A Distributed Outmost Push Approach for Multirobot Herding

This article presents a distributed control strategy for herding groups of evaders toward a predefined goal region using a team of robotic herders. In herding problems, evaders tend to move away from each other to increase their coverage regions. This makes it challenging to develop control solution...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics Vol. 40; pp. 1706 - 1723
Main Authors: Zhang, Shuai, Lei, Xiaokang, Duan, Mengyuan, Peng, Xingguang, Pan, Jia
Format: Journal Article
Language:English
Published: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1552-3098, 1941-0468
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article presents a distributed control strategy for herding groups of evaders toward a predefined goal region using a team of robotic herders. In herding problems, evaders tend to move away from each other to increase their coverage regions. This makes it challenging to develop control solutions since the wandering evaders need to be collected while driving the herd. To address this, we propose the distributed outmost push strategy, where each robotic herder pushes the evader that is farthest from the goal region. The intuition behind this strategy is that robotic herders should focus on evaders that are further from the goal region as they are more likely to be missed during the herding process. The outmost evaders are selected from the local field of view, and the robotic herders make decisions in a decentralized manner. We also analyze the convergence of the designed dynamics and the minimum sensing range required for herders. The proposal's effectiveness and generality are validated through numerical simulations and real robotic experiments.
AbstractList This article presents a distributed control strategy for herding groups of evaders toward a predefined goal region using a team of robotic herders. In herding problems, evaders tend to move away from each other to increase their coverage regions. This makes it challenging to develop control solutions since the wandering evaders need to be collected while driving the herd. To address this, we propose the distributed outmost push strategy, where each robotic herder pushes the evader that is farthest from the goal region. The intuition behind this strategy is that robotic herders should focus on evaders that are further from the goal region as they are more likely to be missed during the herding process. The outmost evaders are selected from the local field of view, and the robotic herders make decisions in a decentralized manner. We also analyze the convergence of the designed dynamics and the minimum sensing range required for herders. The proposal's effectiveness and generality are validated through numerical simulations and real robotic experiments.
Author Zhang, Shuai
Peng, Xingguang
Lei, Xiaokang
Duan, Mengyuan
Pan, Jia
Author_xml – sequence: 1
  givenname: Shuai
  orcidid: 0000-0003-2750-114X
  surname: Zhang
  fullname: Zhang, Shuai
  email: shuaizhang2017@gmail.com
  organization: Department of Computer Science, TransGP Centre, University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Xiaokang
  orcidid: 0000-0003-0517-6606
  surname: Lei
  fullname: Lei, Xiaokang
  email: xiaokanglei@xauat.edu.cn
  organization: College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, China
– sequence: 3
  givenname: Mengyuan
  orcidid: 0009-0007-4392-2661
  surname: Duan
  fullname: Duan, Mengyuan
  email: dmyy@xauat.edu.cn
  organization: College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, China
– sequence: 4
  givenname: Xingguang
  orcidid: 0000-0001-8483-5432
  surname: Peng
  fullname: Peng, Xingguang
  email: pxg@nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Jia
  orcidid: 0000-0001-9003-2054
  surname: Pan
  fullname: Pan, Jia
  email: jpan@cs.hku.hk
  organization: Department of Computer Science, TransGP Centre, University of Hong Kong, Hong Kong, China
BookMark eNp9kDtPwzAURi1UJNrCzsAQiTnl-pXEbFV5FKmoCJXZcmKHumrjYjsD_x5X7YAYmO4dvnMfZ4QGnesMQtcYJhiDuFu9LycECJtQygUn1RkaYsFwDqyoBqnnnOQURHWBRiFsICUF0CG6n2YPNkRv6z4anS37uHMhZm99WGfT_d471ayz1vnstd9G613tYjY3Xtvu8xKdt2obzNWpjtHH0-NqNs8Xy-eX2XSRN0SQmGNhamFaXJVlqzQBzqmACgBXRBGNjdYMt7gWbVmC5jXVBdQ1I7hssBaKMTpGt8e56Zqv3oQoN673XVop04JE8fRxShXHVONdCN60srFRReu66JXdSgzy4EkmT_LgSZ48JRD-gHtvd8p__4fcHBFrjPkVZ8kyK-gPyjpz4Q
CODEN ITREAE
CitedBy_id crossref_primary_10_1007_s11071_025_11616_z
crossref_primary_10_1103_PhysRevResearch_6_L032012
crossref_primary_10_3390_drones9040276
crossref_primary_10_1109_LRA_2024_3445816
crossref_primary_10_1109_TASE_2025_3526141
crossref_primary_10_1109_LRA_2025_3572426
Cites_doi 10.1007/s10164-019-00622-5
10.1109/ICRA.2015.7139438
10.1016/j.cub.2012.05.008
10.1007/s10514-021-09975-8
10.1109/LRA.2021.3124093
10.5687/iscie.31.21
10.1103/PhysRevLett.109.118104
10.1007/s00265-018-2609-0
10.2307/4511169
10.1088/0951-7715/24/10/002
10.1006/jtbi.2002.3025
10.1109/ICICIC.2006.411
10.1109/ROBOT.2005.1570636
10.1088/1367-2630/aa69e7
10.1007/s11721-008-0016-2
10.1109/TCST.2014.2312392
10.1109/LRA.2022.3161699
10.1103/PhysRevLett.75.1226
10.1007/s10164-004-0124-4
10.1177/1729881416670152
10.1109/TRO.2017.2776308
10.1109/TCDS.2020.3018549
10.1145/37401.37406
10.1016/0022-5193(71)90189-5
10.1098/rsbl.2009.0628
10.1098/rsif.2014.0719
10.3390/s17122729
10.1109/CDC40024.2019.9029573
10.1109/ROBOT.2004.1308924
10.1016/j.physrep.2012.03.004
10.1109/LRA.2022.3178152
10.1016/s0065-3454(03)01001-5
10.1109/TRO.2022.3183537
10.1007/978-4-431-65941-9_30
10.1109/TCNS.2021.3092823
10.2514/6.2015-1540
10.1016/j.robot.2018.04.008
10.1109/ICARM.2016.7606963
10.1007/s10514-020-09945-6
10.3390/drones6020029
10.1098/rsif.2014.0204
10.1007/s10514-021-10033-6
10.1162/artl.1997.3.4.243
10.1007/s11424-006-0054-z
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2024.3359528
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 1723
ExternalDocumentID 10_1109_TRO_2024_3359528
10415546
Genre orig-research
GrantInformation_xml – fundername: Innovation and Technology Commission of the HKSAR Government
– fundername: InnoHK initiative, HKU's CRF seed grant
  grantid: GHP/126/21GD
– fundername: National Natural Science Foundation of China
  grantid: 62076203
  funderid: 10.13039/501100001809
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-19eb9ef1877fad2055390800182a2d1edd41f1b9f770d5b3d60bb4217c1d9a443
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001165216900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Sat Oct 04 23:56:57 EDT 2025
Sat Nov 29 01:47:33 EST 2025
Tue Nov 18 22:18:27 EST 2025
Wed Aug 27 01:53:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-19eb9ef1877fad2055390800182a2d1edd41f1b9f770d5b3d60bb4217c1d9a443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-4392-2661
0000-0001-8483-5432
0000-0001-9003-2054
0000-0003-0517-6606
0000-0003-2750-114X
PQID 2927705359
PQPubID 27625
PageCount 18
ParticipantIDs crossref_citationtrail_10_1109_TRO_2024_3359528
crossref_primary_10_1109_TRO_2024_3359528
ieee_primary_10415546
proquest_journals_2927705359
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Bennett (ref11) 2012
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1007/s10164-019-00622-5
– ident: ref26
  doi: 10.1109/ICRA.2015.7139438
– ident: ref3
  doi: 10.1016/j.cub.2012.05.008
– ident: ref13
  doi: 10.1007/s10514-021-09975-8
– ident: ref28
  doi: 10.1109/LRA.2021.3124093
– ident: ref12
  doi: 10.5687/iscie.31.21
– ident: ref32
  doi: 10.1103/PhysRevLett.109.118104
– ident: ref33
  doi: 10.1007/s00265-018-2609-0
– ident: ref20
  doi: 10.2307/4511169
– ident: ref41
  doi: 10.1088/0951-7715/24/10/002
– ident: ref39
  doi: 10.1006/jtbi.2002.3025
– ident: ref42
  doi: 10.1109/ICICIC.2006.411
– ident: ref10
  doi: 10.1109/ROBOT.2005.1570636
– ident: ref45
  doi: 10.1088/1367-2630/aa69e7
– start-page: 33
  volume-title: Proc. Symp. Understanding Model. Collective Phenomena
  year: 2012
  ident: ref11
  article-title: A comparative investigation of herding algorithms
– ident: ref8
  doi: 10.1007/s11721-008-0016-2
– ident: ref43
  doi: 10.1109/TCST.2014.2312392
– ident: ref29
  doi: 10.1109/LRA.2022.3161699
– ident: ref36
  doi: 10.1103/PhysRevLett.75.1226
– ident: ref1
  doi: 10.1007/s10164-004-0124-4
– ident: ref18
  doi: 10.1177/1729881416670152
– ident: ref14
  doi: 10.1109/TRO.2017.2776308
– ident: ref22
  doi: 10.1109/TCDS.2020.3018549
– ident: ref35
  doi: 10.1145/37401.37406
– ident: ref40
  doi: 10.1016/0022-5193(71)90189-5
– ident: ref4
  doi: 10.1098/rsbl.2009.0628
– ident: ref21
  doi: 10.1098/rsif.2014.0719
– ident: ref24
  doi: 10.3390/s17122729
– ident: ref17
  doi: 10.1109/CDC40024.2019.9029573
– ident: ref2
  doi: 10.1109/ROBOT.2004.1308924
– ident: ref38
  doi: 10.1016/j.physrep.2012.03.004
– ident: ref25
  doi: 10.1109/LRA.2022.3178152
– ident: ref37
  doi: 10.1016/s0065-3454(03)01001-5
– ident: ref16
  doi: 10.1109/TRO.2022.3183537
– ident: ref34
  doi: 10.1007/978-4-431-65941-9_30
– ident: ref30
  doi: 10.1109/TCNS.2021.3092823
– ident: ref9
  doi: 10.2514/6.2015-1540
– ident: ref6
  doi: 10.1016/j.robot.2018.04.008
– ident: ref19
  doi: 10.1109/ICARM.2016.7606963
– ident: ref7
  doi: 10.1007/s10514-020-09945-6
– ident: ref15
  doi: 10.3390/drones6020029
– ident: ref27
  doi: 10.1098/rsif.2014.0204
– ident: ref23
  doi: 10.1007/s10514-021-10033-6
– ident: ref31
  doi: 10.1162/artl.1997.3.4.243
– ident: ref44
  doi: 10.1007/s11424-006-0054-z
SSID ssj0024903
Score 2.4667532
Snippet This article presents a distributed control strategy for herding groups of evaders toward a predefined goal region using a team of robotic herders. In herding...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1706
SubjectTerms Autonomous robots
Decision analysis
distributed robot systems
Farmers
Multi-robot systems
Multiple robots
multirobot systems
Robot sensing systems
robotic herding
Robotics
Swarm robotics
Title A Distributed Outmost Push Approach for Multirobot Herding
URI https://ieeexplore.ieee.org/document/10415546
https://www.proquest.com/docview/2927705359
Volume 40
WOSCitedRecordID wos001165216900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyLKSx5YGNImsRPbbBVQdWorVKRuUWxfBBI0KA9-P7aTQiUEElsGXxSfc7n77Nz3IXQNJoi0CJUHIk0NQKGhJyElnmJRKIlinIByYhNsOuXLpZi3zequFwYA3M9nMLCX7ixf56q2W2Umwl36izuowxhrmrW-ifWEk0G2lGIe8QVfn0n6Yrh4nBkkGNIBsW2oVnh9Iwc5UZUfX2KXXsb7_3ywA7TX1pF41Cz8IdqC1RHa3WAXPEa3I3xvaXGtohVoPKurt7ys8Lwun_GopRLHpmbFrgm3yGVe4QkUNpn10NP4YXE38VqpBE-FIqy8QIAUkAWcsSzVoR9FRNha0KCHNNQBaE2DLJAiY8zXkSQ69qWkBo6oQIuUUnKCuqt8BacIx3EaAOeCRlwa9BSkJCOUmbqLqyxiVPbRcO28RLU84lbO4jVxeMIXiXF3Yt2dtO7uo5svi_eGQ-OPsT3r3o1xjWf76GK9QEkbZWVipm7mExnLs1_MztGOvXuzZ3KBulVRwyXaVh_VS1lcuRfoEyZHwOM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqNRygJZSdXnVh156yG78yDrmtuKhRaW7q2qRuEWxPVErwabKJvx-bCdbVkIg9ZaDR4k_ZzIzdub7AL6hcyKrmIlQ5bkrUASLNOY8MjJhmhuZcjRBbEJOJuntrZp1zeqhFwYRw89n2PeX4SzflqbxW2XOw0P4G76BrUQIRtt2rSdqPRWEkD2pWMRjla5OJWM1mP-aulqQiT73jaheen0tCgVZlWff4hBgLnf_89E-wE6XSZJRu_QfYQMXe7C9xi_4CU5H5NwT43pNK7Rk2tT35bIms2b5m4w6MnHislYS2nCrUpc1GWPlw9k-3FxezM_GUSeWEBmmWB1RhVphQVMpi9yyOEm48tmgqx9yZilaK2hBtSqkjG2iuR3GWjsMpaFW5ULwz7C5KBf4BchwmFNMUyWSVLv6iea84EK6zCs1RSKF7sFgBV5mOiZxL2hxl4WKIlaZgzvzcGcd3D34_s_ib8ui8crYfQ_v2rgW2R4crRYo6_xsmbmpu_kkzvLgBbOv8G48_3mdXV9NfhzCe3-ndgflCDbrqsFjeGse6j_L6iS8TI9elMQq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributed+Outmost+Push+Approach+for+Multirobot+Herding&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Zhang%2C+Shuai&rft.au=Lei%2C+Xiaokang&rft.au=Duan%2C+Mengyuan&rft.au=Peng%2C+Xingguang&rft.date=2024&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=40&rft.spage=1706&rft.epage=1723&rft_id=info:doi/10.1109%2FTRO.2024.3359528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2024_3359528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon