Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new technique...
Saved in:
| Published in: | IEEE transactions on robotics Vol. 39; no. 3; pp. 1749 - 1767 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1552-3098, 1941-0468 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies-these certificates provide concise data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this article, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this article will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control. |
|---|---|
| AbstractList | Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies-these certificates provide concise data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this article, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this article will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control. |
| Author | Dawson, Charles Gao, Sicun Fan, Chuchu |
| Author_xml | – sequence: 1 givenname: Charles orcidid: 0000-0002-8371-5313 surname: Dawson fullname: Dawson, Charles email: cbd@mit.edu organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 2 givenname: Sicun surname: Gao fullname: Gao, Sicun email: sicung@ucsd.edu organization: Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA – sequence: 3 givenname: Chuchu orcidid: 0000-0003-4671-233X surname: Fan fullname: Fan, Chuchu email: chuchufan1990@gmail.com organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA |
| BookMark | eNp9kMtLAzEQxoMoaNW7Bw8Br906mewr3rT4gqpgCx6X7O4sRtZNTbJCL_7tbmlB8eBp5vA9-H4jttvZjhg7ETARAtT54vlpgoA4kSgxiXGHHQgViwjiNN8d_iTBSILK99nI-zcAjBXIA_Y11w3xqe2Csy1_MeGVz0i7jmo-JRdMYyodyF_wSz7v3SetuG34I_VOt3y20su-s59jfqWdM-TGXHf1JkxXwdiOP1B4tbXnjXX82ZY2mMr_iGx7xPYa3Xo63t5Dtri5XkzvotnT7f30chZVqDBEgkpSKCsVK5mloszUsC3LFGRpSaXIcyU15HWsIc6BklRnKABiUQPKMkN5yM42sUtnP3ryoXizveuGxgJzlEKhSuWggo2qctZ7R02xdOZdu1UhoFhDLgbIxRpysYU8WNI_lsoEvZ4-IDDtf8bTjdEQ0a8eEIlQSn4D-XOKPw |
| CODEN | ITREAE |
| CitedBy_id | crossref_primary_10_1016_j_rico_2025_100556 crossref_primary_10_1109_TRO_2025_3577022 crossref_primary_10_1109_LCSYS_2024_3478272 crossref_primary_10_1016_j_isatra_2024_12_020 crossref_primary_10_1109_LCSYS_2024_3407631 crossref_primary_10_1016_j_rcim_2025_103092 crossref_primary_10_1002_rob_22537 crossref_primary_10_1109_TNNLS_2024_3359031 crossref_primary_10_1016_j_ifacol_2024_07_436 crossref_primary_10_1016_j_automatica_2025_112193 crossref_primary_10_1109_LRA_2023_3339059 crossref_primary_10_1109_TPWRS_2024_3419752 crossref_primary_10_1109_TSG_2025_3533970 crossref_primary_10_1146_annurev_control_071723_102940 crossref_primary_10_1016_j_neunet_2024_106695 crossref_primary_10_1109_LCSYS_2024_3518571 crossref_primary_10_1109_LCSYS_2025_3578062 crossref_primary_10_1177_02783649241238766 crossref_primary_10_1177_02783649251366326 crossref_primary_10_1109_TASE_2025_3594597 crossref_primary_10_3390_robotics13010017 crossref_primary_10_1109_TAES_2024_3509403 crossref_primary_10_1109_TAC_2024_3497001 crossref_primary_10_1007_s10994_025_06810_4 crossref_primary_10_1109_TASE_2024_3492174 crossref_primary_10_1016_j_jss_2025_112499 crossref_primary_10_1016_j_automatica_2025_112289 crossref_primary_10_1016_j_scico_2025_103354 crossref_primary_10_1109_TRO_2025_3600160 crossref_primary_10_1109_TCYB_2025_3580085 crossref_primary_10_1016_j_future_2025_107723 crossref_primary_10_3390_math13050848 crossref_primary_10_1109_ACCESS_2023_3291349 crossref_primary_10_3390_s24103139 crossref_primary_10_1016_j_sysarc_2025_103419 crossref_primary_10_1080_0951192X_2024_2314789 crossref_primary_10_1109_LRA_2025_3597847 crossref_primary_10_1016_j_conengprac_2024_105935 crossref_primary_10_1109_TRO_2025_3567477 crossref_primary_10_1109_LCSYS_2025_3579779 crossref_primary_10_1145_3736766 crossref_primary_10_1109_TASE_2025_3541409 crossref_primary_10_1016_j_jprocont_2024_103344 crossref_primary_10_1109_TNNLS_2025_3549725 crossref_primary_10_1109_TAC_2024_3407015 crossref_primary_10_1016_j_arcontrol_2024_100940 crossref_primary_10_1016_j_ifacol_2023_10_966 crossref_primary_10_1109_TRO_2025_3530348 crossref_primary_10_1109_LCSYS_2024_3416237 crossref_primary_10_1016_j_arcontrol_2024_100947 crossref_primary_10_1109_LCSYS_2024_3416235 crossref_primary_10_1016_j_arcontrol_2024_100948 crossref_primary_10_1016_j_arcontrol_2024_100945 crossref_primary_10_1016_j_ifacol_2024_12_015 crossref_primary_10_1080_01691864_2024_2401897 crossref_primary_10_1109_TAC_2023_3347499 crossref_primary_10_1109_LRA_2023_3315211 crossref_primary_10_1016_j_ins_2024_121567 crossref_primary_10_1049_cth2_12422 crossref_primary_10_1109_LCSYS_2025_3577083 |
| Cites_doi | 10.1007/978-3-030-45190-5_6 10.1609/aaai.v33i01.33013387 10.1146/annurev-control-042920-020211 10.1109/LRA.2022.3141657 10.1109/IROS45743.2020.9341190 10.1561/9781680837872 10.1109/CDC.2018.8619478 10.1109/TAC.2018.2797196 10.1016/S0005-1098(98)00019-3 10.1109/LCSYS.2020.3046529 10.1137/1.9781611976847.5 10.1007/BF00993164 10.1016/0893-6080(89)90003-8 10.1016/j.automatica.2019.108758 10.1007/978-0-8176-4759-9 10.1016/j.ifacol.2021.08.465 10.1109/TCST.2022.3227451 10.1109/ICRA.2013.6631149 10.1109/ICRA48506.2021.9561949 10.1109/TNNLS.2020.2978386 10.1109/TAC.2021.3069388 10.15607/RSS.2017.XIII.073 10.1016/j.procs.2014.03.036 10.1145/3477023 10.1109/TAC.2016.2638961 10.1109/CDC42340.2020.9304201 10.1109/CDC42340.2020.9304118 10.1109/CDC45484.2021.9683779 10.1007/978-3-642-38574-2_14 10.1007/978-3-319-10575-8_11 10.1007/978-3-319-63387-9_22 10.1109/ALLERTON.2014.7028511 10.1109/TAC.2017.2668380 10.1007/s12532-018-0139-4 10.1109/IROS51168.2021.9636568 10.1515/9781400841042 10.3934/dcdsb.2015.20.2291 10.1016/S0167-6911(01)00110-4 10.1109/CDC.2017.8263977 10.23919/ACC50511.2021.9483420 10.1109/IROS40897.2019.8967820 10.1109/CDC.2016.7798765 10.1109/IJCNN.2005.1555943 10.1007/978-3-030-72016-2_20 10.1109/ICRA.2019.8794351 10.1109/CDC42340.2020.9303785 10.23919/ACC.2018.8431492 10.1145/3365365.3382222 10.1109/ICRA48506.2021.9560886 10.1109/TAC.2007.914221 10.1007/s11590-015-0894-3 10.1109/CDC45484.2021.9683085 10.1109/CDC45484.2021.9683511 10.1145/3447928.3456646 10.23919/ACC.2018.8431617 10.1038/s41592-019-0686-2 10.1109/IVS.2017.7995802 10.1016/j.arcontrol.2021.10.001 10.1145/2562059.2562139 10.1109/LRA.2022.3142743 10.1109/LCSYS.2020.3005328 10.1016/j.ifacol.2021.08.468 10.15607/RSS.2020.XVI.088 10.1109/ICNN.1994.374324 10.1109/ICRA.2019.8793919 10.2514/1.I011071 10.1109/CDC51059.2022.9993006 10.1109/LCSYS.2020.3001646 10.1016/j.sysconle.2021.104895 10.1109/TAC.2014.2299335 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TRO.2022.3232542 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0468 |
| EndPage | 1767 |
| ExternalDocumentID | 10_1109_TRO_2022_3232542 10015199 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Defense Science and Technology Agency (DSTA) in Singapore – fundername: National Science Foundation Graduate Research Fellowships Program grantid: 2141064 |
| GroupedDBID | .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS VJK AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-1ebe923c9493761b79194779076beb18893a08d4a0480e56a7210041d023b723 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 147 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920465600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1552-3098 |
| IngestDate | Sun Jun 29 12:32:48 EDT 2025 Sat Nov 29 01:47:31 EST 2025 Tue Nov 18 22:34:46 EST 2025 Wed Aug 27 02:25:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-1ebe923c9493761b79194779076beb18893a08d4a0480e56a7210041d023b723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8371-5313 0000-0003-4671-233X |
| PQID | 2823192963 |
| PQPubID | 27625 |
| PageCount | 19 |
| ParticipantIDs | ieee_primary_10015199 crossref_primary_10_1109_TRO_2022_3232542 proquest_journals_2823192963 crossref_citationtrail_10_1109_TRO_2022_3232542 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-June 2023-6-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on robotics |
| PublicationTitleAbbrev | TRO |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref56 ref59 ref53 ref52 ref55 kochenderfer (ref90) 2019 ref54 chang (ref8) 0; 32 khalil (ref16) 2002 ref51 ref50 ref46 ref45 ref42 ref41 ref43 ref49 ref7 ref9 ref3 madry (ref88) 0 ref6 ref5 ref100 ref37 ref36 ref31 ref30 ref33 ref32 chow (ref40) 0 kolter (ref48) 0 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 chen (ref58) 0 (ref26) 2022 noroozi (ref72) 0 ref13 ref15 ref97 ref96 ref99 ref98 fazlyab (ref84) 0 ref17 ref19 ref18 margolis (ref65) 0; 164 agrawal (ref60) 0 ref93 ref92 li (ref35) 2019 ref95 ref94 ref91 ref89 ref85 petridis (ref73) 0 ref87 chow (ref39) 0 sun (ref14) 0 dawson (ref10) 0 ref82 ref81 tjeng (ref86) 0 ref83 ref80 ref78 ref75 ref74 ref2 qin (ref11) 0 singh (ref4) 2020; 40 ref71 ref70 berkenkamp (ref34) 0 xiao (ref12) 2022 ref68 ref67 ref69 ref64 ref63 tong (ref79) 2022 giesl (ref1) 2015; 20 ref66 lindemann (ref57) 0 dawson (ref77) 2022 taylor (ref61) 0; 120 dean (ref76) 0 ma (ref38) 0; 168 richards (ref47) 0 ref62 boffi (ref44) 0 |
| References_xml | – ident: ref74 doi: 10.1007/978-3-030-45190-5_6 – start-page: 5059 year: 0 ident: ref73 article-title: Construction of neural network based Lyapunov functions publication-title: Proc IEEE Int Conf Neural Netw – ident: ref33 doi: 10.1609/aaai.v33i01.33013387 – ident: ref25 doi: 10.1146/annurev-control-042920-020211 – volume: 32 start-page: 3245 year: 0 ident: ref8 article-title: Neural Lyapunov control publication-title: Proc Int Conf Neural Inf Process – year: 0 ident: ref40 article-title: Lyapunov-based safe policy optimization for continuous control publication-title: proc RL4RealLife workshop Int Conf Mach Learn – ident: ref21 doi: 10.1109/LRA.2022.3141657 – ident: ref52 doi: 10.1109/IROS45743.2020.9341190 – ident: ref87 doi: 10.1561/9781680837872 – volume: 164 start-page: 1025 year: 0 ident: ref65 article-title: Learning to jump from pixels publication-title: Proc Conf Robot Learn – ident: ref100 doi: 10.1109/CDC.2018.8619478 – start-page: 908 year: 0 ident: ref34 article-title: Safe model-based reinforcement learning with stability guarantees publication-title: Proc Int Conf Neural Inf Process – ident: ref83 doi: 10.1109/TAC.2018.2797196 – year: 2022 ident: ref12 article-title: BarrierNet: A safety-guaranteed layer for neural networks publication-title: IEEE Trans Robot – year: 0 ident: ref11 article-title: Learning safe multi-agent control with decentralized neural barrier certificates publication-title: Proc Conf Learn Represent – volume: 120 start-page: 1 year: 0 ident: ref61 article-title: Learning for safety-critical control with control barrier functions publication-title: Proc 2nd Conf Learn Dyn Control – ident: ref22 doi: 10.1016/S0005-1098(98)00019-3 – ident: ref75 doi: 10.1109/LCSYS.2020.3046529 – start-page: 1341 year: 0 ident: ref44 article-title: Learning stability certificates from data publication-title: Proc Conf Robot Learn – year: 2019 ident: ref35 article-title: Temporal logic guided safe reinforcement learning using control barrier functions – ident: ref97 doi: 10.1137/1.9781611976847.5 – year: 0 ident: ref88 article-title: Towards deep learning models resistant to adversarial attacks publication-title: Proc Int Conf Learn Represent – ident: ref46 doi: 10.1007/BF00993164 – ident: ref45 doi: 10.1016/0893-6080(89)90003-8 – ident: ref82 doi: 10.1016/j.automatica.2019.108758 – start-page: 11128 year: 0 ident: ref48 article-title: Learning stable deep dynamics models publication-title: Proc 33rd Int Conf Neural Inf Process Syst – ident: ref19 doi: 10.1007/978-0-8176-4759-9 – ident: ref59 doi: 10.1016/j.ifacol.2021.08.465 – start-page: 61 year: 0 ident: ref72 article-title: Generation of Lyapunov functions by neural networks publication-title: Proc World Congr Eng – start-page: 11427 year: 0 ident: ref84 article-title: Efficient and accurate estimation of Lipschitz constants for deep neural networks – ident: ref95 doi: 10.1109/TCST.2022.3227451 – year: 2019 ident: ref90 publication-title: Optimization Algorithm – year: 2022 ident: ref77 article-title: Barrier functions enable safety-conscious force-feedback control – ident: ref28 doi: 10.1109/ICRA.2013.6631149 – ident: ref42 doi: 10.1109/ICRA48506.2021.9561949 – ident: ref98 doi: 10.1109/TNNLS.2020.2978386 – year: 0 ident: ref86 article-title: Evaluating robustness of neural networks with mixed integer programming publication-title: Proc Int Conf Learn Represent – ident: ref54 doi: 10.1109/TAC.2021.3069388 – year: 2022 ident: ref79 article-title: Enforcing safety for vision-based controllers via control barrier functions and neural radiance fields – year: 2002 ident: ref16 publication-title: Nonlinear Systems – ident: ref15 doi: 10.15607/RSS.2017.XIII.073 – ident: ref96 doi: 10.1016/j.procs.2014.03.036 – ident: ref92 doi: 10.1145/3477023 – ident: ref20 doi: 10.1109/TAC.2016.2638961 – volume: 40 year: 2020 ident: ref4 article-title: Learning stabilizable nonlinear dynamics with contraction-based regularization publication-title: Int J Robot Res – year: 2022 ident: ref26 article-title: Continuous Lyapunov equation solution publication-title: MATLAB Documentation – ident: ref64 doi: 10.1109/CDC42340.2020.9304201 – ident: ref36 doi: 10.1109/CDC42340.2020.9304118 – start-page: 8103 year: 0 ident: ref39 article-title: A Lyapunov-based approach to safe reinforcement learning – start-page: 466 year: 0 ident: ref47 article-title: The Lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems publication-title: Proc Conf Robot Learn – ident: ref99 doi: 10.1109/CDC45484.2021.9683779 – ident: ref85 doi: 10.1007/978-3-642-38574-2_14 – ident: ref32 doi: 10.1007/978-3-319-10575-8_11 – volume: 168 start-page: 97 year: 0 ident: ref38 article-title: Joint synthesis of safety certificate and safe control policy using constrained reinforcement learning publication-title: Proc 4th Annu Learn Dyn Control Conf – ident: ref91 doi: 10.1007/978-3-319-63387-9_22 – ident: ref94 doi: 10.1109/ALLERTON.2014.7028511 – ident: ref23 doi: 10.1109/TAC.2017.2668380 – ident: ref69 doi: 10.1007/s12532-018-0139-4 – ident: ref66 doi: 10.1109/IROS51168.2021.9636568 – ident: ref17 doi: 10.1515/9781400841042 – volume: 20 start-page: 2291 year: 2015 ident: ref1 article-title: Review on computational methods for Lyapunov functions publication-title: Discrete Continuous Dyn Syst doi: 10.3934/dcdsb.2015.20.2291 – ident: ref63 doi: 10.1016/S0167-6911(01)00110-4 – ident: ref24 doi: 10.1109/CDC.2017.8263977 – ident: ref62 doi: 10.23919/ACC50511.2021.9483420 – ident: ref2 doi: 10.1109/IROS40897.2019.8967820 – ident: ref68 doi: 10.1109/CDC.2016.7798765 – ident: ref71 doi: 10.1109/IJCNN.2005.1555943 – ident: ref3 doi: 10.1007/978-3-030-72016-2_20 – ident: ref80 doi: 10.1109/ICRA.2019.8794351 – ident: ref56 doi: 10.1109/CDC42340.2020.9303785 – start-page: 1724 year: 0 ident: ref10 article-title: Safe nonlinear control using robust neural Lyapunov-barrier functions publication-title: Proc 5th Annu Conf Robot Learn – start-page: 9562 year: 0 ident: ref60 article-title: Differentiable convex optimization layers publication-title: Proc 33rd Int Conf Neural Inf Process Syst – ident: ref93 doi: 10.23919/ACC.2018.8431492 – ident: ref51 doi: 10.1145/3365365.3382222 – ident: ref9 doi: 10.1109/ICRA48506.2021.9560886 – start-page: 654 year: 0 ident: ref76 article-title: Guaranteeing safety of learned perception modules via measurement-robust control barrier functions publication-title: Proc Conf Robot Learn – ident: ref30 doi: 10.1109/TAC.2007.914221 – ident: ref6 doi: 10.1007/s11590-015-0894-3 – ident: ref41 doi: 10.1109/CDC45484.2021.9683085 – ident: ref81 doi: 10.1109/CDC45484.2021.9683511 – year: 0 ident: ref14 article-title: Learning certified control using contraction metric publication-title: Proc Conf Robot Learn – ident: ref50 doi: 10.1145/3447928.3456646 – ident: ref29 doi: 10.23919/ACC.2018.8431617 – ident: ref27 doi: 10.1038/s41592-019-0686-2 – ident: ref89 doi: 10.1109/IVS.2017.7995802 – ident: ref5 doi: 10.1016/j.arcontrol.2021.10.001 – ident: ref31 doi: 10.1145/2562059.2562139 – ident: ref67 doi: 10.1109/LRA.2022.3142743 – ident: ref49 doi: 10.1109/LCSYS.2020.3005328 – ident: ref37 doi: 10.1016/j.ifacol.2021.08.468 – ident: ref13 doi: 10.15607/RSS.2020.XVI.088 – ident: ref70 doi: 10.1109/ICNN.1994.374324 – ident: ref43 doi: 10.1109/ICRA.2019.8793919 – ident: ref78 doi: 10.2514/1.I011071 – ident: ref53 doi: 10.1109/CDC51059.2022.9993006 – start-page: 1 year: 0 ident: ref58 article-title: Learning Lyapunov functions for hybrid systems publication-title: Proc 24th Int Conf Hybrid Syst Comput Control – start-page: 1351 year: 0 ident: ref57 article-title: Learning hybrid control barrier functions from data publication-title: Proc 4th Conf Robot Learn – ident: ref55 doi: 10.1109/LCSYS.2020.3001646 – ident: ref7 doi: 10.1016/j.sysconle.2021.104895 – ident: ref18 doi: 10.1109/TAC.2014.2299335 |
| SSID | ssj0024903 |
| Score | 2.7027352 |
| Snippet | Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1749 |
| SubjectTerms | Asymptotic stability Certificates Control systems Deep learning in robotics and automation formal methods in robotics and automation Learning theory Lyapunov methods Measurement neural certificates robot safety Robotics Robots Safety Training Trajectory Trajectory tracking |
| Title | Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control |
| URI | https://ieeexplore.ieee.org/document/10015199 https://www.proquest.com/docview/2823192963 |
| Volume | 39 |
| WOSCitedRecordID | wos000920465600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0468 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024903 issn: 1552-3098 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1ueNCDPydOp-TgRVi3Nk1_xNscDg9zyjZwt5KmKQ5GO7pusIt_u1_STiei4K2UL6H0pclL833vIXQTRsSWjhkbrvQdgwoqtOStwYhlC-qZjHPtWtL3BgN_MmEvZbG6roWRUurkM9lSl_osP0rFUv0qayu9IGAcrIIqnucVxVpfwnpM2yArSTHDNpm_OZM0WXs8fIadICEtG_iDQ8m3NUibqvyYifXy0jv854MdoYOSR-JOAfwx2pHJCdrfUhc8Re8jHkvcLXLR8es0f8NaTVVGuKuyqWNd_ra4wx08WmYrucZpjJVYB_TbX_P5MklXTXzPM2Vq18Q8iYrOilII_KS9pxcYWC8epmGq9J6_gtJZDY17D-Puo1HaLRiCMJIbFuAJdE8wCpTFtUKPWYwqOULPDWFG94HZcNOPKFdl6NJxOWwelVxXBMt-6BH7DFWTNJHnCFMR2q7JolgIYIwh5RaBO46QbiwlBNdRe_P-A1FKkStHjFmgtyQmCwCxQCEWlIjV0e1ni3khw_FHbE0htBVXgFNHjQ3GQfmhLgKijkGBIrr2xS_NLtGespgv0sMaqJpnS3mFdsUqny6yaz0GPwADo9fi |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQHrxPnNQ--CNa1aXqJbzoUxTllDvStpGmKg9GO3cAXf7snaacTUfCtlJNQ-qXJl-ac7wM4jhPqKs9OLV-FnsUkk0by1uLUcSULbC6EcS1pBq1W-PLCH8tidVMLo5QyyWfqTF-as_wkl2P9q6yu9YKQcfB5WPAYo05RrvUlrceNEbIWFbNcm4fTU0mb1zvtB9wLUnrmIoPwGP22ChlblR9zsVlgrtf--WjrsFoySXJRQL8BcyrbhJUZfcEteH8SqSKNIhudPHdHr8ToqaqENHQ-dWoK4Ibn5II8jQcT9UbylGi5Duy3-Sb64yyfnJJLMdC2dqdEZEnRWVEMQe6N-_SQIO8l7TzOteLzV1Deq0Ln-qrTuLFKwwVLUk5HloOIIuGTnCFp8Z044A5nWpAw8GOc00PkNsIOEyZ0IbryfIHbRy3YleDCHwfU3YZKlmdqBwiTsevbPEmlRM4YM-FQvONJ5adKYXAN6tP3H8lSjFx7YvQisymxeYSIRRqxqESsBiefLfqFEMcfsVWN0ExcAU4N9qcYR-WnOoyoPghFkui7u780O4Klm859M2retu72YFkbzhfJYvtQGQ3G6gAW5WTUHQ4OzXj8AGag2yk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safe+Control+With+Learned+Certificates%3A+A+Survey+of+Neural+Lyapunov%2C+Barrier%2C+and+Contraction+Methods+for+Robotics+and+Control&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Dawson%2C+Charles&rft.au=Gao%2C+Sicun&rft.au=Fan%2C+Chuchu&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=39&rft.issue=3&rft.spage=1749&rft_id=info:doi/10.1109%2FTRO.2022.3232542&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon |