwcd4RGGUuUkwZRo_qrcurYVRHq2xWPT-XMHLd0N7rJ1o_J2Dsu-H7zvsDY3Yy_d8-wwxMGbeZHOY4n4WS6s7B5BcxxTmYNTSVkh2jpb07D7c1nnGrlmhOJ1c98Zxm5AJZ8tGUnxL02YnOaX4kRrud3HdJHdGL1lgR3dIpS4kutEvIDU4-yJ_I3hbg5k_edhHK3V5XLQGRjqME6_gMTRYLlCO0hiITeHkCvaN4GXaKdY5io7Ou2308RLjf0pCIhpBYhs3h0H4uLvLToEqBhMjwSxp9wmDl99sbMH56fd6MmmetxipMoLsX5gGkCpSz5FmtwVj8kt2nybqBMoG7v4bNB5ZRLnQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58IXrwLb4NoqCHsm2atpuDiLq7KMq6iIq3mjRZEHR3baviX_PXOdmmq4J48-Chp4bQNl_mm0lnvgHY5soPlXCZE4lAOcxzE4e72kcsBxLdo4AmTPWbTUTNZvX2lreG4L2shTFplaVN7Btq1U3MGXkFXV8jnudjqN62aRGtWuOg9-SYDlLmT2vZTqOAyJl-e8XwLds_reFa71DaqF8dnzi2w4CTUE5zB8EsaCRZoF2hNFUhPiwSaLvKRMCpNvGSYGGbCUWVxyIqpYyQ8EJX4U4JuPRx3mEYjXzu4Y4aPao3W5eDEx6juFkNwkLOyPe5W-mlRksnYuw7CX7ngD6xNab_8yeZgSnrTpPDAv-zMKQ7czD5RWRxDmat-crIrtXY3puHm5rIhVNLja0nl135nOXkAq3noy1LJejLE5Pr_Eispju575A6ohpZWhPT6inPiCnAS8k1Tt7Pq8jfFuD6T952EUY63Y5eAqI8T0vWDhlSGYu0J422IpN4BRK9pmQZdss1jxOrv27agDzEGIcZeMQDeCzD1mBorxAd-WnQWomK2NqdLP6ExMrvtzdhHLESn582z1ZhAr1AXpwrrcFInj7rdRhLXvL7LN2wqCZw99eo-QBEtjc3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Robust+Optimization+for+Steam+Systems+in+Ethylene+Plants+under+Uncertainty&rft.jtitle=Processes&rft.au=Zhao%2C+Liang&rft.au=Zhong%2C+Weimin&rft.au=Du%2C+Wenli&rft.date=2019&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=7&rft.issue=10&rft.spage=744&rft_id=info:doi/10.3390%2Fpr7100744&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |