Linear Programming complementation

In this paper we introduce a new operation for Linear Programming (LP), called LP complementation, which resembles many properties of LP duality. Given a maximisation (resp. minimisation) LP P, we define its complement Q as a specific minimisation (resp. maximisation) LP which has the same objective...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 1032; s. 115087
Hlavní autori: Gadouleau, Maximilien, Mertzios, George B., Zamaraev, Viktor
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 29.03.2025
Predmet:
ISSN:0304-3975
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper we introduce a new operation for Linear Programming (LP), called LP complementation, which resembles many properties of LP duality. Given a maximisation (resp. minimisation) LP P, we define its complement Q as a specific minimisation (resp. maximisation) LP which has the same objective function as P. Our central result is the LP complementation theorem, that relates the optimal value ▪ of P and the optimal value ▪ of its complement by ▪. The LP complementation operation can be applied if and only if P has an optimum value greater than 1. To illustrate this, we first apply LP complementation to hypergraphs. For any hypergraph H, we review the four classical LPs, namely coveringK(H), packingP(H), matchingM(H), and transversalT(H). For every hypergraph H=(V,E), we call ▪ the complement of H. For each of the above four LPs, we relate the optimal values of the LP for the dual hypergraph ▪ to that of the complement hypergraph ▪ (e.g. ▪). We then apply LP complementation to fractional graph theory. We prove that the LP for the fractional in-dominating number of a digraph D is the complement of the LP for the fractional total out-dominating number of the digraph complement ▪ of D. Furthermore we apply the hypergraph complementation theorem to matroids. We establish that the fractional matching number of a matroid coincide with its edge toughness. As our last application of LP complementation, we introduce the natural problem Vertex Cover with Budget (VCB): for a graph G=(V,E) and a positive integer b, what is the maximum number tb of vertex covers S1,…,Stb of G, such that every vertex v∈V appears in at most b vertex covers? The integer b can be viewed as a “budget” that we can spend on each vertex and, given this budget, we aim to cover all edges for as long as possible. We relate VCB with the LP QG for the fractional chromatic number χf of a graph G. More specifically, we prove that, as b→∞, the optimum for VCB satisfies tb∼tf⋅b, where tf is the optimal solution to the complement LP of QG. Finally, our results imply that, for any finite budget b, it is NP-hard to decide whether tb≥b+c for any 1≤c≤b−1.
AbstractList In this paper we introduce a new operation for Linear Programming (LP), called LP complementation, which resembles many properties of LP duality. Given a maximisation (resp. minimisation) LP P, we define its complement Q as a specific minimisation (resp. maximisation) LP which has the same objective function as P. Our central result is the LP complementation theorem, that relates the optimal value ▪ of P and the optimal value ▪ of its complement by ▪. The LP complementation operation can be applied if and only if P has an optimum value greater than 1. To illustrate this, we first apply LP complementation to hypergraphs. For any hypergraph H, we review the four classical LPs, namely coveringK(H), packingP(H), matchingM(H), and transversalT(H). For every hypergraph H=(V,E), we call ▪ the complement of H. For each of the above four LPs, we relate the optimal values of the LP for the dual hypergraph ▪ to that of the complement hypergraph ▪ (e.g. ▪). We then apply LP complementation to fractional graph theory. We prove that the LP for the fractional in-dominating number of a digraph D is the complement of the LP for the fractional total out-dominating number of the digraph complement ▪ of D. Furthermore we apply the hypergraph complementation theorem to matroids. We establish that the fractional matching number of a matroid coincide with its edge toughness. As our last application of LP complementation, we introduce the natural problem Vertex Cover with Budget (VCB): for a graph G=(V,E) and a positive integer b, what is the maximum number tb of vertex covers S1,…,Stb of G, such that every vertex v∈V appears in at most b vertex covers? The integer b can be viewed as a “budget” that we can spend on each vertex and, given this budget, we aim to cover all edges for as long as possible. We relate VCB with the LP QG for the fractional chromatic number χf of a graph G. More specifically, we prove that, as b→∞, the optimum for VCB satisfies tb∼tf⋅b, where tf is the optimal solution to the complement LP of QG. Finally, our results imply that, for any finite budget b, it is NP-hard to decide whether tb≥b+c for any 1≤c≤b−1.
ArticleNumber 115087
Author Mertzios, George B.
Zamaraev, Viktor
Gadouleau, Maximilien
Author_xml – sequence: 1
  givenname: Maximilien
  orcidid: 0000-0003-4701-738X
  surname: Gadouleau
  fullname: Gadouleau, Maximilien
  email: m.r.gadouleau@durham.ac.uk
  organization: Department of Computer Science, Durham University, UK
– sequence: 2
  givenname: George B.
  surname: Mertzios
  fullname: Mertzios, George B.
  email: george.mertzios@durham.ac.uk
  organization: Department of Computer Science, Durham University, UK
– sequence: 3
  givenname: Viktor
  surname: Zamaraev
  fullname: Zamaraev, Viktor
  email: viktor.zamaraev@liverpool.ac.uk
  organization: Department of Computer Science, University of Liverpool, UK
BookMark eNp9j7FOwzAURT0UibbwAWwVe4KfY8eOmFAFFCkSDDBbjv1SOWrsyo6Q-HtShZm73Olc3bMhqxADEnIHtAQK9cNQTjaXjDJRAgiq5IqsaUV5UTVSXJNNzgOdI2S9JvetD2jS7iPFYzLj6MNxZ-N4PuGIYTKTj-GGXPXmlPH2r7fk6-X5c38o2vfXt_1TW1jWsKmAGhvVOc57hhYboWpuBHTC9eCEROCyarreUpTKUWEdKlehVWAkk0YIXm0JLLs2xZwT9vqc_GjSjwaqL2J60LOYvojpRWxmHhcG52PfHpPO1mOw6HxCO2kX_T_0L2LUWbA
Cites_doi 10.1145/3313906
10.1002/jgt.21898
10.1007/BF02579273
10.1016/0012-365X(75)90058-8
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.tcs.2025.115087
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
ExternalDocumentID 10_1016_j_tcs_2025_115087
S0304397525000258
GrantInformation_xml – fundername: EPSRC
  grantid: EP/P020372/1
  funderid: https://doi.org/10.13039/501100000266
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
LG9
M26
R2-
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c292t-16e98bd44f2ece95864a51b5df1d57e14739bfc0e78d05cde8d3ec81a727a5543
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001422799200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 08:19:58 EST 2025
Sat Mar 01 15:46:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hypergraph
Duality
Fractional vertex cover
Fractional dominating number
Linear Programming
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-16e98bd44f2ece95864a51b5df1d57e14739bfc0e78d05cde8d3ec81a727a5543
ORCID 0000-0003-4701-738X
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2025.115087
ParticipantIDs crossref_primary_10_1016_j_tcs_2025_115087
elsevier_sciencedirect_doi_10_1016_j_tcs_2025_115087
PublicationCentury 2000
PublicationDate 2025-03-29
PublicationDateYYYYMMDD 2025-03-29
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-29
  day: 29
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lovász (br0090) 1975; 13
Papadimitriou, Steiglitz (br0110) 1982
Schrijver (br0130) 1986
Vorob'ev (br0150) 1977
Scheinerman, Ullman (br0120) 1997
Bonamy, Kowalik, Pilipczuk, Socała, Wrochna (br0030) 2019; 11
Schrijver (br0140) 2003
Grötschel, Lovász, Schrijver (br0060) 1981; 1
Oxley (br0100) 2006
Abbas, Egerstedt, Liu, Thomas, Whalen (br0010) 2016; 82
Hillier, Lieberman (br0080) 2002
Brickman (br0040) 1989
Adeyemo (br0020) 2019
Haynes, Hedetniemi, Slater (br0070) 1998
Goddard, Henning (br0050) 2021
Schrijver (10.1016/j.tcs.2025.115087_br0140) 2003
Brickman (10.1016/j.tcs.2025.115087_br0040) 1989
Bonamy (10.1016/j.tcs.2025.115087_br0030) 2019; 11
Papadimitriou (10.1016/j.tcs.2025.115087_br0110) 1982
Oxley (10.1016/j.tcs.2025.115087_br0100) 2006
Haynes (10.1016/j.tcs.2025.115087_br0070) 1998
Lovász (10.1016/j.tcs.2025.115087_br0090) 1975; 13
Schrijver (10.1016/j.tcs.2025.115087_br0130) 1986
Hillier (10.1016/j.tcs.2025.115087_br0080) 2002
Scheinerman (10.1016/j.tcs.2025.115087_br0120) 1997
Abbas (10.1016/j.tcs.2025.115087_br0010) 2016; 82
Vorob'ev (10.1016/j.tcs.2025.115087_br0150) 1977
Adeyemo (10.1016/j.tcs.2025.115087_br0020) 2019
Goddard (10.1016/j.tcs.2025.115087_br0050) 2021
Grötschel (10.1016/j.tcs.2025.115087_br0060) 1981; 1
References_xml – year: 2002
  ident: br0080
  article-title: Introduction to Operations Research
  publication-title: Tata McGraw-Hill Edition
– year: 2019
  ident: br0020
  article-title: An Empirical Analysis of an Algorithm for the Budgeted Maximum Vertex Cover Problem in Trees
– volume: 13
  start-page: 383
  year: 1975
  end-page: 390
  ident: br0090
  article-title: On the ratio of optimal integral and fractional covers
  publication-title: Discrete Math.
– volume: 82
  start-page: 236
  year: 2016
  end-page: 252
  ident: br0010
  article-title: Deploying robots with two sensors in
  publication-title: J. Graph Theory
– year: 1977
  ident: br0150
  article-title: Game Theory: Lectures for Economists and Systems Scientists
– year: 1997
  ident: br0120
  article-title: Fractional Graph Theory
– year: 1989
  ident: br0040
  article-title: Mathematical Introduction to Linear Programming and Game Theory
– year: 1998
  ident: br0070
  article-title: Fundamentals of Domination in Graphs
– volume: 1
  start-page: 169
  year: 1981
  end-page: 197
  ident: br0060
  article-title: The ellipsoid method and its consequences in combinatorial optimization
  publication-title: Combinatorica
– year: 1982
  ident: br0110
  article-title: Combinatorial Optimization: Algorithms and Complexity
– year: 2021
  ident: br0050
  article-title: Fractional Domatic, Idomatic and Total Domatic Numbers of a Graph. Structure of Domination in Graphs
– year: 1986
  ident: br0130
  article-title: Theory of Linear and Integer Programming
– volume: 11
  start-page: 1
  year: 2019
  end-page: 19
  ident: br0030
  article-title: Tight lower bounds for the complexity of multicoloring
  publication-title: ACM Trans. Comput. Theory
– year: 2003
  ident: br0140
  article-title: Combinatorial Optimization
– year: 2006
  ident: br0100
  article-title: Matroid Theory
– year: 1998
  ident: 10.1016/j.tcs.2025.115087_br0070
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.tcs.2025.115087_br0030
  article-title: Tight lower bounds for the complexity of multicoloring
  publication-title: ACM Trans. Comput. Theory
  doi: 10.1145/3313906
– year: 1977
  ident: 10.1016/j.tcs.2025.115087_br0150
– year: 2019
  ident: 10.1016/j.tcs.2025.115087_br0020
– year: 1982
  ident: 10.1016/j.tcs.2025.115087_br0110
– year: 1997
  ident: 10.1016/j.tcs.2025.115087_br0120
– year: 2002
  ident: 10.1016/j.tcs.2025.115087_br0080
  article-title: Introduction to Operations Research
– volume: 82
  start-page: 236
  year: 2016
  ident: 10.1016/j.tcs.2025.115087_br0010
  article-title: Deploying robots with two sensors in K1,6-free graphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.21898
– year: 1989
  ident: 10.1016/j.tcs.2025.115087_br0040
– year: 2021
  ident: 10.1016/j.tcs.2025.115087_br0050
– volume: 1
  start-page: 169
  year: 1981
  ident: 10.1016/j.tcs.2025.115087_br0060
  article-title: The ellipsoid method and its consequences in combinatorial optimization
  publication-title: Combinatorica
  doi: 10.1007/BF02579273
– year: 2003
  ident: 10.1016/j.tcs.2025.115087_br0140
– year: 1986
  ident: 10.1016/j.tcs.2025.115087_br0130
– volume: 13
  start-page: 383
  year: 1975
  ident: 10.1016/j.tcs.2025.115087_br0090
  article-title: On the ratio of optimal integral and fractional covers
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(75)90058-8
– year: 2006
  ident: 10.1016/j.tcs.2025.115087_br0100
SSID ssj0000576
Score 2.4389288
Snippet In this paper we introduce a new operation for Linear Programming (LP), called LP complementation, which resembles many properties of LP duality. Given a...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 115087
SubjectTerms Duality
Fractional dominating number
Fractional vertex cover
Hypergraph
Linear Programming
Title Linear Programming complementation
URI https://dx.doi.org/10.1016/j.tcs.2025.115087
Volume 1032
WOSCitedRecordID wos001422799200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211214
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000576
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH-CwoEdNr6msQGKECdQqiS1G-fIEAiQQBxA6i1y_CGlW1PUplO1v37PteOWDiQ4cIkiK3lx_LPel98HwLHWSitUbUMpExKSWJOQM0ZDIxtFgaZcpqJZs4n07o71etm9a3M3nrUTSKuKTafZ04dCjWMItkmdfQfcnigO4D2CjleEHa9vAh6tS1Oc594GXg1cUm0TJu5x6Ptt4hMZhevwcOrEoo_N4XI4-a34xCb3TMtBiZqr31W3alT_LYcLLvbTn23vkOYDPuL4Dyaetvxlaxt7P0NCTaCVc0a4_CpzhpLZPieed0bOO2nZn1Evrfz8jzNbJ0G_XQtTJD2h7fmzz6tgL0knHzPYhKP1cySRGxK5JbEKawlaPVEL1s6uL3o3c0FMU3tU7SbeHGrPwvuW5vGyWrKgajxswmdnIwRnFtstWFHVNnxp-m8Ejh1vw6dbX3N3vANHFvhgAfhgCfhdeLy8eDi_Cl0HjFAkWVKHcVdlrJCE6EQJlVHWJZzGBZU6ljRVMUk7WaFFpFImIyqkYrKjBIs5aqUcFcXOV2hVw0p9g4Ao5OVIqCtjSdCKxfXgXVIUnEZac0r24KRZgPzJFjrJX13yPSDNEuVuS1oNLEe4X3_t-3u-8QM25ttwH1r1aKIOYF38qcvx6NBh_Q-WQF2S
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Programming+complementation&rft.jtitle=Theoretical+computer+science&rft.au=Gadouleau%2C+Maximilien&rft.au=Mertzios%2C+George+B.&rft.au=Zamaraev%2C+Viktor&rft.date=2025-03-29&rft.issn=0304-3975&rft.volume=1032&rft.spage=115087&rft_id=info:doi/10.1016%2Fj.tcs.2025.115087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2025_115087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon