Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control

Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new technique...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on robotics Ročník 39; číslo 3; s. 1749 - 1767
Hlavní autoři: Dawson, Charles, Gao, Sicun, Fan, Chuchu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1552-3098, 1941-0468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies-these certificates provide concise data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this article, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this article will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
AbstractList Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies-these certificates provide concise data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this article, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this article will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
Author Dawson, Charles
Gao, Sicun
Fan, Chuchu
Author_xml – sequence: 1
  givenname: Charles
  orcidid: 0000-0002-8371-5313
  surname: Dawson
  fullname: Dawson, Charles
  email: cbd@mit.edu
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Sicun
  surname: Gao
  fullname: Gao, Sicun
  email: sicung@ucsd.edu
  organization: Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: Chuchu
  orcidid: 0000-0003-4671-233X
  surname: Fan
  fullname: Fan, Chuchu
  email: chuchufan1990@gmail.com
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
BookMark eNp9kMtLAzEQxoMoaNW7Bw8Br906mewr3rT4gqpgCx6X7O4sRtZNTbJCL_7tbmlB8eBp5vA9-H4jttvZjhg7ETARAtT54vlpgoA4kSgxiXGHHQgViwjiNN8d_iTBSILK99nI-zcAjBXIA_Y11w3xqe2Csy1_MeGVz0i7jmo-JRdMYyodyF_wSz7v3SetuG34I_VOt3y20su-s59jfqWdM-TGXHf1JkxXwdiOP1B4tbXnjXX82ZY2mMr_iGx7xPYa3Xo63t5Dtri5XkzvotnT7f30chZVqDBEgkpSKCsVK5mloszUsC3LFGRpSaXIcyU15HWsIc6BklRnKABiUQPKMkN5yM42sUtnP3ryoXizveuGxgJzlEKhSuWggo2qctZ7R02xdOZdu1UhoFhDLgbIxRpysYU8WNI_lsoEvZ4-IDDtf8bTjdEQ0a8eEIlQSn4D-XOKPw
CODEN ITREAE
CitedBy_id crossref_primary_10_1016_j_rico_2025_100556
crossref_primary_10_1109_TRO_2025_3577022
crossref_primary_10_1109_LCSYS_2024_3478272
crossref_primary_10_1016_j_isatra_2024_12_020
crossref_primary_10_1109_LCSYS_2024_3407631
crossref_primary_10_1016_j_rcim_2025_103092
crossref_primary_10_1002_rob_22537
crossref_primary_10_1109_TNNLS_2024_3359031
crossref_primary_10_1016_j_ifacol_2024_07_436
crossref_primary_10_1016_j_automatica_2025_112193
crossref_primary_10_1109_LRA_2023_3339059
crossref_primary_10_1109_TPWRS_2024_3419752
crossref_primary_10_1109_TSG_2025_3533970
crossref_primary_10_1146_annurev_control_071723_102940
crossref_primary_10_1016_j_neunet_2024_106695
crossref_primary_10_1109_LCSYS_2024_3518571
crossref_primary_10_1109_LCSYS_2025_3578062
crossref_primary_10_1177_02783649241238766
crossref_primary_10_1177_02783649251366326
crossref_primary_10_1109_TASE_2025_3594597
crossref_primary_10_3390_robotics13010017
crossref_primary_10_1109_TAES_2024_3509403
crossref_primary_10_1109_TAC_2024_3497001
crossref_primary_10_1007_s10994_025_06810_4
crossref_primary_10_1109_TASE_2024_3492174
crossref_primary_10_1016_j_jss_2025_112499
crossref_primary_10_1016_j_automatica_2025_112289
crossref_primary_10_1016_j_scico_2025_103354
crossref_primary_10_1109_TRO_2025_3600160
crossref_primary_10_1109_TCYB_2025_3580085
crossref_primary_10_1016_j_future_2025_107723
crossref_primary_10_3390_math13050848
crossref_primary_10_1109_ACCESS_2023_3291349
crossref_primary_10_3390_s24103139
crossref_primary_10_1016_j_sysarc_2025_103419
crossref_primary_10_1080_0951192X_2024_2314789
crossref_primary_10_1109_LRA_2025_3597847
crossref_primary_10_1016_j_conengprac_2024_105935
crossref_primary_10_1109_TRO_2025_3567477
crossref_primary_10_1109_LCSYS_2025_3579779
crossref_primary_10_1145_3736766
crossref_primary_10_1109_TASE_2025_3541409
crossref_primary_10_1016_j_jprocont_2024_103344
crossref_primary_10_1109_TNNLS_2025_3549725
crossref_primary_10_1109_TAC_2024_3407015
crossref_primary_10_1016_j_arcontrol_2024_100940
crossref_primary_10_1016_j_ifacol_2023_10_966
crossref_primary_10_1109_TRO_2025_3530348
crossref_primary_10_1109_LCSYS_2024_3416237
crossref_primary_10_1016_j_arcontrol_2024_100947
crossref_primary_10_1109_LCSYS_2024_3416235
crossref_primary_10_1016_j_arcontrol_2024_100948
crossref_primary_10_1016_j_arcontrol_2024_100945
crossref_primary_10_1016_j_ifacol_2024_12_015
crossref_primary_10_1080_01691864_2024_2401897
crossref_primary_10_1109_TAC_2023_3347499
crossref_primary_10_1109_LRA_2023_3315211
crossref_primary_10_1016_j_ins_2024_121567
crossref_primary_10_1049_cth2_12422
crossref_primary_10_1109_LCSYS_2025_3577083
Cites_doi 10.1007/978-3-030-45190-5_6
10.1609/aaai.v33i01.33013387
10.1146/annurev-control-042920-020211
10.1109/LRA.2022.3141657
10.1109/IROS45743.2020.9341190
10.1561/9781680837872
10.1109/CDC.2018.8619478
10.1109/TAC.2018.2797196
10.1016/S0005-1098(98)00019-3
10.1109/LCSYS.2020.3046529
10.1137/1.9781611976847.5
10.1007/BF00993164
10.1016/0893-6080(89)90003-8
10.1016/j.automatica.2019.108758
10.1007/978-0-8176-4759-9
10.1016/j.ifacol.2021.08.465
10.1109/TCST.2022.3227451
10.1109/ICRA.2013.6631149
10.1109/ICRA48506.2021.9561949
10.1109/TNNLS.2020.2978386
10.1109/TAC.2021.3069388
10.15607/RSS.2017.XIII.073
10.1016/j.procs.2014.03.036
10.1145/3477023
10.1109/TAC.2016.2638961
10.1109/CDC42340.2020.9304201
10.1109/CDC42340.2020.9304118
10.1109/CDC45484.2021.9683779
10.1007/978-3-642-38574-2_14
10.1007/978-3-319-10575-8_11
10.1007/978-3-319-63387-9_22
10.1109/ALLERTON.2014.7028511
10.1109/TAC.2017.2668380
10.1007/s12532-018-0139-4
10.1109/IROS51168.2021.9636568
10.1515/9781400841042
10.3934/dcdsb.2015.20.2291
10.1016/S0167-6911(01)00110-4
10.1109/CDC.2017.8263977
10.23919/ACC50511.2021.9483420
10.1109/IROS40897.2019.8967820
10.1109/CDC.2016.7798765
10.1109/IJCNN.2005.1555943
10.1007/978-3-030-72016-2_20
10.1109/ICRA.2019.8794351
10.1109/CDC42340.2020.9303785
10.23919/ACC.2018.8431492
10.1145/3365365.3382222
10.1109/ICRA48506.2021.9560886
10.1109/TAC.2007.914221
10.1007/s11590-015-0894-3
10.1109/CDC45484.2021.9683085
10.1109/CDC45484.2021.9683511
10.1145/3447928.3456646
10.23919/ACC.2018.8431617
10.1038/s41592-019-0686-2
10.1109/IVS.2017.7995802
10.1016/j.arcontrol.2021.10.001
10.1145/2562059.2562139
10.1109/LRA.2022.3142743
10.1109/LCSYS.2020.3005328
10.1016/j.ifacol.2021.08.468
10.15607/RSS.2020.XVI.088
10.1109/ICNN.1994.374324
10.1109/ICRA.2019.8793919
10.2514/1.I011071
10.1109/CDC51059.2022.9993006
10.1109/LCSYS.2020.3001646
10.1016/j.sysconle.2021.104895
10.1109/TAC.2014.2299335
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2022.3232542
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 1767
ExternalDocumentID 10_1109_TRO_2022_3232542
10015199
Genre orig-research
GrantInformation_xml – fundername: Defense Science and Technology Agency (DSTA) in Singapore
– fundername: National Science Foundation Graduate Research Fellowships Program
  grantid: 2141064
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-1ebe923c9493761b79194779076beb18893a08d4a0480e56a7210041d023b723
IEDL.DBID RIE
ISICitedReferencesCount 147
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920465600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Sun Jun 29 12:32:48 EDT 2025
Sat Nov 29 01:47:31 EST 2025
Tue Nov 18 22:34:46 EST 2025
Wed Aug 27 02:25:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-1ebe923c9493761b79194779076beb18893a08d4a0480e56a7210041d023b723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8371-5313
0000-0003-4671-233X
PQID 2823192963
PQPubID 27625
PageCount 19
ParticipantIDs ieee_primary_10015199
crossref_primary_10_1109_TRO_2022_3232542
proquest_journals_2823192963
crossref_citationtrail_10_1109_TRO_2022_3232542
PublicationCentury 2000
PublicationDate 2023-June
2023-6-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref59
ref53
ref52
ref55
kochenderfer (ref90) 2019
ref54
chang (ref8) 0; 32
khalil (ref16) 2002
ref51
ref50
ref46
ref45
ref42
ref41
ref43
ref49
ref7
ref9
ref3
madry (ref88) 0
ref6
ref5
ref100
ref37
ref36
ref31
ref30
ref33
ref32
chow (ref40) 0
kolter (ref48) 0
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
chen (ref58) 0
(ref26) 2022
noroozi (ref72) 0
ref13
ref15
ref97
ref96
ref99
ref98
fazlyab (ref84) 0
ref17
ref19
ref18
margolis (ref65) 0; 164
agrawal (ref60) 0
ref93
ref92
li (ref35) 2019
ref95
ref94
ref91
ref89
ref85
petridis (ref73) 0
ref87
chow (ref39) 0
sun (ref14) 0
dawson (ref10) 0
ref82
ref81
tjeng (ref86) 0
ref83
ref80
ref78
ref75
ref74
ref2
qin (ref11) 0
singh (ref4) 2020; 40
ref71
ref70
berkenkamp (ref34) 0
xiao (ref12) 2022
ref68
ref67
ref69
ref64
ref63
tong (ref79) 2022
giesl (ref1) 2015; 20
ref66
lindemann (ref57) 0
dawson (ref77) 2022
taylor (ref61) 0; 120
dean (ref76) 0
ma (ref38) 0; 168
richards (ref47) 0
ref62
boffi (ref44) 0
References_xml – ident: ref74
  doi: 10.1007/978-3-030-45190-5_6
– start-page: 5059
  year: 0
  ident: ref73
  article-title: Construction of neural network based Lyapunov functions
  publication-title: Proc IEEE Int Conf Neural Netw
– ident: ref33
  doi: 10.1609/aaai.v33i01.33013387
– ident: ref25
  doi: 10.1146/annurev-control-042920-020211
– volume: 32
  start-page: 3245
  year: 0
  ident: ref8
  article-title: Neural Lyapunov control
  publication-title: Proc Int Conf Neural Inf Process
– year: 0
  ident: ref40
  article-title: Lyapunov-based safe policy optimization for continuous control
  publication-title: proc RL4RealLife workshop Int Conf Mach Learn
– ident: ref21
  doi: 10.1109/LRA.2022.3141657
– ident: ref52
  doi: 10.1109/IROS45743.2020.9341190
– ident: ref87
  doi: 10.1561/9781680837872
– volume: 164
  start-page: 1025
  year: 0
  ident: ref65
  article-title: Learning to jump from pixels
  publication-title: Proc Conf Robot Learn
– ident: ref100
  doi: 10.1109/CDC.2018.8619478
– start-page: 908
  year: 0
  ident: ref34
  article-title: Safe model-based reinforcement learning with stability guarantees
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref83
  doi: 10.1109/TAC.2018.2797196
– year: 2022
  ident: ref12
  article-title: BarrierNet: A safety-guaranteed layer for neural networks
  publication-title: IEEE Trans Robot
– year: 0
  ident: ref11
  article-title: Learning safe multi-agent control with decentralized neural barrier certificates
  publication-title: Proc Conf Learn Represent
– volume: 120
  start-page: 1
  year: 0
  ident: ref61
  article-title: Learning for safety-critical control with control barrier functions
  publication-title: Proc 2nd Conf Learn Dyn Control
– ident: ref22
  doi: 10.1016/S0005-1098(98)00019-3
– ident: ref75
  doi: 10.1109/LCSYS.2020.3046529
– start-page: 1341
  year: 0
  ident: ref44
  article-title: Learning stability certificates from data
  publication-title: Proc Conf Robot Learn
– year: 2019
  ident: ref35
  article-title: Temporal logic guided safe reinforcement learning using control barrier functions
– ident: ref97
  doi: 10.1137/1.9781611976847.5
– year: 0
  ident: ref88
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: Proc Int Conf Learn Represent
– ident: ref46
  doi: 10.1007/BF00993164
– ident: ref45
  doi: 10.1016/0893-6080(89)90003-8
– ident: ref82
  doi: 10.1016/j.automatica.2019.108758
– start-page: 11128
  year: 0
  ident: ref48
  article-title: Learning stable deep dynamics models
  publication-title: Proc 33rd Int Conf Neural Inf Process Syst
– ident: ref19
  doi: 10.1007/978-0-8176-4759-9
– ident: ref59
  doi: 10.1016/j.ifacol.2021.08.465
– start-page: 61
  year: 0
  ident: ref72
  article-title: Generation of Lyapunov functions by neural networks
  publication-title: Proc World Congr Eng
– start-page: 11427
  year: 0
  ident: ref84
  article-title: Efficient and accurate estimation of Lipschitz constants for deep neural networks
– ident: ref95
  doi: 10.1109/TCST.2022.3227451
– year: 2019
  ident: ref90
  publication-title: Optimization Algorithm
– year: 2022
  ident: ref77
  article-title: Barrier functions enable safety-conscious force-feedback control
– ident: ref28
  doi: 10.1109/ICRA.2013.6631149
– ident: ref42
  doi: 10.1109/ICRA48506.2021.9561949
– ident: ref98
  doi: 10.1109/TNNLS.2020.2978386
– year: 0
  ident: ref86
  article-title: Evaluating robustness of neural networks with mixed integer programming
  publication-title: Proc Int Conf Learn Represent
– ident: ref54
  doi: 10.1109/TAC.2021.3069388
– year: 2022
  ident: ref79
  article-title: Enforcing safety for vision-based controllers via control barrier functions and neural radiance fields
– year: 2002
  ident: ref16
  publication-title: Nonlinear Systems
– ident: ref15
  doi: 10.15607/RSS.2017.XIII.073
– ident: ref96
  doi: 10.1016/j.procs.2014.03.036
– ident: ref92
  doi: 10.1145/3477023
– ident: ref20
  doi: 10.1109/TAC.2016.2638961
– volume: 40
  year: 2020
  ident: ref4
  article-title: Learning stabilizable nonlinear dynamics with contraction-based regularization
  publication-title: Int J Robot Res
– year: 2022
  ident: ref26
  article-title: Continuous Lyapunov equation solution
  publication-title: MATLAB Documentation
– ident: ref64
  doi: 10.1109/CDC42340.2020.9304201
– ident: ref36
  doi: 10.1109/CDC42340.2020.9304118
– start-page: 8103
  year: 0
  ident: ref39
  article-title: A Lyapunov-based approach to safe reinforcement learning
– start-page: 466
  year: 0
  ident: ref47
  article-title: The Lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems
  publication-title: Proc Conf Robot Learn
– ident: ref99
  doi: 10.1109/CDC45484.2021.9683779
– ident: ref85
  doi: 10.1007/978-3-642-38574-2_14
– ident: ref32
  doi: 10.1007/978-3-319-10575-8_11
– volume: 168
  start-page: 97
  year: 0
  ident: ref38
  article-title: Joint synthesis of safety certificate and safe control policy using constrained reinforcement learning
  publication-title: Proc 4th Annu Learn Dyn Control Conf
– ident: ref91
  doi: 10.1007/978-3-319-63387-9_22
– ident: ref94
  doi: 10.1109/ALLERTON.2014.7028511
– ident: ref23
  doi: 10.1109/TAC.2017.2668380
– ident: ref69
  doi: 10.1007/s12532-018-0139-4
– ident: ref66
  doi: 10.1109/IROS51168.2021.9636568
– ident: ref17
  doi: 10.1515/9781400841042
– volume: 20
  start-page: 2291
  year: 2015
  ident: ref1
  article-title: Review on computational methods for Lyapunov functions
  publication-title: Discrete Continuous Dyn Syst
  doi: 10.3934/dcdsb.2015.20.2291
– ident: ref63
  doi: 10.1016/S0167-6911(01)00110-4
– ident: ref24
  doi: 10.1109/CDC.2017.8263977
– ident: ref62
  doi: 10.23919/ACC50511.2021.9483420
– ident: ref2
  doi: 10.1109/IROS40897.2019.8967820
– ident: ref68
  doi: 10.1109/CDC.2016.7798765
– ident: ref71
  doi: 10.1109/IJCNN.2005.1555943
– ident: ref3
  doi: 10.1007/978-3-030-72016-2_20
– ident: ref80
  doi: 10.1109/ICRA.2019.8794351
– ident: ref56
  doi: 10.1109/CDC42340.2020.9303785
– start-page: 1724
  year: 0
  ident: ref10
  article-title: Safe nonlinear control using robust neural Lyapunov-barrier functions
  publication-title: Proc 5th Annu Conf Robot Learn
– start-page: 9562
  year: 0
  ident: ref60
  article-title: Differentiable convex optimization layers
  publication-title: Proc 33rd Int Conf Neural Inf Process Syst
– ident: ref93
  doi: 10.23919/ACC.2018.8431492
– ident: ref51
  doi: 10.1145/3365365.3382222
– ident: ref9
  doi: 10.1109/ICRA48506.2021.9560886
– start-page: 654
  year: 0
  ident: ref76
  article-title: Guaranteeing safety of learned perception modules via measurement-robust control barrier functions
  publication-title: Proc Conf Robot Learn
– ident: ref30
  doi: 10.1109/TAC.2007.914221
– ident: ref6
  doi: 10.1007/s11590-015-0894-3
– ident: ref41
  doi: 10.1109/CDC45484.2021.9683085
– ident: ref81
  doi: 10.1109/CDC45484.2021.9683511
– year: 0
  ident: ref14
  article-title: Learning certified control using contraction metric
  publication-title: Proc Conf Robot Learn
– ident: ref50
  doi: 10.1145/3447928.3456646
– ident: ref29
  doi: 10.23919/ACC.2018.8431617
– ident: ref27
  doi: 10.1038/s41592-019-0686-2
– ident: ref89
  doi: 10.1109/IVS.2017.7995802
– ident: ref5
  doi: 10.1016/j.arcontrol.2021.10.001
– ident: ref31
  doi: 10.1145/2562059.2562139
– ident: ref67
  doi: 10.1109/LRA.2022.3142743
– ident: ref49
  doi: 10.1109/LCSYS.2020.3005328
– ident: ref37
  doi: 10.1016/j.ifacol.2021.08.468
– ident: ref13
  doi: 10.15607/RSS.2020.XVI.088
– ident: ref70
  doi: 10.1109/ICNN.1994.374324
– ident: ref43
  doi: 10.1109/ICRA.2019.8793919
– ident: ref78
  doi: 10.2514/1.I011071
– ident: ref53
  doi: 10.1109/CDC51059.2022.9993006
– start-page: 1
  year: 0
  ident: ref58
  article-title: Learning Lyapunov functions for hybrid systems
  publication-title: Proc 24th Int Conf Hybrid Syst Comput Control
– start-page: 1351
  year: 0
  ident: ref57
  article-title: Learning hybrid control barrier functions from data
  publication-title: Proc 4th Conf Robot Learn
– ident: ref55
  doi: 10.1109/LCSYS.2020.3001646
– ident: ref7
  doi: 10.1016/j.sysconle.2021.104895
– ident: ref18
  doi: 10.1109/TAC.2014.2299335
SSID ssj0024903
Score 2.7027352
Snippet Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1749
SubjectTerms Asymptotic stability
Certificates
Control systems
Deep learning in robotics and automation
formal methods in robotics and automation
Learning theory
Lyapunov methods
Measurement
neural certificates
robot safety
Robotics
Robots
Safety
Training
Trajectory
Trajectory tracking
Title Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control
URI https://ieeexplore.ieee.org/document/10015199
https://www.proquest.com/docview/2823192963
Volume 39
WOSCitedRecordID wos000920465600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5ueNCDPydOp-TgRVi3Nk1_xNscDg86ZRu4W2mTFAejHfsFu_i3-5J0biIK3npIQunXvnyvee_7ELpJqS8dSTwrpNK1KHeFxeJUWHZCuMsTJmxuzCaCbjccDtlr0ayue2GklLr4TDbUpT7LFzlfqF9lTaUXBIyDlVApCALTrLUR1mPaBllJilmuzcL1maTNmoPeC2SChDRc4A8eJd_2IG2q8iMS6-2lc_jPGztCBwWPxC0D_DHakdkJ2t9SFzxFH_04lbhtatHx22j-jrWaqhS4raqpU93-NrvDLdxfTJdyhfMUK7EOWPdpFU8WWb6s4_t4qkzt6jjOhFnMtELgZ-09PcPAenEvT3Kl97wZlI8raNB5GLQfrcJuweKEkbnlAJ5A9zijQFl8JwmYw6iSIwz8BCJ6CMwmtkNBY9WGLj0_huRRyXUJ2PaTgLhnqJzlmTxHmHiEQ6SwHQnZFvXSMPUDQblNkxD4Y5pUUXP9_CNeSJErR4xxpFMSm0WAWKQQiwrEquj2a8bEyHD8MbaiENoaZ8Cpotoa46j4UGcRUcegQBF99-KXaZdoT1nMm_KwGirPpwt5hXb5cj6aTa_1O_gJcwPXiA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDzxXXZw5eBOu2afqIN10UxXUVXdBbaZMUBWmXfYEXf7uTpOsDUfDWQxJKv3byTTPzfQD7OQuVp2jgxEz5DhO-dHiaS8fNqPBFxqUrrNlE1OnEj4_8tmpWN70wSilTfKaO9KU5y5elGOlfZU2tF4SMg0_DTMAY9Wy71qe0HjdGyFpUzPFdHk9OJV3e7N7dYC5I6ZGPDCJg9NsuZGxVfsRis8GcL_3z1pZhsWKS5MRCvwJTqliFhS_6gmvwdp_mirRsNTp5eB4-EaOnqiRp6Xrq3DTADY7JCbkf9cfqlZQ50XIduG77Ne2NinJ8SE7Tvra1OyRpIe1ithmCXBv36QFB3kvuyqzUis-fg8qXOnTPz7qtC6cyXHAE5XToeIgoEj7BGZKW0Msi7nGmBQmjMMOYHiO3Sd1YslQ3oqsgTDF91IJdEjf-LKL-OtSKslAbQGhABcYK11OYb7Egj_Mwkky4LIuRQeZZA5qT55-ISoxce2K8JCYpcXmCiCUasaRCrAEHHzN6Vojjj7F1jdCXcRacBmxPME6qT3WQUH0QiiQx9Dd_mbYHcxfd63bSvuxcbcG8Npy3xWLbUBv2R2oHZsV4-Dzo75r38R3TlNrP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safe+Control+With+Learned+Certificates%3A+A+Survey+of+Neural+Lyapunov%2C+Barrier%2C+and+Contraction+Methods+for+Robotics+and+Control&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Dawson%2C+Charles&rft.au=Gao%2C+Sicun&rft.au=Fan%2C+Chuchu&rft.date=2023-06-01&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=39&rft.issue=3&rft.spage=1749&rft.epage=1767&rft_id=info:doi/10.1109%2FTRO.2022.3232542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2022_3232542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon