ID-YOLO: A Multimodule Optimized Algorithm for Insulator Defect Detection in Power Transmission Lines
Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization...
Saved in:
| Published in: | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 11 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization of insulator defects (IDs) are of paramount importance. Considering the inadequacy of the you only look once (YOLO) series of algorithms in extracting features of insulators and their defects in complex backgrounds, we have designed a method called ID-YOLO to address this challenge. First, we develop the global convolution (GConv) module to integrate spatial and channel information, thereby enhancing the effectiveness of feature extraction. Second, we built the C3-global pooling fusion (C3-GPF) module, aimed at strengthening focus on key data during the feature extraction and fusion stages. Third, we develop the multiscale information fusion (MSIF) module to balance the algorithm's detection accuracy and speed, ensuring superior performance in practical applications. Fourth, we built the weighted feature information fusion (WFIF) module to further enhance the fusion capability of key information. Finally, we adopt the SCYLLA-IoU (SIoU) loss function to replace the original CIoU, thereby improving the algorithm's localization precision and accelerating convergence speed. The experimental results indicate that ID-YOLO achieves an average precision (AP) of 90.9%, representing a 3.3% improvement over the baseline YOLOv5s algorithm. In addition, ID-YOLO achieves a detection speed of 90 frames per second (FPS), meeting the requirements for real-time detection. Practical test results demonstrate that the ID-YOLO algorithm significantly improves detection precision while effectively addressing the challenges associated with multiobject and small-object detection, showcasing its potential application in detecting IDs in power transmission lines. |
|---|---|
| AbstractList | Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization of insulator defects (IDs) are of paramount importance. Considering the inadequacy of the you only look once (YOLO) series of algorithms in extracting features of insulators and their defects in complex backgrounds, we have designed a method called ID-YOLO to address this challenge. First, we develop the global convolution (GConv) module to integrate spatial and channel information, thereby enhancing the effectiveness of feature extraction. Second, we built the C3-global pooling fusion (C3-GPF) module, aimed at strengthening focus on key data during the feature extraction and fusion stages. Third, we develop the multiscale information fusion (MSIF) module to balance the algorithm’s detection accuracy and speed, ensuring superior performance in practical applications. Fourth, we built the weighted feature information fusion (WFIF) module to further enhance the fusion capability of key information. Finally, we adopt the SCYLLA-IoU (SIoU) loss function to replace the original CIoU, thereby improving the algorithm’s localization precision and accelerating convergence speed. The experimental results indicate that ID-YOLO achieves an average precision (AP) of 90.9%, representing a 3.3% improvement over the baseline YOLOv5s algorithm. In addition, ID-YOLO achieves a detection speed of 90 frames per second (FPS), meeting the requirements for real-time detection. Practical test results demonstrate that the ID-YOLO algorithm significantly improves detection precision while effectively addressing the challenges associated with multiobject and small-object detection, showcasing its potential application in detecting IDs in power transmission lines. |
| Author | Wang, Guifang Zhu, Changfei Li, Ying Zhang, Qiang Zhang, Jianing |
| Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0002-7859-019X surname: Zhang fullname: Zhang, Qiang email: zqzq53373931@163.com organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China – sequence: 2 givenname: Jianing orcidid: 0009-0001-5110-8375 surname: Zhang fullname: Zhang, Jianing email: zjn85@foxmail.com organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China – sequence: 3 givenname: Ying orcidid: 0009-0006-4445-0697 surname: Li fullname: Li, Ying email: liying1982ren@163.com organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China – sequence: 4 givenname: Changfei orcidid: 0009-0009-7414-5185 surname: Zhu fullname: Zhu, Changfei email: 13663930789@163.com organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China – sequence: 5 givenname: Guifang orcidid: 0009-0009-1764-667X surname: Wang fullname: Wang, Guifang email: wgf183520@163.com organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China |
| BookMark | eNp9UT1PwzAQtVCRKIWdgcESc8rZie2ErWr5qNSqDGVgihzHAVdpXGxHCH49rtoBMTC90-m9e3fvztGgs51G6IrAmBAobtfz5ZgCZeOUUcFSOEFDwphICs7pAA0BSJ4UGeNn6Nz7DQAInokh0vNZ8rparO7wBC_7NpitrftW49UuluZb13jSvllnwvsWN9bheef7VoZYzXSjVYgQIhjbYdPhZ_upHV472fmt8X7fXZhO-wt02sjW68sjjtDLw_16-pQsVo_z6WSRKFrQkBBJVF4pGTcrqorWUtREyKbm0UkA4TXnmaoECFU0ea51ltcgKc2hYqpJsyIdoZvD3J2zH732odzY3nXRskwJyykBChBZcGApZ713uil3zmyl-yoJlPswyxhmuQ-zPIYZJfyPRJkg92cHJ037n_D6IDRa618-ecriA9IfKJGD6A |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1007_s11554_025_01760_5 crossref_primary_10_1109_ACCESS_2025_3569970 |
| Cites_doi | 10.1016/j.energy.2021.121558 10.1109/TIM.2023.3305667 10.3390/s23115249 10.1109/CVPR46437.2021.01214 10.1109/TPAMI.2017.2699184 10.1109/TIM.2022.3200861 10.1109/TCYB.2021.3095305 10.3390/en14051426 10.1109/CVPRW50498.2020.00203 10.1109/CVPR.2016.90 10.3390/s22134720 10.1109/CVPR.2017.106 10.1109/CVPR52729.2023.00721 10.48550/arXiv.2205.12740 10.1109/TPWRD.2022.3191694 10.1109/TIM.2022.3201499 10.1016/j.neunet.2017.12.012 10.48550/arXiv.2004.10934 10.1016/j.ijepes.2023.108982 10.48550/arXiv.1511.07122 10.1109/CVPR42600.2020.01079 10.1109/CVPR.2014.81 10.3390/rs15184552 10.1145/3532213.3532300 10.48550/arXiv.2209.02976 10.3390/app132413044 10.1109/ICCV.2015.169 10.l007/978-3-319-46448-0_2 10.48550/ARXIV.1807.06521 10.1007/s11042-023-15722-1 10.1109/TPAMI.2015.2389824 10.1109/CVPR.2016.91 10.1109/ACCESS.2021.3105419 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2025.3527530 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 11 |
| ExternalDocumentID | 10_1109_TIM_2025_3527530 10835764 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China Program grantid: 62203197 funderid: 10.13039/501100001809 – fundername: Liaoning Provincial Doctoral Research Start-Up Fund Support Project grantid: 2022-BS-330 funderid: 10.13039/501100020224 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-1a1c8bca6479bb2da7d17afd6fec7016d664cb707c9f88ee48d0a2280b5cf3493 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403229900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:17:12 EDT 2025 Tue Nov 18 22:18:27 EST 2025 Sat Nov 29 04:38:58 EST 2025 Wed Aug 27 01:55:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-1a1c8bca6479bb2da7d17afd6fec7016d664cb707c9f88ee48d0a2280b5cf3493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-5110-8375 0009-0009-1764-667X 0009-0006-4445-0697 0000-0002-7859-019X 0009-0009-7414-5185 |
| PQID | 3158210200 |
| PQPubID | 85462 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3158210200 crossref_primary_10_1109_TIM_2025_3527530 ieee_primary_10835764 crossref_citationtrail_10_1109_TIM_2025_3527530 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 Ren (ref6); 28 ref12 ref34 ref15 ref14 ref31 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 Redmon (ref11) 2018 |
| References_xml | – ident: ref1 doi: 10.1016/j.energy.2021.121558 – ident: ref7 doi: 10.1109/TIM.2023.3305667 – ident: ref17 doi: 10.3390/s23115249 – ident: ref25 doi: 10.1109/CVPR46437.2021.01214 – ident: ref35 doi: 10.1109/TPAMI.2017.2699184 – ident: ref23 doi: 10.1109/TIM.2022.3200861 – ident: ref32 doi: 10.1109/TCYB.2021.3095305 – ident: ref3 doi: 10.3390/en14051426 – ident: ref24 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref27 doi: 10.1109/CVPR.2016.90 – ident: ref2 doi: 10.3390/s22134720 – ident: ref30 doi: 10.1109/CVPR.2017.106 – ident: ref14 doi: 10.1109/CVPR52729.2023.00721 – ident: ref33 doi: 10.48550/arXiv.2205.12740 – ident: ref8 doi: 10.1109/TPWRD.2022.3191694 – ident: ref22 doi: 10.1109/TIM.2022.3201499 – ident: ref26 doi: 10.1016/j.neunet.2017.12.012 – year: 2018 ident: ref11 article-title: YOLOv3: An incremental improvement publication-title: arXiv:1804.02767 – volume: 28 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref6 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – ident: ref12 doi: 10.48550/arXiv.2004.10934 – ident: ref20 doi: 10.1016/j.ijepes.2023.108982 – ident: ref29 doi: 10.48550/arXiv.1511.07122 – ident: ref31 doi: 10.1109/CVPR42600.2020.01079 – ident: ref4 doi: 10.1109/CVPR.2014.81 – ident: ref18 doi: 10.3390/rs15184552 – ident: ref21 doi: 10.1145/3532213.3532300 – ident: ref13 doi: 10.48550/arXiv.2209.02976 – ident: ref19 doi: 10.3390/app132413044 – ident: ref5 doi: 10.1109/ICCV.2015.169 – ident: ref15 doi: 10.l007/978-3-319-46448-0_2 – ident: ref28 doi: 10.48550/ARXIV.1807.06521 – ident: ref16 doi: 10.1007/s11042-023-15722-1 – ident: ref34 doi: 10.1109/TPAMI.2015.2389824 – ident: ref10 doi: 10.1109/CVPR.2016.91 – ident: ref9 doi: 10.1109/ACCESS.2021.3105419 |
| SSID | ssj0007647 |
| Score | 2.504108 |
| Snippet | Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Computer architecture Convolution Data integration Data mining Defect detection Defects Feature extraction feature fusion Frames per second insulator defect (ID) Insulators Localization Location awareness Modules Object recognition Power lines Power transmission lines Real time real-time detection YOLO you only look once (YOLO) |
| Title | ID-YOLO: A Multimodule Optimized Algorithm for Insulator Defect Detection in Power Transmission Lines |
| URI | https://ieeexplore.ieee.org/document/10835764 https://www.proquest.com/docview/3158210200 |
| Volume | 74 |
| WOSCitedRecordID | wos001403229900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFPTgW1xf5ODFQzXpdpvG2-IDF9T1oKCnkiZTXdjtym7Xg7_eSdoVRRQ8tZQklHyZmS_JPAAOUUuOQjYDmessiEQog4xrG9gkiZDWFCY298Um5O1t8vio7upgdR8Lg4je-QyP3au_y7dDM3FHZSThxBdkHM3CrJRxFaz1qXbpe5UgU5AEEy2Y3klydXLfuaGdYNg6JrZB9Jx_s0G-qMoPTezNy-XKP39sFZZrHsnaFfBrMIPFOix9yS64Dgveu9OMNwA758FT97p7ytrMR9wOhnbSR9YlfTHovaNl7f7zcNQrXwaMSCzrOAd1txtn5-jcPehRepetgvUKducKqzFv5GiRuNM2du2c5zfh4fLi_uwqqOsrBCZUYRkILUySGU0Tp7IstFpaIXVuYxpZEhW0cRyZTHJpVJ4kiFFiuXbpc7KWyZuRam7BXDEscBuYiaWxkch1HiqycEKryOaKx8Q3fJGrBpxMZzw1dfJxVwOjn_pNCFcpYZQ6jNIaowYcffZ4rRJv_NF202HypV0FRwP2pqimtWiO06ZwscHEkvnOL912YdGNXh207MFcOZrgPsybt7I3Hh34VfcBdXvUJQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8abAg4bONLdLDNh104BOzUjePdKhiiWmk5dBI7RY79slVqU9SmHPjreXZSxDQxaadEip1E_r3n97P9PgC-oFEchWpHqjB5JEWsopwbF7k0lUgyhakrQrEJNRikt7f6pglWD7EwiBicz_DU34azfDezS79VRhpOfEElcg1ed6SMeR2u9TTx0pM6RaYgHSZisDqV5Pps1LumtWDcOSW-QQSd_2GFQlmVv-biYGAu3_3nr72Htw2TZN0a-h14heUubD_LL7gLG8G_0y72AHsX0c9hf_iVdVmIuZ3O3HKCbEgzxnT8gI51J79m83H1e8qIxrKed1H363F2gd7hgy5VcNoq2bhkN760GgtmjsTE77exvnef34cfl99G51dRU2EhsrGOq0gYYdPcGho4neexM8oJZQqX0JsVkUGXJNLmiiurizRFlKnjxifQyTu2aEvdPoD1clbiITCbKOukKEwRa7JxwmjpCs0TYhyhzFULzlYjntkm_bivgjHJwjKE64wwyjxGWYNRC06eetzVqTf-0XbfY_KsXQ1HC45XqGaNci6ytvDRwcST-YcXun2GzavRdT_r9wbfj2DLf6nedjmG9Wq-xI_wxt5X48X8U5DAR6g212w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ID-YOLO%3A+A+Multimodule+Optimized+Algorithm+for+Insulator+Defect+Detection+in+Power+Transmission+Lines&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Qiang&rft.au=Zhang%2C+Jianing&rft.au=Li%2C+Ying&rft.au=Zhu%2C+Changfei&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2025.3527530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3527530 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |