An Augmented Lagrangian-based Safe Reinforcement Learning Algorithm for Carbon-Oriented Optimal Scheduling of EV Aggregators
This paper proposes an augmented Lagrangian-based safe off-policy deep reinforcement learning (DRL) algorithm for the carbon-oriented optimal scheduling of electric vehicle (EV) aggregators in a distribution network. First, practical charging data are employed to formulate an EV aggregation model, a...
Uložené v:
| Vydané v: | IEEE transactions on smart grid Ročník 15; číslo 1; s. 1 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1949-3053, 1949-3061 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper proposes an augmented Lagrangian-based safe off-policy deep reinforcement learning (DRL) algorithm for the carbon-oriented optimal scheduling of electric vehicle (EV) aggregators in a distribution network. First, practical charging data are employed to formulate an EV aggregation model, and its flexibility in both emission mitigation and energy/power dispatching is demonstrated. Second, a bilevel optimization model is formulated for EV aggregators to participate in day-ahead optimal scheduling, which aims to minimize the total cost without exceeding the given carbon cap. Third, to tackle the nonlinear coupling between the carbon flow and power flow, a bilevel model with a carbon cap constraint is formed as a constrained Markov decision process (CMDP). Finally, the CMDP is efficiently solved by the proposed augmented Lagrangian-based DRL algorithm featuring the soft actor-critic (SAC) method. Comprehensive numerical studies with IEEE distribution test feeders demonstrate that the proposed approach can achieve a fine tradeoff between cost and emission mitigation with a higher computation efficiency compared with the existing DRL methods. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1949-3053 1949-3061 |
| DOI: | 10.1109/TSG.2023.3289211 |