Optimized Fuzzy Slope Entropy: A Complexity Measure for Nonlinear Time Series
Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope entropy (SE) has recently been proposed as a new approach to address the shortcomings of permutation entropy (PE), which ignores magnitude informat...
Saved in:
| Published in: | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 14 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope entropy (SE) has recently been proposed as a new approach to address the shortcomings of permutation entropy (PE), which ignores magnitude information; however, SE is sensitive to parameters <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\gamma } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula>, and some information may be lost when segmenting symbols. The <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula>, moreover, has only a limited gain on the time series classification performance of SE and increases the algorithm complexity. Considering the aforementioned limitations, this study introduces the concept of fuzzification to the SE and eliminates the <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula> to simplify the parameters, resulting in the proposal of fuzzy SE (FuSE); furthermore, we incorporate the artificial rabbit optimization (ARO) algorithm to optimize the parameter <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\gamma } </tex-math></inline-formula> to enhance the effectiveness of FuSE for time series classification and finally proposed an optimized FuSE (OFuSE). OFuSE can greatly reduce the information loss in the mapping process and adaptively search for the optimal parameter. The study evaluated FuSE and OFuSE on several synthetic datasets and concluded that FuSE is more sensitive to changes in signal amplitude and frequency while confirming the advantage of OFuSE in classification. The application of OFuSE on three different real datasets verifies that its classification performance and generalization ability are better than other entropy methods. |
|---|---|
| AbstractList | Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope entropy (SE) has recently been proposed as a new approach to address the shortcomings of permutation entropy (PE), which ignores magnitude information; however, SE is sensitive to parameters <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\gamma } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula>, and some information may be lost when segmenting symbols. The <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula>, moreover, has only a limited gain on the time series classification performance of SE and increases the algorithm complexity. Considering the aforementioned limitations, this study introduces the concept of fuzzification to the SE and eliminates the <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\delta } </tex-math></inline-formula> to simplify the parameters, resulting in the proposal of fuzzy SE (FuSE); furthermore, we incorporate the artificial rabbit optimization (ARO) algorithm to optimize the parameter <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\gamma } </tex-math></inline-formula> to enhance the effectiveness of FuSE for time series classification and finally proposed an optimized FuSE (OFuSE). OFuSE can greatly reduce the information loss in the mapping process and adaptively search for the optimal parameter. The study evaluated FuSE and OFuSE on several synthetic datasets and concluded that FuSE is more sensitive to changes in signal amplitude and frequency while confirming the advantage of OFuSE in classification. The application of OFuSE on three different real datasets verifies that its classification performance and generalization ability are better than other entropy methods. Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope entropy (SE) has recently been proposed as a new approach to address the shortcomings of permutation entropy (PE), which ignores magnitude information; however, SE is sensitive to parameters [Formula Omitted] and [Formula Omitted], and some information may be lost when segmenting symbols. The [Formula Omitted], moreover, has only a limited gain on the time series classification performance of SE and increases the algorithm complexity. Considering the aforementioned limitations, this study introduces the concept of fuzzification to the SE and eliminates the [Formula Omitted] to simplify the parameters, resulting in the proposal of fuzzy SE (FuSE); furthermore, we incorporate the artificial rabbit optimization (ARO) algorithm to optimize the parameter [Formula Omitted] to enhance the effectiveness of FuSE for time series classification and finally proposed an optimized FuSE (OFuSE). OFuSE can greatly reduce the information loss in the mapping process and adaptively search for the optimal parameter. The study evaluated FuSE and OFuSE on several synthetic datasets and concluded that FuSE is more sensitive to changes in signal amplitude and frequency while confirming the advantage of OFuSE in classification. The application of OFuSE on three different real datasets verifies that its classification performance and generalization ability are better than other entropy methods. |
| Author | Zhou, Dingsong Li, Yuxing Yi, Yingmin Tian, Ge Cao, Yuan |
| Author_xml | – sequence: 1 givenname: Yuxing orcidid: 0000-0001-5035-223X surname: Li fullname: Li, Yuxing email: liyuxing@xaut.edu.cn organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China – sequence: 2 givenname: Ge orcidid: 0009-0001-7413-7806 surname: Tian fullname: Tian, Ge email: 2220320083@stu.xaut.edu.cn organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China – sequence: 3 givenname: Yuan orcidid: 0009-0004-3509-0381 surname: Cao fullname: Cao, Yuan email: caoyuan99628@163.com organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China – sequence: 4 givenname: Yingmin orcidid: 0000-0003-1243-3295 surname: Yi fullname: Yi, Yingmin email: yiym@xaut.edu.cn organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China – sequence: 5 givenname: Dingsong orcidid: 0009-0000-3001-1673 surname: Zhou fullname: Zhou, Dingsong email: 2220320086@stu.xaut.edu.cn organization: School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China |
| BookMark | eNp9kD1vwjAQQK2KSgXavUMHS51D_ZHYTjeEoEWCMkBnKzhnySjEqZNIDb--QTBUHTrd8t6d7o3QoPQlIPRIyYRSkr7slusJIyye8DjlSqobNKRJIqNUCDZAQ0KoitI4EXdoVNcHQogUsRyi9aZq3NGdIMeL9nTq8LbwFeB52QRfda94imf-WBXw7ZoOryGr2wDY-oA_fFm4ErKAd-4IeAvBQX2Pbm1W1PBwnWP0uZjvZu_RavO2nE1XkWEpayKasiRXBoSEZM9FzgykFAjhQDJGcgvSGmFza2PClN2rxOx5TxNgisfcCD5Gz5e9VfBfLdSNPvg2lP1JzSlTiisq454SF8oEX9cBrDauyRrn--cyV2hK9Dmd7tPpczp9TdeL5I9YBXfMQvef8nRRHAD8wmUsE0b5Dx2Xe78 |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1016_j_compositesb_2024_111958 crossref_primary_10_1016_j_jpowsour_2025_237495 crossref_primary_10_1007_s11063_025_11772_8 crossref_primary_10_1080_10589759_2024_2421941 crossref_primary_10_1016_j_bspc_2025_108231 crossref_primary_10_1016_j_bspc_2024_107262 crossref_primary_10_1016_j_measurement_2024_115950 crossref_primary_10_3390_signals6010013 crossref_primary_10_1063_5_0285495 crossref_primary_10_1002_ett_70234 crossref_primary_10_1016_j_bspc_2025_107943 crossref_primary_10_3390_s25185666 crossref_primary_10_1007_s11760_025_03980_5 crossref_primary_10_1016_j_apacoust_2024_110521 crossref_primary_10_1016_j_epsr_2025_112189 crossref_primary_10_1016_j_measurement_2025_116804 crossref_primary_10_1088_1361_6501_adc9d7 crossref_primary_10_1088_1361_6501_addd3a crossref_primary_10_1088_1742_6596_3032_1_012010 crossref_primary_10_3390_electronics14132670 crossref_primary_10_1016_j_aeue_2024_155633 crossref_primary_10_1088_1361_6501_adf089 crossref_primary_10_1016_j_chaos_2025_116968 crossref_primary_10_1016_j_optlaseng_2025_109017 crossref_primary_10_3390_s25123578 crossref_primary_10_7717_peerj_cs_2641 crossref_primary_10_1016_j_hspr_2025_08_003 crossref_primary_10_1016_j_measurement_2024_116097 crossref_primary_10_1016_j_ndteint_2025_103394 crossref_primary_10_1016_j_mejo_2024_106330 crossref_primary_10_3390_s24165432 crossref_primary_10_1016_j_ijmecsci_2025_110336 crossref_primary_10_1088_1361_6501_ae02b5 crossref_primary_10_1016_j_jprocont_2025_103514 crossref_primary_10_1016_j_eswa_2025_127949 crossref_primary_10_1126_sciadv_adv2485 crossref_primary_10_1016_j_autcon_2024_105950 crossref_primary_10_1016_j_pmatsci_2025_101556 crossref_primary_10_1016_j_talanta_2025_128664 crossref_primary_10_1088_1361_6501_adead3 crossref_primary_10_3390_a18080528 crossref_primary_10_1016_j_eswa_2025_129286 crossref_primary_10_1038_s41598_025_98649_x crossref_primary_10_1080_10589759_2025_2509724 crossref_primary_10_1016_j_engappai_2025_111845 crossref_primary_10_1016_j_precisioneng_2025_07_025 crossref_primary_10_1016_j_measurement_2024_115777 crossref_primary_10_1016_j_conengprac_2025_106268 crossref_primary_10_1016_j_measurement_2025_117836 crossref_primary_10_1007_s00530_025_01773_x crossref_primary_10_1016_j_eswa_2025_127715 crossref_primary_10_3390_s25165030 crossref_primary_10_1016_j_powtec_2024_120366 crossref_primary_10_1002_mp_17944 crossref_primary_10_1016_j_adhoc_2025_103990 crossref_primary_10_1016_j_cnsns_2025_108597 crossref_primary_10_1149_1945_7111_adf9cd crossref_primary_10_3390_app15116117 crossref_primary_10_3390_s24247916 crossref_primary_10_1016_j_neucom_2024_128964 crossref_primary_10_1016_j_cose_2024_104170 crossref_primary_10_1016_j_sbsr_2025_100844 crossref_primary_10_1016_j_marpolbul_2024_117346 crossref_primary_10_1016_j_sna_2025_116862 crossref_primary_10_1016_j_engappai_2025_112304 crossref_primary_10_3390_vehicles7010003 crossref_primary_10_1142_S0218126625503396 crossref_primary_10_1007_s11760_025_04683_7 crossref_primary_10_1016_j_engappai_2024_108835 crossref_primary_10_1016_j_sigpro_2025_110200 crossref_primary_10_1088_1361_6560_ada419 crossref_primary_10_1016_j_compag_2025_110273 crossref_primary_10_1016_j_microc_2025_112652 crossref_primary_10_1016_j_jprocont_2025_103412 crossref_primary_10_1016_j_atech_2025_101280 crossref_primary_10_1016_j_optlastec_2024_112391 crossref_primary_10_1016_j_measurement_2025_118906 crossref_primary_10_1016_j_cej_2025_167414 crossref_primary_10_1364_OE_553809 crossref_primary_10_3390_ai6010009 crossref_primary_10_3390_en17081870 crossref_primary_10_1016_j_asr_2025_06_050 crossref_primary_10_1007_s00340_025_08478_z crossref_primary_10_1016_j_bspc_2025_108439 crossref_primary_10_1016_j_measurement_2024_116605 crossref_primary_10_1007_s42401_025_00380_y crossref_primary_10_1016_j_measurement_2025_118110 crossref_primary_10_1016_j_asoc_2025_113346 crossref_primary_10_3390_electronics13214202 crossref_primary_10_3390_act14030132 crossref_primary_10_1016_j_mejo_2024_106522 crossref_primary_10_1016_j_eswa_2025_129511 crossref_primary_10_1016_j_eswa_2025_128302 crossref_primary_10_1016_j_jcrysgro_2025_128346 crossref_primary_10_1016_j_jag_2025_104405 crossref_primary_10_1016_j_measurement_2024_116437 crossref_primary_10_1016_j_eswa_2025_126815 crossref_primary_10_1016_j_autcon_2025_106140 crossref_primary_10_1016_j_compbiomed_2025_110370 crossref_primary_10_1007_s41060_025_00780_5 crossref_primary_10_1088_1361_6501_ada4c5 crossref_primary_10_1016_j_knosys_2025_114136 crossref_primary_10_1016_j_compbiomed_2024_109608 crossref_primary_10_1016_j_cej_2024_156512 crossref_primary_10_1016_j_knosys_2025_114259 crossref_primary_10_3390_rs17101760 crossref_primary_10_3390_drones8090431 crossref_primary_10_1038_s41598_025_00360_4 crossref_primary_10_1016_j_ymssp_2024_112138 crossref_primary_10_1016_j_jprocont_2025_103552 crossref_primary_10_1016_j_eswa_2025_127069 crossref_primary_10_1088_1361_6501_adfaff crossref_primary_10_1007_s11071_024_10763_z crossref_primary_10_1016_j_eswa_2024_126028 crossref_primary_10_1016_j_heliyon_2024_e39592 crossref_primary_10_1002_rob_22557 crossref_primary_10_1016_j_rineng_2025_105713 crossref_primary_10_1016_j_optlastec_2025_113757 crossref_primary_10_1016_j_jvcir_2025_104414 crossref_primary_10_33012_navi_709 crossref_primary_10_1109_ACCESS_2024_3519113 crossref_primary_10_1016_j_buildenv_2025_113649 crossref_primary_10_1016_j_isatra_2025_05_010 crossref_primary_10_1016_j_engappai_2025_112103 crossref_primary_10_1002_ima_70158 crossref_primary_10_1016_j_sna_2025_116781 crossref_primary_10_3390_app15169018 crossref_primary_10_1007_s10489_024_06135_0 crossref_primary_10_1016_j_comnet_2025_111710 crossref_primary_10_1016_j_sna_2025_116789 crossref_primary_10_1016_j_engappai_2024_109580 crossref_primary_10_1016_j_jpowsour_2024_234718 crossref_primary_10_1016_j_engappai_2025_111537 crossref_primary_10_1016_j_jappgeo_2025_105717 crossref_primary_10_1016_j_epsr_2024_111202 crossref_primary_10_1016_j_displa_2024_102900 crossref_primary_10_1016_j_engappai_2025_110298 crossref_primary_10_1016_j_measurement_2025_118341 crossref_primary_10_1016_j_measurement_2025_119034 crossref_primary_10_1177_09596518251326955 crossref_primary_10_1155_er_9914892 crossref_primary_10_1007_s10660_025_10020_4 crossref_primary_10_1016_j_image_2025_117285 crossref_primary_10_1088_1361_6501_adc621 crossref_primary_10_1007_s11432_024_4273_8 |
| Cites_doi | 10.1016/j.cnsns.2020.105271 10.1155/2020/8840676 10.1016/j.future.2019.02.028 10.1109/TFUZZ.2021.3128957 10.1103/PhysRevE.64.061907 10.1016/j.measurement.2020.108636 10.1016/j.knosys.2022.109215 10.3390/e21121167 10.1109/ACCESS.2019.2930625 10.1016/j.chaos.2020.109868 10.1016/j.renene.2018.04.059 10.1177/1475921720948620 10.3389/frobt.2014.00016 10.1007/s11071-020-05821-1 10.3390/e24101456 10.1142/S0218348X11005245 10.3390/e24091265 10.1109/TIM.2023.3317908 10.3390/e22111243 10.1109/TNSRE.2007.897025 10.3390/biomimetics8020243 10.1016/j.cnsns.2022.106294 10.3390/s23125630 10.1016/j.engappai.2022.105075 10.1152/ajpheart.2000.278.6.h2039 10.1016/j.compbiomed.2023.107154 10.1016/j.engappai.2022.105082 10.1109/TIM.2023.3312483 10.1109/LSP.2016.2542881 10.3390/e22091034 10.1109/TIM.2022.3191712 10.1007/s11517-017-1647-5 10.1016/j.medengphy.2008.04.005 10.1103/PhysRevLett.88.174102 10.3390/fractalfract6070345 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2024.3493878 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TIM_2024_3493878 10747521 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Xi’an University of Technology Excellent Seed Fund grantid: 252082218 funderid: 10.13039/501100008849 – fundername: Plan to Introduce High-End Foreign Experts grantid: 110000218820228015 – fundername: Shaanxi Foreign Expert Service Plan grantid: 2023WGZJ-YB-25 – fundername: Natural Science Foundation of Shaanxi Province grantid: 2022JM-337 funderid: 10.13039/501100007128 – fundername: Shaanxi Provincial Science and Technology Innovation Team grantid: 2023-CX-TD-01 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-1925d8ce67e5b36d2ce91e003e0a20dfe7fc6fdff4028fb85cb3ce60e28343c63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001358458600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:05:36 EDT 2025 Sat Nov 29 08:03:49 EST 2025 Tue Nov 18 21:52:29 EST 2025 Wed Aug 27 01:42:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-1925d8ce67e5b36d2ce91e003e0a20dfe7fc6fdff4028fb85cb3ce60e28343c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5035-223X 0009-0000-3001-1673 0009-0001-7413-7806 0000-0003-1243-3295 0009-0004-3509-0381 |
| PQID | 3128838174 |
| PQPubID | 85462 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIM_2024_3493878 crossref_primary_10_1109_TIM_2024_3493878 proquest_journals_3128838174 ieee_primary_10747521 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 (ref35) 2023 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref19 doi: 10.1016/j.cnsns.2020.105271 – ident: ref18 doi: 10.1155/2020/8840676 – ident: ref34 doi: 10.1016/j.future.2019.02.028 – ident: ref5 doi: 10.1109/TFUZZ.2021.3128957 – ident: ref36 doi: 10.1103/PhysRevE.64.061907 – ident: ref3 doi: 10.1016/j.measurement.2020.108636 – ident: ref33 doi: 10.1016/j.knosys.2022.109215 – ident: ref21 doi: 10.3390/e21121167 – ident: ref12 doi: 10.1109/ACCESS.2019.2930625 – ident: ref16 doi: 10.1016/j.chaos.2020.109868 – ident: ref9 doi: 10.1016/j.renene.2018.04.059 – ident: ref20 doi: 10.1177/1475921720948620 – ident: ref8 doi: 10.3389/frobt.2014.00016 – ident: ref17 doi: 10.1007/s11071-020-05821-1 – ident: ref25 doi: 10.3390/e24101456 – ident: ref1 doi: 10.1142/S0218348X11005245 – ident: ref24 doi: 10.3390/e24091265 – ident: ref26 doi: 10.1109/TIM.2023.3317908 – ident: ref22 doi: 10.3390/e22111243 – ident: ref11 doi: 10.1109/TNSRE.2007.897025 – ident: ref31 doi: 10.3390/biomimetics8020243 – ident: ref10 doi: 10.1016/j.cnsns.2022.106294 – ident: ref27 doi: 10.3390/s23125630 – ident: ref28 doi: 10.1016/j.engappai.2022.105075 – volume-title: National Park Service year: 2023 ident: ref35 – ident: ref13 doi: 10.1152/ajpheart.2000.278.6.h2039 – ident: ref30 doi: 10.1016/j.compbiomed.2023.107154 – ident: ref29 doi: 10.1016/j.engappai.2022.105082 – ident: ref6 doi: 10.1109/TIM.2023.3312483 – ident: ref4 doi: 10.1109/LSP.2016.2542881 – ident: ref2 doi: 10.3390/e22091034 – ident: ref7 doi: 10.1109/TIM.2022.3191712 – ident: ref32 doi: 10.1007/s11517-017-1647-5 – ident: ref14 doi: 10.1016/j.medengphy.2008.04.005 – ident: ref15 doi: 10.1103/PhysRevLett.88.174102 – ident: ref23 doi: 10.3390/fractalfract6070345 |
| SSID | ssj0007647 |
| Score | 2.4247994 |
| Snippet | Entropy has long been a subject that has attracted researchers from a diverse range of fields, including healthcare, finance, and fault detection. Slope... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial rabbit optimization (ARO) Automation Classification Complexity Complexity theory Datasets Entropy Fault detection fuzzification fuzzy slope entropy (FuSE) Optimization optimized FuSE (OFuSE) Parameter sensitivity Performance evaluation Permutations slope entropy (SE) Symbols Synthetic data Time measurement Time series Time series analysis |
| Title | Optimized Fuzzy Slope Entropy: A Complexity Measure for Nonlinear Time Series |
| URI | https://ieeexplore.ieee.org/document/10747521 https://www.proquest.com/docview/3128838174 |
| Volume | 73 |
| WOSCitedRecordID | wos001358458600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86FPTBjzlxOiUPvvjQrW3afPg2ZEPBTcEJeyttcoHB3MbWCdtfb5J2MhAFX0ofklJyucvvLne_Q-gWCKeUpdQLRcq9KIuEl-owNg8RUsG0IpmjzH9m_T4fDsVrWazuamEAwCWfQdO-urt8NZVLGypr2eRBFtuy8V3GWFGs9W12GY0KgszAaLCBBZs7SV-0Bk894wmGUZNEgnDbUW3rDHJNVX5YYne8dI__-WMn6KjEkbhdCP4U7cCkig632AWraN9ld8rFGeq9GMPwMVqDwt3ler3Cb-PpDHDHZqnPVve4ja1ZsNSY-Qr3iqghNmgW9wsijXSObakItqE0WNTQe7czeHj0yj4KngxFmHsGxMWKS6AM4oxQFUoQARh1Bj8NfaWBaUm10tr4klxnPJYZMaN9MNAjIpKSc1SZTCdwgbCBf9wiMCq0HzGZikDxTEmDKRgnZj_UUWuzsoksScZtr4tx4pwNXyRGFomVRVLKoo7uvmfMCoKNP8bW7NpvjSuWvY4aG-klpQouEhLYRsrceFyXv0y7Qgf260VApYEq-XwJ12hPfuajxfzG7a4v4o7Llw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB5K2pL0kOZJ3KSNDrn0sPGupNUjtxBiEmq7hbiQ27IrjSCQ2MaPgP3rK2nXwRAayGXZg8QuGs3om9HMNwBnyJQQshQJ1aVKeMV1Ujqa-4emQktnWRUp87uy31f39_pPU6wea2EQMSaf4Xl4jXf5dmTmIVTWDsmDMg9l4x9zzmlWl2u9GF4peE2RmXkd9sBgdSuZ6vbgtud9QcrPGddMhZ5qa6dQbKvyyhbHA6bz9Z2_tgPbDZIkl7Xod-EDDvfgyxq_4B58jvmdZroPvd_eNDw9LNGSzny5XJC7x9EYyXXIUx8vLsglCYYhkGPOFqRXxw2Jx7OkX1NplBMSikVICKbh9AD-dq4HVzdJ00khMVTTWeJhXG6VQSExr5iw1KDO0Cs0piVNrUPpjHDWOe9NKlep3FTMj07Rgw_OjGCHsDEcDfEIiAeAKmAwoV3KpSl1ZlVljUcVUjG_I1rQXq1sYRqa8dDt4rGI7kaqCy-LIsiiaGTRgp8vM8Y1xcYbYw_C2q-Nq5e9BScr6RWNEk4LloVWysr7XN_-M-0UNm8GvW7Rve3_Ooat8KU6vHICG7PJHL_DJ_M8e5hOfsSd9g-k-c7e |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Fuzzy+Slope+Entropy%3A+A+Complexity+Measure+for+Nonlinear+Time+Series&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Li%2C+Yuxing&rft.au=Tian%2C+Ge&rft.au=Cao%2C+Yuan&rft.au=Yi%2C+Yingmin&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2024.3493878&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3493878 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |