Linear Programming complementation
In this paper we introduce a new operation for Linear Programming (LP), called LP complementation, which resembles many properties of LP duality. Given a maximisation (resp. minimisation) LP P, we define its complement Q as a specific minimisation (resp. maximisation) LP which has the same objective...
Uložené v:
| Vydané v: | Theoretical computer science Ročník 1032; s. 115087 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
29.03.2025
|
| Predmet: | |
| ISSN: | 0304-3975 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper we introduce a new operation for Linear Programming (LP), called LP complementation, which resembles many properties of LP duality. Given a maximisation (resp. minimisation) LP P, we define its complement Q as a specific minimisation (resp. maximisation) LP which has the same objective function as P. Our central result is the LP complementation theorem, that relates the optimal value ▪ of P and the optimal value ▪ of its complement by ▪. The LP complementation operation can be applied if and only if P has an optimum value greater than 1.
To illustrate this, we first apply LP complementation to hypergraphs. For any hypergraph H, we review the four classical LPs, namely coveringK(H), packingP(H), matchingM(H), and transversalT(H). For every hypergraph H=(V,E), we call ▪ the complement of H. For each of the above four LPs, we relate the optimal values of the LP for the dual hypergraph ▪ to that of the complement hypergraph ▪ (e.g. ▪).
We then apply LP complementation to fractional graph theory. We prove that the LP for the fractional in-dominating number of a digraph D is the complement of the LP for the fractional total out-dominating number of the digraph complement ▪ of D. Furthermore we apply the hypergraph complementation theorem to matroids. We establish that the fractional matching number of a matroid coincide with its edge toughness.
As our last application of LP complementation, we introduce the natural problem Vertex Cover with Budget (VCB): for a graph G=(V,E) and a positive integer b, what is the maximum number tb of vertex covers S1,…,Stb of G, such that every vertex v∈V appears in at most b vertex covers? The integer b can be viewed as a “budget” that we can spend on each vertex and, given this budget, we aim to cover all edges for as long as possible. We relate VCB with the LP QG for the fractional chromatic number χf of a graph G. More specifically, we prove that, as b→∞, the optimum for VCB satisfies tb∼tf⋅b, where tf is the optimal solution to the complement LP of QG. Finally, our results imply that, for any finite budget b, it is NP-hard to decide whether tb≥b+c for any 1≤c≤b−1. |
|---|---|
| AbstractList | In this paper we introduce a new operation for Linear Programming (LP), called LP complementation, which resembles many properties of LP duality. Given a maximisation (resp. minimisation) LP P, we define its complement Q as a specific minimisation (resp. maximisation) LP which has the same objective function as P. Our central result is the LP complementation theorem, that relates the optimal value ▪ of P and the optimal value ▪ of its complement by ▪. The LP complementation operation can be applied if and only if P has an optimum value greater than 1.
To illustrate this, we first apply LP complementation to hypergraphs. For any hypergraph H, we review the four classical LPs, namely coveringK(H), packingP(H), matchingM(H), and transversalT(H). For every hypergraph H=(V,E), we call ▪ the complement of H. For each of the above four LPs, we relate the optimal values of the LP for the dual hypergraph ▪ to that of the complement hypergraph ▪ (e.g. ▪).
We then apply LP complementation to fractional graph theory. We prove that the LP for the fractional in-dominating number of a digraph D is the complement of the LP for the fractional total out-dominating number of the digraph complement ▪ of D. Furthermore we apply the hypergraph complementation theorem to matroids. We establish that the fractional matching number of a matroid coincide with its edge toughness.
As our last application of LP complementation, we introduce the natural problem Vertex Cover with Budget (VCB): for a graph G=(V,E) and a positive integer b, what is the maximum number tb of vertex covers S1,…,Stb of G, such that every vertex v∈V appears in at most b vertex covers? The integer b can be viewed as a “budget” that we can spend on each vertex and, given this budget, we aim to cover all edges for as long as possible. We relate VCB with the LP QG for the fractional chromatic number χf of a graph G. More specifically, we prove that, as b→∞, the optimum for VCB satisfies tb∼tf⋅b, where tf is the optimal solution to the complement LP of QG. Finally, our results imply that, for any finite budget b, it is NP-hard to decide whether tb≥b+c for any 1≤c≤b−1. |
| ArticleNumber | 115087 |
| Author | Mertzios, George B. Zamaraev, Viktor Gadouleau, Maximilien |
| Author_xml | – sequence: 1 givenname: Maximilien orcidid: 0000-0003-4701-738X surname: Gadouleau fullname: Gadouleau, Maximilien email: m.r.gadouleau@durham.ac.uk organization: Department of Computer Science, Durham University, UK – sequence: 2 givenname: George B. surname: Mertzios fullname: Mertzios, George B. email: george.mertzios@durham.ac.uk organization: Department of Computer Science, Durham University, UK – sequence: 3 givenname: Viktor surname: Zamaraev fullname: Zamaraev, Viktor email: viktor.zamaraev@liverpool.ac.uk organization: Department of Computer Science, University of Liverpool, UK |
| BookMark | eNp9j7FOwzAURT0UibbwAWwVe4KfY8eOmFAFFCkSDDBbjv1SOWrsyo6Q-HtShZm73Olc3bMhqxADEnIHtAQK9cNQTjaXjDJRAgiq5IqsaUV5UTVSXJNNzgOdI2S9JvetD2jS7iPFYzLj6MNxZ-N4PuGIYTKTj-GGXPXmlPH2r7fk6-X5c38o2vfXt_1TW1jWsKmAGhvVOc57hhYboWpuBHTC9eCEROCyarreUpTKUWEdKlehVWAkk0YIXm0JLLs2xZwT9vqc_GjSjwaqL2J60LOYvojpRWxmHhcG52PfHpPO1mOw6HxCO2kX_T_0L2LUWbA |
| Cites_doi | 10.1145/3313906 10.1002/jgt.21898 10.1007/BF02579273 10.1016/0012-365X(75)90058-8 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.tcs.2025.115087 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| ExternalDocumentID | 10_1016_j_tcs_2025_115087 S0304397525000258 |
| GrantInformation_xml | – fundername: EPSRC grantid: EP/P020372/1 funderid: https://doi.org/10.13039/501100000266 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSV SSW T5K TN5 WH7 YNT ZMT ~G- 29Q 9DU AAEDT AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AEXQZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB G-2 HZ~ LG9 M26 R2- SSZ TAE WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c292t-16e98bd44f2ece95864a51b5df1d57e14739bfc0e78d05cde8d3ec81a727a5543 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001422799200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3975 |
| IngestDate | Sat Nov 29 08:19:58 EST 2025 Sat Mar 01 15:46:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hypergraph Duality Fractional vertex cover Fractional dominating number Linear Programming |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c292t-16e98bd44f2ece95864a51b5df1d57e14739bfc0e78d05cde8d3ec81a727a5543 |
| ORCID | 0000-0003-4701-738X |
| OpenAccessLink | https://dx.doi.org/10.1016/j.tcs.2025.115087 |
| ParticipantIDs | crossref_primary_10_1016_j_tcs_2025_115087 elsevier_sciencedirect_doi_10_1016_j_tcs_2025_115087 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-29 |
| PublicationDateYYYYMMDD | 2025-03-29 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Theoretical computer science |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Lovász (br0090) 1975; 13 Papadimitriou, Steiglitz (br0110) 1982 Schrijver (br0130) 1986 Vorob'ev (br0150) 1977 Scheinerman, Ullman (br0120) 1997 Bonamy, Kowalik, Pilipczuk, Socała, Wrochna (br0030) 2019; 11 Schrijver (br0140) 2003 Grötschel, Lovász, Schrijver (br0060) 1981; 1 Oxley (br0100) 2006 Abbas, Egerstedt, Liu, Thomas, Whalen (br0010) 2016; 82 Hillier, Lieberman (br0080) 2002 Brickman (br0040) 1989 Adeyemo (br0020) 2019 Haynes, Hedetniemi, Slater (br0070) 1998 Goddard, Henning (br0050) 2021 Schrijver (10.1016/j.tcs.2025.115087_br0140) 2003 Brickman (10.1016/j.tcs.2025.115087_br0040) 1989 Bonamy (10.1016/j.tcs.2025.115087_br0030) 2019; 11 Papadimitriou (10.1016/j.tcs.2025.115087_br0110) 1982 Oxley (10.1016/j.tcs.2025.115087_br0100) 2006 Haynes (10.1016/j.tcs.2025.115087_br0070) 1998 Lovász (10.1016/j.tcs.2025.115087_br0090) 1975; 13 Schrijver (10.1016/j.tcs.2025.115087_br0130) 1986 Hillier (10.1016/j.tcs.2025.115087_br0080) 2002 Scheinerman (10.1016/j.tcs.2025.115087_br0120) 1997 Abbas (10.1016/j.tcs.2025.115087_br0010) 2016; 82 Vorob'ev (10.1016/j.tcs.2025.115087_br0150) 1977 Adeyemo (10.1016/j.tcs.2025.115087_br0020) 2019 Goddard (10.1016/j.tcs.2025.115087_br0050) 2021 Grötschel (10.1016/j.tcs.2025.115087_br0060) 1981; 1 |
| References_xml | – year: 2002 ident: br0080 article-title: Introduction to Operations Research publication-title: Tata McGraw-Hill Edition – year: 2019 ident: br0020 article-title: An Empirical Analysis of an Algorithm for the Budgeted Maximum Vertex Cover Problem in Trees – volume: 13 start-page: 383 year: 1975 end-page: 390 ident: br0090 article-title: On the ratio of optimal integral and fractional covers publication-title: Discrete Math. – volume: 82 start-page: 236 year: 2016 end-page: 252 ident: br0010 article-title: Deploying robots with two sensors in publication-title: J. Graph Theory – year: 1977 ident: br0150 article-title: Game Theory: Lectures for Economists and Systems Scientists – year: 1997 ident: br0120 article-title: Fractional Graph Theory – year: 1989 ident: br0040 article-title: Mathematical Introduction to Linear Programming and Game Theory – year: 1998 ident: br0070 article-title: Fundamentals of Domination in Graphs – volume: 1 start-page: 169 year: 1981 end-page: 197 ident: br0060 article-title: The ellipsoid method and its consequences in combinatorial optimization publication-title: Combinatorica – year: 1982 ident: br0110 article-title: Combinatorial Optimization: Algorithms and Complexity – year: 2021 ident: br0050 article-title: Fractional Domatic, Idomatic and Total Domatic Numbers of a Graph. Structure of Domination in Graphs – year: 1986 ident: br0130 article-title: Theory of Linear and Integer Programming – volume: 11 start-page: 1 year: 2019 end-page: 19 ident: br0030 article-title: Tight lower bounds for the complexity of multicoloring publication-title: ACM Trans. Comput. Theory – year: 2003 ident: br0140 article-title: Combinatorial Optimization – year: 2006 ident: br0100 article-title: Matroid Theory – year: 1998 ident: 10.1016/j.tcs.2025.115087_br0070 – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.tcs.2025.115087_br0030 article-title: Tight lower bounds for the complexity of multicoloring publication-title: ACM Trans. Comput. Theory doi: 10.1145/3313906 – year: 1977 ident: 10.1016/j.tcs.2025.115087_br0150 – year: 2019 ident: 10.1016/j.tcs.2025.115087_br0020 – year: 1982 ident: 10.1016/j.tcs.2025.115087_br0110 – year: 1997 ident: 10.1016/j.tcs.2025.115087_br0120 – year: 2002 ident: 10.1016/j.tcs.2025.115087_br0080 article-title: Introduction to Operations Research – volume: 82 start-page: 236 year: 2016 ident: 10.1016/j.tcs.2025.115087_br0010 article-title: Deploying robots with two sensors in K1,6-free graphs publication-title: J. Graph Theory doi: 10.1002/jgt.21898 – year: 1989 ident: 10.1016/j.tcs.2025.115087_br0040 – year: 2021 ident: 10.1016/j.tcs.2025.115087_br0050 – volume: 1 start-page: 169 year: 1981 ident: 10.1016/j.tcs.2025.115087_br0060 article-title: The ellipsoid method and its consequences in combinatorial optimization publication-title: Combinatorica doi: 10.1007/BF02579273 – year: 2003 ident: 10.1016/j.tcs.2025.115087_br0140 – year: 1986 ident: 10.1016/j.tcs.2025.115087_br0130 – volume: 13 start-page: 383 year: 1975 ident: 10.1016/j.tcs.2025.115087_br0090 article-title: On the ratio of optimal integral and fractional covers publication-title: Discrete Math. doi: 10.1016/0012-365X(75)90058-8 – year: 2006 ident: 10.1016/j.tcs.2025.115087_br0100 |
| SSID | ssj0000576 |
| Score | 2.4389288 |
| Snippet | In this paper we introduce a new operation for Linear Programming (LP), called LP complementation, which resembles many properties of LP duality. Given a... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 115087 |
| SubjectTerms | Duality Fractional dominating number Fractional vertex cover Hypergraph Linear Programming |
| Title | Linear Programming complementation |
| URI | https://dx.doi.org/10.1016/j.tcs.2025.115087 |
| Volume | 1032 |
| WOSCitedRecordID | wos001422799200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0304-3975 databaseCode: AIEXJ dateStart: 20211214 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000576 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH-CwoEdNr6msQGKECdQqiS1G-fIEAiQQBxA6i1y_CGlW1PUplO1v37PteOWDiQ4cIkiK3lx_LPel98HwLHWSitUbUMpExKSWJOQM0ZDIxtFgaZcpqJZs4n07o71etm9a3M3nrUTSKuKTafZ04dCjWMItkmdfQfcnigO4D2CjleEHa9vAh6tS1Oc594GXg1cUm0TJu5x6Ptt4hMZhevwcOrEoo_N4XI4-a34xCb3TMtBiZqr31W3alT_LYcLLvbTn23vkOYDPuL4Dyaetvxlaxt7P0NCTaCVc0a4_CpzhpLZPieed0bOO2nZn1Evrfz8jzNbJ0G_XQtTJD2h7fmzz6tgL0knHzPYhKP1cySRGxK5JbEKawlaPVEL1s6uL3o3c0FMU3tU7SbeHGrPwvuW5vGyWrKgajxswmdnIwRnFtstWFHVNnxp-m8Ejh1vw6dbX3N3vANHFvhgAfhgCfhdeLy8eDi_Cl0HjFAkWVKHcVdlrJCE6EQJlVHWJZzGBZU6ljRVMUk7WaFFpFImIyqkYrKjBIs5aqUcFcXOV2hVw0p9g4Ao5OVIqCtjSdCKxfXgXVIUnEZac0r24KRZgPzJFjrJX13yPSDNEuVuS1oNLEe4X3_t-3u-8QM25ttwH1r1aKIOYF38qcvx6NBh_Q-WQF2S |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Programming+complementation&rft.jtitle=Theoretical+computer+science&rft.au=Gadouleau%2C+Maximilien&rft.au=Mertzios%2C+George+B.&rft.au=Zamaraev%2C+Viktor&rft.date=2025-03-29&rft.issn=0304-3975&rft.volume=1032&rft.spage=115087&rft_id=info:doi/10.1016%2Fj.tcs.2025.115087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2025_115087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |