Optimized Fuzzy Slope Entropy: A Complexity Measure for Nonlinear Time Series

Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope entropy (SE) has recently been proposed as a new approach to address the shortcomings of permutation entropy (PE), which ignores magnitude informat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 14
Main Authors: Li, Yuxing, Tian, Ge, Cao, Yuan, Yi, Yingmin, Zhou, Dingsong
Format: Journal Article
Language:English
Published: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope entropy (SE) has recently been proposed as a new approach to address the shortcomings of permutation entropy (PE), which ignores magnitude information; however, SE is sensitive to parameters <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\gamma } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula>, and some information may be lost when segmenting symbols. The <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula>, moreover, has only a limited gain on the time series classification performance of SE and increases the algorithm complexity. Considering the aforementioned limitations, this study introduces the concept of fuzzification to the SE and eliminates the <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula> to simplify the parameters, resulting in the proposal of fuzzy SE (FuSE); furthermore, we incorporate the artificial rabbit optimization (ARO) algorithm to optimize the parameter <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\gamma } </tex-math></inline-formula> to enhance the effectiveness of FuSE for time series classification and finally proposed an optimized FuSE (OFuSE). OFuSE can greatly reduce the information loss in the mapping process and adaptively search for the optimal parameter. The study evaluated FuSE and OFuSE on several synthetic datasets and concluded that FuSE is more sensitive to changes in signal amplitude and frequency while confirming the advantage of OFuSE in classification. The application of OFuSE on three different real datasets verifies that its classification performance and generalization ability are better than other entropy methods.
AbstractList Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope entropy (SE) has recently been proposed as a new approach to address the shortcomings of permutation entropy (PE), which ignores magnitude information; however, SE is sensitive to parameters <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\gamma } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula>, and some information may be lost when segmenting symbols. The <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula>, moreover, has only a limited gain on the time series classification performance of SE and increases the algorithm complexity. Considering the aforementioned limitations, this study introduces the concept of fuzzification to the SE and eliminates the <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula> to simplify the parameters, resulting in the proposal of fuzzy SE (FuSE); furthermore, we incorporate the artificial rabbit optimization (ARO) algorithm to optimize the parameter <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\gamma } </tex-math></inline-formula> to enhance the effectiveness of FuSE for time series classification and finally proposed an optimized FuSE (OFuSE). OFuSE can greatly reduce the information loss in the mapping process and adaptively search for the optimal parameter. The study evaluated FuSE and OFuSE on several synthetic datasets and concluded that FuSE is more sensitive to changes in signal amplitude and frequency while confirming the advantage of OFuSE in classification. The application of OFuSE on three different real datasets verifies that its classification performance and generalization ability are better than other entropy methods.
Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope entropy (SE) has recently been proposed as a new approach to address the shortcomings of permutation entropy (PE), which ignores magnitude information; however, SE is sensitive to parameters [Formula Omitted] and [Formula Omitted], and some information may be lost when segmenting symbols. The [Formula Omitted], moreover, has only a limited gain on the time series classification performance of SE and increases the algorithm complexity. Considering the aforementioned limitations, this study introduces the concept of fuzzification to the SE and eliminates the [Formula Omitted] to simplify the parameters, resulting in the proposal of fuzzy SE (FuSE); furthermore, we incorporate the artificial rabbit optimization (ARO) algorithm to optimize the parameter [Formula Omitted] to enhance the effectiveness of FuSE for time series classification and finally proposed an optimized FuSE (OFuSE). OFuSE can greatly reduce the information loss in the mapping process and adaptively search for the optimal parameter. The study evaluated FuSE and OFuSE on several synthetic datasets and concluded that FuSE is more sensitive to changes in signal amplitude and frequency while confirming the advantage of OFuSE in classification. The application of OFuSE on three different real datasets verifies that its classification performance and generalization ability are better than other entropy methods.
Author Zhou, Dingsong
Li, Yuxing
Yi, Yingmin
Tian, Ge
Cao, Yuan
Author_xml – sequence: 1
  givenname: Yuxing
  orcidid: 0000-0001-5035-223X
  surname: Li
  fullname: Li, Yuxing
  email: liyuxing@xaut.edu.cn
  organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China
– sequence: 2
  givenname: Ge
  orcidid: 0009-0001-7413-7806
  surname: Tian
  fullname: Tian, Ge
  email: 2220320083@stu.xaut.edu.cn
  organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China
– sequence: 3
  givenname: Yuan
  orcidid: 0009-0004-3509-0381
  surname: Cao
  fullname: Cao, Yuan
  email: caoyuan99628@163.com
  organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China
– sequence: 4
  givenname: Yingmin
  orcidid: 0000-0003-1243-3295
  surname: Yi
  fullname: Yi, Yingmin
  email: yiym@xaut.edu.cn
  organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China
– sequence: 5
  givenname: Dingsong
  orcidid: 0009-0000-3001-1673
  surname: Zhou
  fullname: Zhou, Dingsong
  email: 2220320086@stu.xaut.edu.cn
  organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China
BookMark eNp9kD1vwjAQQK2KSgXavUMHS51D_ZHYTjeEoEWCMkBnKzhnySjEqZNIDb--QTBUHTrd8t6d7o3QoPQlIPRIyYRSkr7slusJIyye8DjlSqobNKRJIqNUCDZAQ0KoitI4EXdoVNcHQogUsRyi9aZq3NGdIMeL9nTq8LbwFeB52QRfda94imf-WBXw7ZoOryGr2wDY-oA_fFm4ErKAd-4IeAvBQX2Pbm1W1PBwnWP0uZjvZu_RavO2nE1XkWEpayKasiRXBoSEZM9FzgykFAjhQDJGcgvSGmFza2PClN2rxOx5TxNgisfcCD5Gz5e9VfBfLdSNPvg2lP1JzSlTiisq454SF8oEX9cBrDauyRrn--cyV2hK9Dmd7tPpczp9TdeL5I9YBXfMQvef8nRRHAD8wmUsE0b5Dx2Xe78
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_compositesb_2024_111958
crossref_primary_10_1016_j_jpowsour_2025_237495
crossref_primary_10_1007_s11063_025_11772_8
crossref_primary_10_1080_10589759_2024_2421941
crossref_primary_10_1016_j_bspc_2025_108231
crossref_primary_10_1016_j_bspc_2024_107262
crossref_primary_10_1016_j_measurement_2024_115950
crossref_primary_10_3390_signals6010013
crossref_primary_10_1063_5_0285495
crossref_primary_10_1002_ett_70234
crossref_primary_10_1016_j_bspc_2025_107943
crossref_primary_10_3390_s25185666
crossref_primary_10_1007_s11760_025_03980_5
crossref_primary_10_1016_j_apacoust_2024_110521
crossref_primary_10_1016_j_epsr_2025_112189
crossref_primary_10_1016_j_measurement_2025_116804
crossref_primary_10_1088_1361_6501_adc9d7
crossref_primary_10_1088_1361_6501_addd3a
crossref_primary_10_1088_1742_6596_3032_1_012010
crossref_primary_10_3390_electronics14132670
crossref_primary_10_1016_j_aeue_2024_155633
crossref_primary_10_1088_1361_6501_adf089
crossref_primary_10_1016_j_chaos_2025_116968
crossref_primary_10_1016_j_optlaseng_2025_109017
crossref_primary_10_3390_s25123578
crossref_primary_10_7717_peerj_cs_2641
crossref_primary_10_1016_j_hspr_2025_08_003
crossref_primary_10_1016_j_measurement_2024_116097
crossref_primary_10_1016_j_ndteint_2025_103394
crossref_primary_10_1016_j_mejo_2024_106330
crossref_primary_10_3390_s24165432
crossref_primary_10_1016_j_ijmecsci_2025_110336
crossref_primary_10_1088_1361_6501_ae02b5
crossref_primary_10_1016_j_jprocont_2025_103514
crossref_primary_10_1016_j_eswa_2025_127949
crossref_primary_10_1126_sciadv_adv2485
crossref_primary_10_1016_j_autcon_2024_105950
crossref_primary_10_1016_j_pmatsci_2025_101556
crossref_primary_10_1016_j_talanta_2025_128664
crossref_primary_10_1088_1361_6501_adead3
crossref_primary_10_3390_a18080528
crossref_primary_10_1016_j_eswa_2025_129286
crossref_primary_10_1038_s41598_025_98649_x
crossref_primary_10_1080_10589759_2025_2509724
crossref_primary_10_1016_j_engappai_2025_111845
crossref_primary_10_1016_j_precisioneng_2025_07_025
crossref_primary_10_1016_j_measurement_2024_115777
crossref_primary_10_1016_j_conengprac_2025_106268
crossref_primary_10_1016_j_measurement_2025_117836
crossref_primary_10_1007_s00530_025_01773_x
crossref_primary_10_1016_j_eswa_2025_127715
crossref_primary_10_3390_s25165030
crossref_primary_10_1016_j_powtec_2024_120366
crossref_primary_10_1002_mp_17944
crossref_primary_10_1016_j_adhoc_2025_103990
crossref_primary_10_1016_j_cnsns_2025_108597
crossref_primary_10_1149_1945_7111_adf9cd
crossref_primary_10_3390_app15116117
crossref_primary_10_3390_s24247916
crossref_primary_10_1016_j_neucom_2024_128964
crossref_primary_10_1016_j_cose_2024_104170
crossref_primary_10_1016_j_sbsr_2025_100844
crossref_primary_10_1016_j_marpolbul_2024_117346
crossref_primary_10_1016_j_sna_2025_116862
crossref_primary_10_1016_j_engappai_2025_112304
crossref_primary_10_3390_vehicles7010003
crossref_primary_10_1142_S0218126625503396
crossref_primary_10_1007_s11760_025_04683_7
crossref_primary_10_1016_j_engappai_2024_108835
crossref_primary_10_1016_j_sigpro_2025_110200
crossref_primary_10_1088_1361_6560_ada419
crossref_primary_10_1016_j_compag_2025_110273
crossref_primary_10_1016_j_microc_2025_112652
crossref_primary_10_1016_j_jprocont_2025_103412
crossref_primary_10_1016_j_atech_2025_101280
crossref_primary_10_1016_j_optlastec_2024_112391
crossref_primary_10_1016_j_measurement_2025_118906
crossref_primary_10_1016_j_cej_2025_167414
crossref_primary_10_1364_OE_553809
crossref_primary_10_3390_ai6010009
crossref_primary_10_3390_en17081870
crossref_primary_10_1016_j_asr_2025_06_050
crossref_primary_10_1007_s00340_025_08478_z
crossref_primary_10_1016_j_bspc_2025_108439
crossref_primary_10_1016_j_measurement_2024_116605
crossref_primary_10_1007_s42401_025_00380_y
crossref_primary_10_1016_j_measurement_2025_118110
crossref_primary_10_1016_j_asoc_2025_113346
crossref_primary_10_3390_electronics13214202
crossref_primary_10_3390_act14030132
crossref_primary_10_1016_j_mejo_2024_106522
crossref_primary_10_1016_j_eswa_2025_129511
crossref_primary_10_1016_j_eswa_2025_128302
crossref_primary_10_1016_j_jcrysgro_2025_128346
crossref_primary_10_1016_j_jag_2025_104405
crossref_primary_10_1016_j_measurement_2024_116437
crossref_primary_10_1016_j_eswa_2025_126815
crossref_primary_10_1016_j_autcon_2025_106140
crossref_primary_10_1016_j_compbiomed_2025_110370
crossref_primary_10_1007_s41060_025_00780_5
crossref_primary_10_1088_1361_6501_ada4c5
crossref_primary_10_1016_j_knosys_2025_114136
crossref_primary_10_1016_j_compbiomed_2024_109608
crossref_primary_10_1016_j_cej_2024_156512
crossref_primary_10_1016_j_knosys_2025_114259
crossref_primary_10_3390_rs17101760
crossref_primary_10_3390_drones8090431
crossref_primary_10_1038_s41598_025_00360_4
crossref_primary_10_1016_j_ymssp_2024_112138
crossref_primary_10_1016_j_jprocont_2025_103552
crossref_primary_10_1016_j_eswa_2025_127069
crossref_primary_10_1088_1361_6501_adfaff
crossref_primary_10_1007_s11071_024_10763_z
crossref_primary_10_1016_j_eswa_2024_126028
crossref_primary_10_1016_j_heliyon_2024_e39592
crossref_primary_10_1002_rob_22557
crossref_primary_10_1016_j_rineng_2025_105713
crossref_primary_10_1016_j_optlastec_2025_113757
crossref_primary_10_1016_j_jvcir_2025_104414
crossref_primary_10_33012_navi_709
crossref_primary_10_1109_ACCESS_2024_3519113
crossref_primary_10_1016_j_buildenv_2025_113649
crossref_primary_10_1016_j_isatra_2025_05_010
crossref_primary_10_1016_j_engappai_2025_112103
crossref_primary_10_1002_ima_70158
crossref_primary_10_1016_j_sna_2025_116781
crossref_primary_10_3390_app15169018
crossref_primary_10_1007_s10489_024_06135_0
crossref_primary_10_1016_j_comnet_2025_111710
crossref_primary_10_1016_j_sna_2025_116789
crossref_primary_10_1016_j_engappai_2024_109580
crossref_primary_10_1016_j_jpowsour_2024_234718
crossref_primary_10_1016_j_engappai_2025_111537
crossref_primary_10_1016_j_jappgeo_2025_105717
crossref_primary_10_1016_j_epsr_2024_111202
crossref_primary_10_1016_j_displa_2024_102900
crossref_primary_10_1016_j_engappai_2025_110298
crossref_primary_10_1016_j_measurement_2025_118341
crossref_primary_10_1016_j_measurement_2025_119034
crossref_primary_10_1177_09596518251326955
crossref_primary_10_1155_er_9914892
crossref_primary_10_1007_s10660_025_10020_4
crossref_primary_10_1016_j_image_2025_117285
crossref_primary_10_1088_1361_6501_adc621
crossref_primary_10_1007_s11432_024_4273_8
Cites_doi 10.1016/j.cnsns.2020.105271
10.1155/2020/8840676
10.1016/j.future.2019.02.028
10.1109/TFUZZ.2021.3128957
10.1103/PhysRevE.64.061907
10.1016/j.measurement.2020.108636
10.1016/j.knosys.2022.109215
10.3390/e21121167
10.1109/ACCESS.2019.2930625
10.1016/j.chaos.2020.109868
10.1016/j.renene.2018.04.059
10.1177/1475921720948620
10.3389/frobt.2014.00016
10.1007/s11071-020-05821-1
10.3390/e24101456
10.1142/S0218348X11005245
10.3390/e24091265
10.1109/TIM.2023.3317908
10.3390/e22111243
10.1109/TNSRE.2007.897025
10.3390/biomimetics8020243
10.1016/j.cnsns.2022.106294
10.3390/s23125630
10.1016/j.engappai.2022.105075
10.1152/ajpheart.2000.278.6.h2039
10.1016/j.compbiomed.2023.107154
10.1016/j.engappai.2022.105082
10.1109/TIM.2023.3312483
10.1109/LSP.2016.2542881
10.3390/e22091034
10.1109/TIM.2022.3191712
10.1007/s11517-017-1647-5
10.1016/j.medengphy.2008.04.005
10.1103/PhysRevLett.88.174102
10.3390/fractalfract6070345
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3493878
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2024_3493878
10747521
Genre orig-research
GrantInformation_xml – fundername: Xi’an University of Technology Excellent Seed Fund
  grantid: 252082218
  funderid: 10.13039/501100008849
– fundername: Plan to Introduce High-End Foreign Experts
  grantid: 110000218820228015
– fundername: Shaanxi Foreign Expert Service Plan
  grantid: 2023WGZJ-YB-25
– fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2022JM-337
  funderid: 10.13039/501100007128
– fundername: Shaanxi Provincial Science and Technology Innovation Team
  grantid: 2023-CX-TD-01
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-1925d8ce67e5b36d2ce91e003e0a20dfe7fc6fdff4028fb85cb3ce60e28343c63
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001358458600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:05:36 EDT 2025
Sat Nov 29 08:03:49 EST 2025
Tue Nov 18 21:52:29 EST 2025
Wed Aug 27 01:42:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-1925d8ce67e5b36d2ce91e003e0a20dfe7fc6fdff4028fb85cb3ce60e28343c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5035-223X
0009-0000-3001-1673
0009-0001-7413-7806
0000-0003-1243-3295
0009-0004-3509-0381
PQID 3128838174
PQPubID 85462
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TIM_2024_3493878
crossref_primary_10_1109_TIM_2024_3493878
proquest_journals_3128838174
ieee_primary_10747521
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
(ref35) 2023
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref19
  doi: 10.1016/j.cnsns.2020.105271
– ident: ref18
  doi: 10.1155/2020/8840676
– ident: ref34
  doi: 10.1016/j.future.2019.02.028
– ident: ref5
  doi: 10.1109/TFUZZ.2021.3128957
– ident: ref36
  doi: 10.1103/PhysRevE.64.061907
– ident: ref3
  doi: 10.1016/j.measurement.2020.108636
– ident: ref33
  doi: 10.1016/j.knosys.2022.109215
– ident: ref21
  doi: 10.3390/e21121167
– ident: ref12
  doi: 10.1109/ACCESS.2019.2930625
– ident: ref16
  doi: 10.1016/j.chaos.2020.109868
– ident: ref9
  doi: 10.1016/j.renene.2018.04.059
– ident: ref20
  doi: 10.1177/1475921720948620
– ident: ref8
  doi: 10.3389/frobt.2014.00016
– ident: ref17
  doi: 10.1007/s11071-020-05821-1
– ident: ref25
  doi: 10.3390/e24101456
– ident: ref1
  doi: 10.1142/S0218348X11005245
– ident: ref24
  doi: 10.3390/e24091265
– ident: ref26
  doi: 10.1109/TIM.2023.3317908
– ident: ref22
  doi: 10.3390/e22111243
– ident: ref11
  doi: 10.1109/TNSRE.2007.897025
– ident: ref31
  doi: 10.3390/biomimetics8020243
– ident: ref10
  doi: 10.1016/j.cnsns.2022.106294
– ident: ref27
  doi: 10.3390/s23125630
– ident: ref28
  doi: 10.1016/j.engappai.2022.105075
– volume-title: National Park Service
  year: 2023
  ident: ref35
– ident: ref13
  doi: 10.1152/ajpheart.2000.278.6.h2039
– ident: ref30
  doi: 10.1016/j.compbiomed.2023.107154
– ident: ref29
  doi: 10.1016/j.engappai.2022.105082
– ident: ref6
  doi: 10.1109/TIM.2023.3312483
– ident: ref4
  doi: 10.1109/LSP.2016.2542881
– ident: ref2
  doi: 10.3390/e22091034
– ident: ref7
  doi: 10.1109/TIM.2022.3191712
– ident: ref32
  doi: 10.1007/s11517-017-1647-5
– ident: ref14
  doi: 10.1016/j.medengphy.2008.04.005
– ident: ref15
  doi: 10.1103/PhysRevLett.88.174102
– ident: ref23
  doi: 10.3390/fractalfract6070345
SSID ssj0007647
Score 2.4247994
Snippet Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial rabbit optimization (ARO)
Automation
Classification
Complexity
Complexity theory
Datasets
Entropy
Fault detection
fuzzification
fuzzy slope entropy (FuSE)
Optimization
optimized FuSE (OFuSE)
Parameter sensitivity
Performance evaluation
Permutations
slope entropy (SE)
Symbols
Synthetic data
Time measurement
Time series
Time series analysis
Title Optimized Fuzzy Slope Entropy: A Complexity Measure for Nonlinear Time Series
URI https://ieeexplore.ieee.org/document/10747521
https://www.proquest.com/docview/3128838174
Volume 73
WOSCitedRecordID wos001358458600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86FPTBjzlxOiUPvvjQrW3afPg2ZEPBTcEJeyttcoHB3MbWCdtfb5J2MhAFX0ofklJyucvvLne_Q-gWCKeUpdQLRcq9KIuEl-owNg8RUsG0IpmjzH9m_T4fDsVrWazuamEAwCWfQdO-urt8NZVLGypr2eRBFtuy8V3GWFGs9W12GY0KgszAaLCBBZs7SV-0Bk894wmGUZNEgnDbUW3rDHJNVX5YYne8dI__-WMn6KjEkbhdCP4U7cCkig632AWraN9ld8rFGeq9GMPwMVqDwt3ler3Cb-PpDHDHZqnPVve4ja1ZsNSY-Qr3iqghNmgW9wsijXSObakItqE0WNTQe7czeHj0yj4KngxFmHsGxMWKS6AM4oxQFUoQARh1Bj8NfaWBaUm10tr4klxnPJYZMaN9MNAjIpKSc1SZTCdwgbCBf9wiMCq0HzGZikDxTEmDKRgnZj_UUWuzsoksScZtr4tx4pwNXyRGFomVRVLKoo7uvmfMCoKNP8bW7NpvjSuWvY4aG-klpQouEhLYRsrceFyXv0y7Qgf260VApYEq-XwJ12hPfuajxfzG7a4v4o7Llw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB5K2pL0kOZJ3KSNDrn0sPGupNUjtxBiEmq7hbiQ27IrjSCQ2MaPgP3rK2nXwRAayGXZg8QuGs3om9HMNwBnyJQQshQJ1aVKeMV1Ujqa-4emQktnWRUp87uy31f39_pPU6wea2EQMSaf4Xl4jXf5dmTmIVTWDsmDMg9l4x9zzmlWl2u9GF4peE2RmXkd9sBgdSuZ6vbgtud9QcrPGddMhZ5qa6dQbKvyyhbHA6bz9Z2_tgPbDZIkl7Xod-EDDvfgyxq_4B58jvmdZroPvd_eNDw9LNGSzny5XJC7x9EYyXXIUx8vLsglCYYhkGPOFqRXxw2Jx7OkX1NplBMSikVICKbh9AD-dq4HVzdJ00khMVTTWeJhXG6VQSExr5iw1KDO0Cs0piVNrUPpjHDWOe9NKlep3FTMj07Rgw_OjGCHsDEcDfEIiAeAKmAwoV3KpSl1ZlVljUcVUjG_I1rQXq1sYRqa8dDt4rGI7kaqCy-LIsiiaGTRgp8vM8Y1xcYbYw_C2q-Nq5e9BScr6RWNEk4LloVWysr7XN_-M-0UNm8GvW7Rve3_Ooat8KU6vHICG7PJHL_DJ_M8e5hOfsSd9g-k-c7e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Fuzzy+Slope+Entropy%3A+A+Complexity+Measure+for+Nonlinear+Time+Series&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Li%2C+Yuxing&rft.au=Tian%2C+Ge&rft.au=Cao%2C+Yuan&rft.au=Yi%2C+Yingmin&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2024.3493878&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3493878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon