DNN Inference Acceleration for Smart Devices in Industry 5.0 by Decentralized Deep Reinforcement Learning

With the emergence of Industry 5.0, there has been a significant surge in the need for intelligent services within the realm of smart devices. Currently, deep neural networks (DNNs) have become the predominant technology in driving advancements in intelligent applications. With the collaboration of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on consumer electronics Ročník 70; číslo 1; s. 1519 - 1530
Hlavní autoři: Dong, Chongwu, Shafiq, Muhammad, Dabel, Maryam M. Al, Sun, Yanbin, Tian, Zhihong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0098-3063, 1558-4127
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the emergence of Industry 5.0, there has been a significant surge in the need for intelligent services within the realm of smart devices. Currently, deep neural networks (DNNs) have become the predominant technology in driving advancements in intelligent applications. With the collaboration of mobile edge computing (MEC), resource-constraint smart devices, such as the industrial Internet of Things (IIoT) devices, can meet the requirement of high computing for DNN-based inference by computation offloading. In the task offloading strategy obtained by a central decision-maker with global information, all devices in the MEC can get the optimal optimization for DNN inference acceleration. However, in a practical environment, central decision-making may get into trouble, such as information synchronization delay, irrational behavior of devices, and privacy leakage. In this paper, we explore the optimization of distributed task offloading for smart devices to deal with these challenges regarding DNN inference acceleration, considering the character of an early exit in the DNN model to balance the accuracy and latency. In our system model, the optimization is formulated as a decentralized partially observable Markov decision process (Dec-POMDP). Each smart device performs its strategy, including task offloading decision and DNN branch selection with local observation, and cooperatively optimizes the overall Quality of Experience for DNN inference. Based on the model of Dec-POMDP, we propose one algorithm based on Multi-agent Reinforcement Learning to solve the above problem. In our algorithm, we utilize the advanced function based on the counterfactual baseline to guide policy gradient learning to overcome the credit allocation problem in cooperative optimization. In addition, LSTM is introduced to improve the robustness of the algorithm. Finally, detailed performance evaluation and comparison are performed to show the effectiveness of our strategy.
AbstractList With the emergence of Industry 5.0, there has been a significant surge in the need for intelligent services within the realm of smart devices. Currently, deep neural networks (DNNs) have become the predominant technology in driving advancements in intelligent applications. With the collaboration of mobile edge computing (MEC), resource-constraint smart devices, such as the industrial Internet of Things (IIoT) devices, can meet the requirement of high computing for DNN-based inference by computation offloading. In the task offloading strategy obtained by a central decision-maker with global information, all devices in the MEC can get the optimal optimization for DNN inference acceleration. However, in a practical environment, central decision-making may get into trouble, such as information synchronization delay, irrational behavior of devices, and privacy leakage. In this paper, we explore the optimization of distributed task offloading for smart devices to deal with these challenges regarding DNN inference acceleration, considering the character of an early exit in the DNN model to balance the accuracy and latency. In our system model, the optimization is formulated as a decentralized partially observable Markov decision process (Dec-POMDP). Each smart device performs its strategy, including task offloading decision and DNN branch selection with local observation, and cooperatively optimizes the overall Quality of Experience for DNN inference. Based on the model of Dec-POMDP, we propose one algorithm based on Multi-agent Reinforcement Learning to solve the above problem. In our algorithm, we utilize the advanced function based on the counterfactual baseline to guide policy gradient learning to overcome the credit allocation problem in cooperative optimization. In addition, LSTM is introduced to improve the robustness of the algorithm. Finally, detailed performance evaluation and comparison are performed to show the effectiveness of our strategy.
Author Sun, Yanbin
Shafiq, Muhammad
Dong, Chongwu
Tian, Zhihong
Dabel, Maryam M. Al
Author_xml – sequence: 1
  givenname: Chongwu
  orcidid: 0000-0002-9161-0570
  surname: Dong
  fullname: Dong, Chongwu
  email: dcw650@gmail.com
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0003-1909-9373
  surname: Shafiq
  fullname: Shafiq, Muhammad
  email: mshafiq@ieee.org
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
– sequence: 3
  givenname: Maryam M. Al
  orcidid: 0000-0003-4371-8939
  surname: Dabel
  fullname: Dabel, Maryam M. Al
  email: maldabel@uhb.edu.sa
  organization: Department of Computer Science and Engineering, College of Computer Science and Engineering, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
– sequence: 4
  givenname: Yanbin
  orcidid: 0000-0002-8157-5337
  surname: Sun
  fullname: Sun, Yanbin
  email: sunyanbin@gzhu.edu.cn
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
– sequence: 5
  givenname: Zhihong
  orcidid: 0000-0002-9409-5359
  surname: Tian
  fullname: Tian, Zhihong
  email: tianzhihong@gzhu.edu.cn
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
BookMark eNp9kE1LAzEQQINUsFbvHjwEPG-dfOxHjqWtWigVtJ6XbHYiKW22ZrdC_fWmtgfx4CmEeS9h3iXp-cYjITcMhoyBul-Op0MOXAyFEEpmxRnpszQtEsl43iN9AFUkAjJxQS7bdgXAZMqLPnGTxYLOvMWA3iAdGYNrDLpzjae2CfR1o0NHJ_jpDLbU-cjWu7YLe5oOgVb7ODLou6DX7gvreMMtfUHno2twEyd0jjp459-vyLnV6xavT-eAvD1Ml-OnZP78OBuP5onhincJh1Sb2jKGxgJnqrBphqmVoGyFWoHMhKlAVwJqK1ktGKRM6SIvQCpUlRYDcnd8dxuajx22XblqdsHHL0sRGak4ZxCp7EiZ0LRtQFsa1_2sHXdx65JBechaxqzlIWt5yhpF-CNug4uR9v8pt0fFIeIvXEie57n4Bp1MhD0
CODEN ITCEDA
CitedBy_id crossref_primary_10_1016_j_est_2024_110574
crossref_primary_10_1109_TCE_2025_3566725
crossref_primary_10_1109_TII_2025_3567379
crossref_primary_10_1109_TSMC_2024_3454118
crossref_primary_10_3390_machines13090755
crossref_primary_10_3390_math13050754
crossref_primary_10_1109_TCE_2025_3536438
crossref_primary_10_1109_JIOT_2025_3585025
Cites_doi 10.1109/TCOMM.2023.3244958
10.1162/neco.1997.9.8.1735
10.1109/JPROC.2019.2918951
10.1016/j.jksuci.2023.02.013
10.1016/j.future.2022.10.033
10.1109/JIOT.2020.3002255
10.1049/cmu2.12334
10.1609/aaai.v35i11.17166
10.1109/TII.2020.3017573
10.1016/j.jmsy.2022.09.017
10.1109/COMST.2022.3199544
10.1109/TITS.2022.3230430
10.1109/TVT.2023.3250274
10.1145/3317572
10.1109/JIOT.2023.3246100
10.1007/s10489-022-04394-3
10.1109/TPDS.2021.3137631
10.1109/TCC.2022.3163750
10.1016/j.comnet.2021.107950
10.1109/icccs52626.2021.9449178
10.1109/ICPR.2016.7900006
10.1109/TII.2022.3206787
10.1109/TMC.2020.3025116
10.1109/TVT.2018.2799620
10.1145/3545008.3545071
10.1109/TVT.2023.3253508
10.1145/3517206.3526270
10.1145/3229556.3229562
10.1109/ICC45855.2022.9838879
10.1109/JIOT.2023.3279271
10.1109/JPROC.2022.3226481
10.1016/j.adhoc.2023.103193
10.1145/3555802
10.1109/JIOT.2020.2971323
10.1007/s10723-023-09659-w
10.1609/aaai.v32i1.11794
10.1109/TVT.2023.3236327
10.1016/j.cose.2020.101863
10.1109/ICIP46576.2022.9897574
10.1016/j.jpdc.2022.10.004
10.1109/TGCN.2021.3099804
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2023.3339468
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 1530
ExternalDocumentID 10_1109_TCE_2023_3339468
10342777
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62250410365; 62272119; 62072130
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2021YFB3101704
  funderid: 10.13039/501100010903
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c292t-205acdf11ecf02198f56e5f409fbea90463cb0ab30df41d310519a878049e9ba3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001244904800426&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3063
IngestDate Tue Sep 23 15:10:48 EDT 2025
Sat Nov 29 01:45:44 EST 2025
Tue Nov 18 22:18:31 EST 2025
Wed Aug 27 01:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-205acdf11ecf02198f56e5f409fbea90463cb0ab30df41d310519a878049e9ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4371-8939
0000-0003-1909-9373
0000-0002-8157-5337
0000-0002-9161-0570
0000-0002-9409-5359
PQID 3049492210
PQPubID 85469
PageCount 12
ParticipantIDs ieee_primary_10342777
crossref_primary_10_1109_TCE_2023_3339468
proquest_journals_3049492210
crossref_citationtrail_10_1109_TCE_2023_3339468
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Hausknecht (ref41)
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
Lowe (ref18)
ref32
Wang (ref46) 2020
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Krizhevsky (ref35); 25
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref22
Krizhevsky (ref36) 2009
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref17
  doi: 10.1109/TCOMM.2023.3244958
– ident: ref42
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref6
  doi: 10.1109/JPROC.2019.2918951
– ident: ref20
  doi: 10.1016/j.jksuci.2023.02.013
– ident: ref8
  doi: 10.1016/j.future.2022.10.033
– ident: ref1
  doi: 10.1109/JIOT.2020.3002255
– ident: ref30
  doi: 10.1049/cmu2.12334
– ident: ref16
  doi: 10.1609/aaai.v35i11.17166
– ident: ref34
  doi: 10.1109/TII.2020.3017573
– ident: ref3
  doi: 10.1016/j.jmsy.2022.09.017
– ident: ref25
  doi: 10.1109/COMST.2022.3199544
– ident: ref33
  doi: 10.1109/TITS.2022.3230430
– ident: ref40
  doi: 10.1109/TVT.2023.3250274
– ident: ref32
  doi: 10.1145/3317572
– ident: ref45
  doi: 10.1109/JIOT.2023.3246100
– ident: ref22
  doi: 10.1007/s10489-022-04394-3
– ident: ref23
  doi: 10.1109/TPDS.2021.3137631
– ident: ref14
  doi: 10.1109/TCC.2022.3163750
– ident: ref31
  doi: 10.1016/j.comnet.2021.107950
– ident: ref37
  doi: 10.1109/icccs52626.2021.9449178
– ident: ref15
  doi: 10.1109/ICPR.2016.7900006
– ident: ref21
  doi: 10.1109/TII.2022.3206787
– year: 2020
  ident: ref46
  article-title: R-MADDPG for partially observable environments and limited communication
  publication-title: arXiv:2002.06684
– ident: ref44
  doi: 10.1109/TMC.2020.3025116
– ident: ref43
  doi: 10.1109/TVT.2018.2799620
– ident: ref24
  doi: 10.1145/3545008.3545071
– ident: ref29
  doi: 10.1109/TVT.2023.3253508
– ident: ref10
  doi: 10.1145/3517206.3526270
– ident: ref38
  doi: 10.1145/3229556.3229562
– ident: ref12
  doi: 10.1109/ICC45855.2022.9838879
– ident: ref27
  doi: 10.1109/JIOT.2023.3279271
– ident: ref7
  doi: 10.1109/JPROC.2022.3226481
– ident: ref39
  doi: 10.1016/j.adhoc.2023.103193
– year: 2009
  ident: ref36
  article-title: Learning multiple layers of features from tiny images
– volume: 25
  start-page: 1097
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref35
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref5
  doi: 10.1145/3555802
– ident: ref28
  doi: 10.1109/JIOT.2020.2971323
– ident: ref26
  doi: 10.1007/s10723-023-09659-w
– ident: ref19
  doi: 10.1609/aaai.v32i1.11794
– start-page: 29
  volume-title: Proc. AAAI Fall Symposia
  ident: ref41
  article-title: Deep recurrent Q-learning for partially observable MDPs
– ident: ref11
  doi: 10.1109/TVT.2023.3236327
– ident: ref4
  doi: 10.1016/j.cose.2020.101863
– start-page: 6379
  volume-title: Proc. Adv. Neural Inf. Process. Syst. 30th Annu. Conf. Neural Inf. Process. Syst.
  ident: ref18
  article-title: Multiagent actor-critic for mixed cooperative-competitive environments
– ident: ref9
  doi: 10.1109/ICIP46576.2022.9897574
– ident: ref13
  doi: 10.1016/j.jpdc.2022.10.004
– ident: ref2
  doi: 10.1109/TGCN.2021.3099804
SSID ssj0014528
Score 2.4551244
Snippet With the emergence of Industry 5.0, there has been a significant surge in the need for intelligent services within the realm of smart devices. Currently, deep...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1519
SubjectTerms Algorithms
Artificial neural networks
Computation offloading
Decision making
Deep learning
Deep reinforcement learning
DNN inference
Edge AI
Edge computing
edge intelligence
Electronic devices
Fifth Industrial Revolution
Industrial applications
Industrial Internet of Things
Industry 5.0
Inference
Long short term memory
Machine learning
Markov processes
Mobile computing
multi-agent reinforcement learning
Multi-agent systems
Multiagent systems
Network latency
Optimization
Performance evaluation
Smart devices
Synchronism
Title DNN Inference Acceleration for Smart Devices in Industry 5.0 by Decentralized Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10342777
https://www.proquest.com/docview/3049492210
Volume 70
WOSCitedRecordID wos001244904800426&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-4127
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014528
  issn: 0098-3063
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3Lw4qFbP9KmOY59oJchOmG30qYvMtBu7EOYf70vaToGouCtpUkp_SV5v-S993uE3CGjzTylAiN06zDmp46QSjng5kpkaAMjcE2xCT4axZOJeLLJ6iYXBgBM8Bm09aXx5eczudZHZTjDA-ZzzmukxnlUJmttXQYs9ONKIBN5cFD5JF3RGfcGbV0mvB0EgWBaVXXHBpmiKj9WYmNehsf__LATcmR5JO2WwJ-SPSjOyOGOuuA5mfZHI_pYJfTRrpRoYkrAKVJV-vKBw4b2wawVdFpQW8ZjQ8O2S7MNPrKhm9MvyPEO5vQZjNKqNIeK1IqzvjXI63Aw7j04trKCI33hr3BqhKnMleeBVGjkRazCCEKFez2VQSq0ipjM3DQLEDHm5UgBkeilsRYrEiCyNLgg9WJWwCWhqZf7Oa4Mfgw545ErJEvDSCLxyGIugTdJp_rXibSy47r6xXtith-uSBCdRKOTWHSa5H7bY15KbvzRtqHR2GlXAtEkrQrPxE7KZaI9ikz4uMm9-qXbNTnAt7MyKrtF6qvFGm7IvvxcTZeLWzPevgHIaNFz
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQHrxPnNQ---NCtl3RtHkUnilpEJ-yttOmJFHQbugn66z1JUxmIgm8tTdrQL8n5kpPzHYBjYrS5p1RghG4dzv3MEVIpB91CiZxsYBddk2wiSpJ4MBB3NljdxMIgojl8hm19aXz5xUhO9VYZjfCA-1EUzcNCSK91q3Ctb6cBD_24lsgkJhzUXklXdPpnvbZOFN4OgkBwras6Y4VMWpUfc7ExMBdr_2zaOqxaJslOK-g3YA6Hm7Ayoy-4BeV5krCrOqSPnUpJRqaCnBFZZQ8v1HHYOZrZgpVDZhN5fLCw7bL8gx7Zw5vlJxZ0h2N2j0ZrVZptRWblWZ-a8HjR659dOja3giN94U9ocISZLJTnoVRk5kWswi6GilZ7KsdMaB0xmbtZHhBm3CuIBBLVy2ItVyRQ5FmwDY3haIg7wDKv8AuaG_wYCx51XSF5FnYlUY88jiRGLejU_zqVVnhc5794Ts0CxBUpoZNqdFKLTgtOvmuMK9GNP8o2NRoz5SogWrBf45naYfmWap8iFz4tc3d_qXYES5f925v05iq53oNl-hKvzmjvQ2PyOsUDWJTvk_Lt9dD0vS_X49S6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNN+Inference+Acceleration+for+Smart+Devices+in+Industry+5.0+by+Decentralized+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Dong%2C+Chongwu&rft.au=Shafiq%2C+Muhammad&rft.au=Dabel%2C+Maryam+M.+Al&rft.au=Sun%2C+Yanbin&rft.date=2024-02-01&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=1&rft.spage=1519&rft.epage=1530&rft_id=info:doi/10.1109%2FTCE.2023.3339468&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCE_2023_3339468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon