DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles

This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics Jg. 39; H. 4; S. 2700 - 2719
Hauptverfasser: Xie, Zhanteng, Dames, Philip
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1552-3098, 1941-0468
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a subgoal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move toward the goal. Through a series of 3-D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized.
AbstractList This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a subgoal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move toward the goal. Through a series of 3-D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized.
Author Xie, Zhanteng
Dames, Philip
Author_xml – sequence: 1
  givenname: Zhanteng
  orcidid: 0000-0002-5442-1252
  surname: Xie
  fullname: Xie, Zhanteng
  email: zhanteng.xie@temple.edu
  organization: Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA
– sequence: 2
  givenname: Philip
  orcidid: 0000-0002-7257-0075
  surname: Dames
  fullname: Dames, Philip
  email: pdames@temple.edu
  organization: Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA
BookMark eNp9kD1PwzAQhi1UJEphZ2CwxJziryQ2G2r5kiIilbRr5DiXNlUaFzsF9d-Tqh0QA9Pd8D736p5LNGhtCwjdUDKmlKj7bJaOGWF8zFkYh0KdoSFVggZERHLQ72HIAk6UvECX3q8JYUIRPkTZdJYEi_QBJ6BdW7dL3Fn8rr_qpe4AZytnd8sVnjj7XUKJp_tWb2qDPwy04PHcH4AFNNbU3R6nhe-0acBfofNKNx6uT3OE5s9P2eQ1SNKXt8ljEhimWBdQ4EKDKJmIqoIzE8sqNMBLqSkrC6NjSaOKybCICi21LEFSKqEqTVwUQgHwEbo73t06-7kD3-Vru3NtX5kzKWIViZhHfYocU8ZZ7x1U-dbVG-32OSX5wV3eu8sP7vKTux6J_iD9g7qrbds5XTf_gbdHsAaAXz1EKqoi_gM4V34r
CODEN ITREAE
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124388
crossref_primary_10_1111_exsy_13718
crossref_primary_10_1145_3719019
crossref_primary_10_1109_TIE_2024_3419242
crossref_primary_10_1109_TIV_2024_3444854
crossref_primary_10_1109_LRA_2024_3502060
crossref_primary_10_1109_LRA_2025_3598567
crossref_primary_10_1109_LRA_2024_3482190
crossref_primary_10_1109_TASE_2025_3582522
crossref_primary_10_1109_TASE_2025_3578326
crossref_primary_10_1109_TASE_2025_3579573
crossref_primary_10_3390_s24092794
crossref_primary_10_1016_j_compeleceng_2025_110430
crossref_primary_10_1016_j_robot_2025_105020
crossref_primary_10_1109_LRA_2025_3553050
crossref_primary_10_1007_s10489_024_05679_5
crossref_primary_10_1016_j_eswa_2025_129706
crossref_primary_10_1109_LRA_2024_3396057
crossref_primary_10_1007_s10586_025_05475_x
crossref_primary_10_1109_LRA_2025_3544927
crossref_primary_10_1049_csy2_70012
crossref_primary_10_1016_j_isatra_2024_10_026
crossref_primary_10_1109_TRO_2024_3522187
crossref_primary_10_1109_ACCESS_2025_3597330
crossref_primary_10_1109_LRA_2025_3568320
crossref_primary_10_1109_TIV_2024_3405330
crossref_primary_10_3390_drones8090497
crossref_primary_10_1080_01691864_2025_2506091
crossref_primary_10_1109_LRA_2023_3331621
crossref_primary_10_1109_LRA_2025_3547306
crossref_primary_10_3390_s23249732
crossref_primary_10_1111_risa_17599
Cites_doi 10.1109/ICRA48506.2021.9561417
10.1109/IROS51168.2021.9636613
10.1177/0278364920916531
10.1109/ICRA.2018.8461113
10.1109/IROS45743.2020.9341783
10.1109/LRA.2019.2929976
10.1109/IROS51168.2021.9636463
10.1109/LRA.2018.2795643
10.1109/IROS.2016.7759428
10.1109/TCST.2017.2654063
10.1109/ICRA48506.2021.9561595
10.1098/rspb.2009.0405
10.1109/ICRA40945.2020.9197379
10.1109/ICRA48506.2021.9561462
10.1007/978-3-642-19457-3_1
10.1103/PhysRevE.51.4282
10.1109/LRA.2021.3057023
10.1109/100.580977
10.1109/IROS45743.2020.9340705
10.1109/LRA.2022.3161699
10.1109/IROS.2013.6696576
10.1109/IROS.2017.8202312
10.1109/LRA.2018.2869644
10.1109/ICRA.2019.8794134
10.1287/ijoc.1080.0305
10.1109/ICRA.2017.7989182
10.1109/IROS51168.2021.9636618
10.1109/ICRA.2019.8794062
10.1109/IROS.2009.5354175
10.1109/TITS.2020.2972974
10.1109/CVPR.2016.90
10.1109/IROS.2004.1389727
10.1109/ROMAN.2017.8172334
10.1007/978-3-030-58526-6_42
10.1109/IROS.2018.8593871
10.1109/ICRA48506.2021.9560893
10.1109/SSRR50563.2020.9292572
10.1109/ICRA48506.2021.9560951
10.1109/LRA.2021.3064461
10.1109/MRA.2022.3213466
10.1109/ACCESS.2019.2933492
10.1109/IROS51168.2021.9636102
10.1109/LRA.2020.2976302
10.1177/027836499801700706
10.1049/iet-ipr.2017.1244
10.1109/IROS45743.2020.9341540
10.1109/LRA.2020.2972868
10.1109/ACCESS.2021.3050338
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2023.3257549
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 2719
ExternalDocumentID 10_1109_TRO_2023_3257549
10089196
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1830419; 1625061
  funderid: 10.13039/501100008982
– fundername: Temple University
  funderid: 10.13039/100010842
– fundername: Army Research Laboratory
  grantid: W911NF-16-2-0189
  funderid: 10.13039/100006754
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-1e34ae4d246fb32c78f5ce3d8a12dbca7816f285b6ba8a8de8118efdc7bb49ee3
IEDL.DBID RIE
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967530400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Sun Jun 29 15:33:31 EDT 2025
Tue Nov 18 22:05:37 EST 2025
Sat Nov 29 01:47:31 EST 2025
Wed Aug 27 02:46:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-1e34ae4d246fb32c78f5ce3d8a12dbca7816f285b6ba8a8de8118efdc7bb49ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7257-0075
0000-0002-5442-1252
PQID 2847964736
PQPubID 27625
PageCount 20
ParticipantIDs proquest_journals_2847964736
ieee_primary_10089196
crossref_citationtrail_10_1109_TRO_2023_3257549
crossref_primary_10_1109_TRO_2023_3257549
PublicationCentury 2000
PublicationDate 2023-Aug.
2023-8-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref58
ref11
ref10
marr (ref3) 2020
ref17
ref16
schulman (ref25) 2017
ref19
ref18
kingma (ref55) 2014
ref51
makoviychuk (ref62) 2021
mnih (ref52) 0
ref46
ref45
ref48
ref42
gloor (ref57) 2016
ref41
ref44
ref43
quigley (ref8) 0; 3
blyler (ref2) 2020
ref49
raffin (ref59) 2019
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
schulman (ref53) 0
ref30
ref33
ref32
coulter (ref50) 1992
ref39
ref38
kim (ref1) 2021
redmon (ref47) 2018
ref24
ref23
ref26
ref20
ref22
ref21
wang (ref54) 2016
ref28
ref27
ref29
ref60
ref61
References_xml – year: 2017
  ident: ref25
  article-title: Proximal policy optimization algorithms
– ident: ref15
  doi: 10.1109/ICRA48506.2021.9561417
– ident: ref9
  doi: 10.1109/IROS51168.2021.9636613
– year: 2020
  ident: ref3
  article-title: Demand for these autonomous delivery robots is skyrocketing during this pandemic
– ident: ref27
  doi: 10.1177/0278364920916531
– ident: ref26
  doi: 10.1109/ICRA.2018.8461113
– start-page: 1889
  year: 0
  ident: ref53
  article-title: Trust region policy optimization
  publication-title: Proc Int Conf Mach Learn
– ident: ref6
  doi: 10.1109/IROS45743.2020.9341783
– year: 2016
  ident: ref57
  article-title: PEDSIM: Pedestrian crowd simulation
– ident: ref14
  doi: 10.1109/LRA.2019.2929976
– ident: ref40
  doi: 10.1109/IROS51168.2021.9636463
– ident: ref22
  doi: 10.1109/LRA.2018.2795643
– ident: ref21
  doi: 10.1109/IROS.2016.7759428
– ident: ref60
  doi: 10.1109/TCST.2017.2654063
– ident: ref36
  doi: 10.1109/ICRA48506.2021.9561595
– ident: ref58
  doi: 10.1098/rspb.2009.0405
– ident: ref38
  doi: 10.1109/ICRA40945.2020.9197379
– year: 2019
  ident: ref59
  article-title: Stable baselines3
– ident: ref41
  doi: 10.1109/ICRA48506.2021.9561462
– ident: ref12
  doi: 10.1007/978-3-642-19457-3_1
– ident: ref16
  doi: 10.1103/PhysRevE.51.4282
– ident: ref23
  doi: 10.1109/LRA.2021.3057023
– ident: ref4
  doi: 10.1109/100.580977
– ident: ref34
  doi: 10.1109/IROS45743.2020.9340705
– ident: ref42
  doi: 10.1109/LRA.2022.3161699
– ident: ref17
  doi: 10.1109/IROS.2013.6696576
– ident: ref30
  doi: 10.1109/IROS.2017.8202312
– ident: ref49
  doi: 10.1109/LRA.2018.2869644
– volume: 3
  year: 0
  ident: ref8
  article-title: ROS: An open-source robot operating system
  publication-title: Proc ICRA Workshop Open Source Softw
– ident: ref33
  doi: 10.1109/ICRA.2019.8794134
– ident: ref45
  doi: 10.1287/ijoc.1080.0305
– year: 2014
  ident: ref55
  article-title: Adam: A method for stochastic optimization
– ident: ref20
  doi: 10.1109/ICRA.2017.7989182
– ident: ref13
  doi: 10.1109/IROS51168.2021.9636618
– ident: ref24
  doi: 10.1109/ICRA.2019.8794062
– ident: ref11
  doi: 10.1109/IROS.2009.5354175
– year: 2016
  ident: ref54
  article-title: Sample efficient actor-critic with experience replay
– ident: ref51
  doi: 10.1109/TITS.2020.2972974
– ident: ref44
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: ref2
  article-title: One big 2020 robot trend that's hard to miss
– ident: ref56
  doi: 10.1109/IROS.2004.1389727
– ident: ref18
  doi: 10.1109/ROMAN.2017.8172334
– ident: ref46
  doi: 10.1007/978-3-030-58526-6_42
– ident: ref31
  doi: 10.1109/IROS.2018.8593871
– year: 2018
  ident: ref47
  article-title: YOLOv3: An incremental improvement
– ident: ref28
  doi: 10.1109/ICRA48506.2021.9560893
– ident: ref61
  doi: 10.1109/SSRR50563.2020.9292572
– ident: ref39
  doi: 10.1109/ICRA48506.2021.9560951
– ident: ref29
  doi: 10.1109/LRA.2021.3064461
– year: 1992
  ident: ref50
  article-title: Implementation of the pure pursuit path tracking algorithm
– ident: ref7
  doi: 10.1109/MRA.2022.3213466
– ident: ref43
  doi: 10.1109/ACCESS.2019.2933492
– start-page: 1928
  year: 0
  ident: ref52
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– year: 2021
  ident: ref62
  article-title: ISAAC gym: High performance GPU-based physics simulation for robot learning
– ident: ref5
  doi: 10.1109/IROS51168.2021.9636102
– ident: ref19
  doi: 10.1109/LRA.2020.2976302
– ident: ref10
  doi: 10.1177/027836499801700706
– year: 2021
  ident: ref1
  article-title: Keimyung hospital demonstrates smart autonomous mobile robot
– ident: ref48
  doi: 10.1049/iet-ipr.2017.1244
– ident: ref37
  doi: 10.1109/IROS45743.2020.9341540
– ident: ref35
  doi: 10.1109/LRA.2020.2972868
– ident: ref32
  doi: 10.1109/ACCESS.2021.3050338
SSID ssj0024903
Score 2.6338358
Snippet This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2700
SubjectTerms Autonomous navigation
Barriers
Collision avoidance
Data models
deep learning in robotics and automation
field robotics
Hardware
Kinematics
Laser radar
Navigation
Pedestrians
reactive and sensor-based planning
Robot kinematics
Robot sensing systems
Robots
Steering
Velocity
Title DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles
URI https://ieeexplore.ieee.org/document/10089196
https://www.proquest.com/docview/2847964736
Volume 39
WOSCitedRecordID wos000967530400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5g4gAHnkOMl3LgwiHb2mRNwg0xEAe0IRiIW5WHi5DQhvb6_cRpB5MQSNx6SKrWdmO7tr-PkDPlJBceDEuMsEzoQjItrWe2COGzdCaVmY1kE7LXUy8v-r4aVo-zMAAQm8-giZexlu9Hboa_yloIRKODyaySVSllOaz1DaynIw0yQoox3tZqUZNs69bgod9EmvAmDwbaQdjMJR8USVV-nMTRvdxs_fPBtslmFUfSy1LxO2QFhrtkYwldcI8Mug937Ll_QSsM1Vc6HdGemSOoBtBBSdBDr0Ie7sHTbklNTx8dnn40thLQZwi-LsTptG9DFIkNdHXydHM9uLplFYkCc6lOpywBLgwIn4qssDx1UhUdB9wrk6TeOiNVkhWp6tjMGmWUBxVSDii8k9YKDcD3SW04GsIBocbarC0zSGwhhDPhfV1S8NRj8RrjogZpLcSauwphHIku3vOYabR1HhSRoyLyShENcv6146NE1_hjbR0Fv7SulHmDHC9Ul1ff3yRHp4sztjw7_GXbEVnHu5e9fMekNh3P4ISsufn0bTI-jab1CT1yy8A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VFgl66AOKun2AD71w8O7G9sY2N9RSFbHdRSVUvUV-TBAS2kXttr-_HicLKyGQuOVgK8nMxDOTmfk-gBMTtFQRHS-c8lzZRnOrfeS-SeGzDk7o0meyCT2ZmJsb-7kbVs-zMIiYm8-wT5e5lh_n4Z5-lQ0IiMYmk3kCGyOlRNGOa_2G1rOZCJlAxbgcWrOsSg7toLqa9okovC-TiY4IOHPFC2ValT_O4uxgzrf_89F2YKuLJNn7VvW7sIazF7C5gi_4EqqzqzG_nr5jHYrqN7aYs4l7IFgNZFVL0cNOUyYeMbKzlpyefQl0_rHcTMCuMXm7FKmzqU9xJLXQ7cHX8w_V6QXvaBR4EFYseIFSOVRRqLLxUgRtmlFAGY0rRPTBaVOUjTAjX3pnnIloUtKBTQzae2UR5StYn81nuA_MeV8OdYmFb5QKLr1vKBopIpWvKTLqwWAp1jp0GONEdfGjzrnG0NZJETUpou4U0YO3v3b8bPE1_rF2jwS_sq6VeQ-Olqqruy_wria3S1O2sjz4y7Y38OyiuhzX44-TT4fwnO7UdvYdwfri9h6P4Wl4WHy_u32dzewRAYTPBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DRL-VO%3A+Learning+to+Navigate+Through+Crowded+Dynamic+Scenes+Using+Velocity+Obstacles&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Xie%2C+Zhanteng&rft.au=Dames%2C+Philip&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=39&rft.issue=4&rft.spage=2700&rft.epage=2719&rft_id=info:doi/10.1109%2FTRO.2023.3257549&rft.externalDocID=10089196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon