Graph Autoencoder-Based Power Attacks Detection for Resilient Electrified Transportation Systems

The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure. With the increasing prevalence of electric vehicles (EVs), power system attacks that can lower customers charging satisfaction rates are on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on transportation electrification Jg. 10; H. 4; S. 9539 - 9553
Hauptverfasser: Fahim, Shahriar Rahman, Atat, Rachad, Kececi, Cihat, Takiddin, Abdulrahman, Ismail, Muhammad, Davis, Katherine R., Serpedin, Erchin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2332-7782, 2577-4212, 2332-7782
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure. With the increasing prevalence of electric vehicles (EVs), power system attacks that can lower customers charging satisfaction rates are on the rise. The existing false data injection attack (FDIA) detection strategies are not suitable for protecting the power-dependent transportation infrastructure since: 1) these detectors are primarily optimized for power grids alone and 2) they overlook the impact of attacks on the quality-of-service of EVs and charging stations (CSs). In response to these challenges, this article aims to develop an FDIA detection strategy that takes advantage of the data correlations between power and transportation systems, ultimately enhancing the charging satisfaction rate. To achieve this goal, we propose a graph autoencoder-based FDIA detection scheme capable of extracting spatiotemporal features from both power and transportation data. The input features of power systems are active and reactive power, while those for transportation systems are the hourly traffic volume in CSs. The proposed model undergoes comprehensive training and testing on various types of FDIAs, showcasing improved generalization abilities. Simulations are conducted on the 2000-bus power grid of the state of Texas, featuring 360 active CSs. Our investigations reveal an average detection rate of 98.3%, representing a substantial improvement of 15%-25% compared to state-of-the-art detectors. This underscores the effectiveness of our proposed approach in addressing the unique challenges posed by power-dependent electrified transportation systems.
AbstractList The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure. With the increasing prevalence of electric vehicles (EVs), power system attacks that can lower customers charging satisfaction rates are on the rise. The existing false data injection attack (FDIA) detection strategies are not suitable for protecting the power-dependent transportation infrastructure since: 1) these detectors are primarily optimized for power grids alone and 2) they overlook the impact of attacks on the quality-of-service of EVs and charging stations (CSs). In response to these challenges, this article aims to develop an FDIA detection strategy that takes advantage of the data correlations between power and transportation systems, ultimately enhancing the charging satisfaction rate. To achieve this goal, we propose a graph autoencoder-based FDIA detection scheme capable of extracting spatiotemporal features from both power and transportation data. The input features of power systems are active and reactive power, while those for transportation systems are the hourly traffic volume in CSs. The proposed model undergoes comprehensive training and testing on various types of FDIAs, showcasing improved generalization abilities. Simulations are conducted on the 2000-bus power grid of the state of Texas, featuring 360 active CSs. Our investigations reveal an average detection rate of 98.3%, representing a substantial improvement of 15%–25% compared to state-of-the-art detectors. This underscores the effectiveness of our proposed approach in addressing the unique challenges posed by power-dependent electrified transportation systems.
Author Fahim, Shahriar Rahman
Atat, Rachad
Ismail, Muhammad
Takiddin, Abdulrahman
Kececi, Cihat
Serpedin, Erchin
Davis, Katherine R.
Author_xml – sequence: 1
  givenname: Shahriar Rahman
  orcidid: 0000-0001-9185-4658
  surname: Fahim
  fullname: Fahim, Shahriar Rahman
  email: sr-fahim@tamu.edu
  organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
– sequence: 2
  givenname: Rachad
  orcidid: 0000-0001-8075-6243
  surname: Atat
  fullname: Atat, Rachad
  email: rachad.atat@qatar.tamu.edu
  organization: Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
– sequence: 3
  givenname: Cihat
  orcidid: 0000-0002-2097-5855
  surname: Kececi
  fullname: Kececi, Cihat
  email: kececi@tamu.edu
  organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
– sequence: 4
  givenname: Abdulrahman
  orcidid: 0000-0003-4793-003X
  surname: Takiddin
  fullname: Takiddin, Abdulrahman
  email: a.takiddin@fsu.edu
  organization: Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
– sequence: 5
  givenname: Muhammad
  orcidid: 0000-0002-8051-9747
  surname: Ismail
  fullname: Ismail, Muhammad
  email: mismail@tntech.edu
  organization: Department of Computer Science, Tennessee Tech University, Cookeville, TN, USA
– sequence: 6
  givenname: Katherine R.
  orcidid: 0000-0002-1603-1122
  surname: Davis
  fullname: Davis, Katherine R.
  email: katedavis@tamu.edu
  organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
– sequence: 7
  givenname: Erchin
  orcidid: 0000-0001-9069-770X
  surname: Serpedin
  fullname: Serpedin, Erchin
  email: eserpedin@tamu.edu
  organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
BookMark eNp9kD1PwzAQhi1UJErpzsAQiTnFH0kcj6WUglQJBGE2bnIWLmkcbFeo_56UdKgYmO50ep873XOOBo1tAKFLgieEYHFTFPMJxTSZMJamWCQnaEgZozHnOR0c9Wdo7P0aY0xSlgqSDdH7wqn2I5pug4WmtBW4-FZ5qKJn-w0umoagyk8f3UGAMhjbRNq66AW8qQ00IZrX3dgZbTqicKrxrXVB_QZfdz7Axl-gU61qD-NDHaG3-3kxe4iXT4vH2XQZl1TQEBOSK6VyrhlWVAmiM5bzFQAHpTkXmdArIDitdEWqVcVyDVWitWaUJiUrdc5G6Lrf2zr7tQUf5NpuXdOdlIykOE15QkSXwn2qdNZ7B1q2zmyU20mC5V6l7FTKvUp5UNkh2R-kNP2LwSlT_wde9aABgKM7CaZY5OwHckqErw
CODEN ITTEBP
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3580856
crossref_primary_10_1007_s00521_025_11090_z
crossref_primary_10_1016_j_segan_2025_101927
Cites_doi 10.1109/TSG.2016.2540439
10.1049/iet-cps.2018.5022
10.1109/TSG.2020.3010510
10.1109/TSG.2016.2561303
10.1109/TITS.2022.3223337
10.1109/TCSII.2022.3181827
10.1109/PESGM.2018.8586535
10.35833/MPCE.2019.000216
10.1016/j.jisa.2019.02.008
10.1109/TTE.2021.3055218
10.1109/TETCI.2022.3232821
10.1016/j.cie.2022.108313
10.1109/ACCESS.2019.2902910
10.1109/TSG.2019.2895306
10.1109/TSG.2019.2949998
10.1109/ACCESS.2023.3273292
10.1016/j.cose.2022.103016
10.1109/TPDS.2017.2763951
10.1140/epjb/e2005-00237-9
10.1109/JIOT.2021.3113900
10.1109/JSYST.2021.3109082
10.1109/AIAM50918.2020.00033
10.1109/ISGT51731.2023.10066446
10.1109/TPWRS.2022.3195301
10.1109/ICEEE55327.2022.9772523
10.1016/j.epsr.2013.04.003
10.1109/TSG.2020.3047864
10.1109/TPWRS.2021.3107402
10.1109/TSG.2017.2675960
10.1109/ACCESS.2018.2888582
10.1109/TSG.2021.3109628
10.1109/JPROC.2018.2812298
10.1109/TSG.2016.2598881
10.1016/b978-0-12-410491-4.00005-1
10.1109/TPWRS.2016.2515368
10.1109/JESTIE.2021.3112919
10.1109/TITS.2021.3085196
10.3390/en14051380
10.1016/j.egypro.2019.01.070
10.1016/j.ijepes.2017.03.011
10.1109/TPWRS.2010.2051168
10.1109/JSYST.2019.2928852
10.1109/TSG.2021.3117977
10.1109/tetci.2022.3209306
10.1109/TSG.2019.2891900
10.1109/JSYST.2014.2341597
10.1109/JSYST.2021.3136683
10.1109/CSCI.2017.1
10.1109/JSYST.2012.2223512
10.1002/2050-7038.12103
10.1109/TSG.2021.3093515
10.1016/j.ins.2022.06.039
10.1016/j.epsr.2022.109005
10.1109/IECON.2011.6120079
10.1109/JIOT.2020.2983911
10.1109/RNDM.2015.7325231
10.1049/iet-stg.2020.0015
10.17775/CSEEJPES.2020.04970
10.35833/MPCE.2021.000058
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TTE.2024.3355094
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7782
EndPage 9553
ExternalDocumentID 10_1109_TTE_2024_3355094
10402098
Genre orig-research
GrantInformation_xml – fundername: NSF Energy, Power and Control Networks (EPCN) Awards
  grantid: 2220346; 2220347
  funderid: 10.13039/100000148
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c292t-118aaa87f30a2a91f6387bee7eaf77969fbe105dfd1dbd38fed4fff3224c3cf83
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001401791900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2332-7782
2577-4212
IngestDate Mon Jun 30 13:01:48 EDT 2025
Sat Nov 29 03:33:34 EST 2025
Tue Nov 18 21:42:11 EST 2025
Wed Aug 27 02:02:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-118aaa87f30a2a91f6387bee7eaf77969fbe105dfd1dbd38fed4fff3224c3cf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1603-1122
0000-0002-2097-5855
0000-0003-4793-003X
0000-0001-9185-4658
0000-0001-8075-6243
0000-0002-8051-9747
0000-0001-9069-770X
PQID 3150557419
PQPubID 4437205
PageCount 15
ParticipantIDs proquest_journals_3150557419
ieee_primary_10402098
crossref_primary_10_1109_TTE_2024_3355094
crossref_citationtrail_10_1109_TTE_2024_3355094
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on transportation electrification
PublicationTitleAbbrev TTE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
Li (ref60) 2017
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
(ref58) 2020
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Stamile (ref59) 2021
ref24
ref23
Wolf (ref45)
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref62
ref61
References_xml – ident: ref52
  doi: 10.1109/TSG.2016.2540439
– ident: ref37
  doi: 10.1049/iet-cps.2018.5022
– ident: ref15
  doi: 10.1109/TSG.2020.3010510
– volume-title: Ercot 2020
  year: 2020
  ident: ref58
– ident: ref56
  doi: 10.1109/TSG.2016.2561303
– ident: ref1
  doi: 10.1109/TITS.2022.3223337
– ident: ref5
  doi: 10.1109/TCSII.2022.3181827
– ident: ref29
  doi: 10.1109/PESGM.2018.8586535
– ident: ref7
  doi: 10.35833/MPCE.2019.000216
– ident: ref14
  doi: 10.1016/j.jisa.2019.02.008
– ident: ref2
  doi: 10.1109/TTE.2021.3055218
– ident: ref40
  doi: 10.1109/TETCI.2022.3232821
– ident: ref36
  doi: 10.1016/j.cie.2022.108313
– year: 2017
  ident: ref60
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: arXiv:1707.01926
– ident: ref16
  doi: 10.1109/ACCESS.2019.2902910
– ident: ref8
  doi: 10.1109/TSG.2019.2895306
– ident: ref25
  doi: 10.1109/TSG.2019.2949998
– volume-title: Graph Machine Learning: Take Graph Data to the Next Level by Applying Machine Learning Techniques
  year: 2021
  ident: ref59
– ident: ref34
  doi: 10.1109/ACCESS.2023.3273292
– ident: ref39
  doi: 10.1016/j.cose.2022.103016
– ident: ref51
  doi: 10.1109/TPDS.2017.2763951
– ident: ref50
  doi: 10.1140/epjb/e2005-00237-9
– ident: ref18
  doi: 10.1109/JIOT.2021.3113900
– ident: ref24
  doi: 10.1109/JSYST.2021.3109082
– ident: ref13
  doi: 10.1109/AIAM50918.2020.00033
– ident: ref32
  doi: 10.1109/ISGT51731.2023.10066446
– ident: ref47
  doi: 10.1109/TPWRS.2022.3195301
– ident: ref48
  doi: 10.1109/ICEEE55327.2022.9772523
– ident: ref49
  doi: 10.1016/j.epsr.2013.04.003
– ident: ref41
  doi: 10.1109/TSG.2020.3047864
– ident: ref3
  doi: 10.1109/TPWRS.2021.3107402
– ident: ref10
  doi: 10.1109/TSG.2017.2675960
– ident: ref20
  doi: 10.1109/ACCESS.2018.2888582
– ident: ref23
  doi: 10.1109/TSG.2021.3109628
– ident: ref27
  doi: 10.1109/JPROC.2018.2812298
– ident: ref63
  doi: 10.1109/TSG.2016.2598881
– ident: ref62
  doi: 10.1016/b978-0-12-410491-4.00005-1
– ident: ref28
  doi: 10.1109/TPWRS.2016.2515368
– ident: ref4
  doi: 10.1109/JESTIE.2021.3112919
– ident: ref46
  doi: 10.1109/TITS.2021.3085196
– ident: ref11
  doi: 10.3390/en14051380
– ident: ref9
  doi: 10.1016/j.egypro.2019.01.070
– ident: ref21
  doi: 10.1016/j.ijepes.2017.03.011
– ident: ref57
  doi: 10.1109/TPWRS.2010.2051168
– ident: ref35
  doi: 10.1109/JSYST.2019.2928852
– ident: ref38
  doi: 10.1109/TSG.2021.3117977
– start-page: 1
  volume-title: Proc. Workshop Embedded Security Cars
  ident: ref45
  article-title: Security in automotive bus systems
– ident: ref44
  doi: 10.1109/tetci.2022.3209306
– ident: ref61
  doi: 10.1109/TSG.2019.2891900
– ident: ref12
  doi: 10.1109/JSYST.2014.2341597
– ident: ref42
  doi: 10.1109/JSYST.2021.3136683
– ident: ref17
  doi: 10.1109/CSCI.2017.1
– ident: ref53
  doi: 10.1109/JSYST.2012.2223512
– ident: ref19
  doi: 10.1002/2050-7038.12103
– ident: ref31
  doi: 10.1109/TSG.2021.3093515
– ident: ref33
  doi: 10.1016/j.ins.2022.06.039
– ident: ref26
  doi: 10.1016/j.epsr.2022.109005
– ident: ref55
  doi: 10.1109/IECON.2011.6120079
– ident: ref22
  doi: 10.1109/JIOT.2020.2983911
– ident: ref54
  doi: 10.1109/RNDM.2015.7325231
– ident: ref6
  doi: 10.1049/iet-stg.2020.0015
– ident: ref30
  doi: 10.17775/CSEEJPES.2020.04970
– ident: ref43
  doi: 10.35833/MPCE.2021.000058
SSID ssj0001535916
Score 2.3927264
Snippet The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9539
SubjectTerms Cybersecurity
Detectors
Electric power grids
Electric vehicle charging
electric vehicles (EVs)
false data injection attacks (FDIAs)
graph autoencoder (GAE)
graph neural networks (GNNs)
Infrastructure
Mathematical models
Power grids
Power measurement
Power system stability
Power systems
Reactive power
Resilience
smart grids
System effectiveness
System reliability
Traffic volume
Transportation
Transportation systems
Title Graph Autoencoder-Based Power Attacks Detection for Resilient Electrified Transportation Systems
URI https://ieeexplore.ieee.org/document/10402098
https://www.proquest.com/docview/3150557419
Volume 10
WOSCitedRecordID wos001401791900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2332-7782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001535916
  issn: 2332-7782
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6UeNCDPzGiaHrw4mGwrRttj6igJ0IMJtxm174mJAQMDP9-X7uBGKOJtx3apem3t_e99r3vEXKb81CzJI4CJ82CAYoIAwybVaCUjqUFBVGe-GYTfDAQ47EcVsXqvhYGAHzyGbTco7_LN3O9ckdlaOEu2pFil-xy3imLtb4OVFKWItdZX0WGsj0a9TAAjJMWQ6cayuSb6_G9VH78gL1X6R_9cz3H5LCij7Rb4n1CdmB2Sg62RAXPyNuT06Cm3VUxdyKVBhbBPboqQ4euIRrtFoUrq6ePUPgsrBlF2kpfYDmZutJI2vN9cSYWqSndKJ97-Gilbl4nr_3e6OE5qPooBLjfcRFgDKGUEtyyUMVKRhZtjucAHJTlXHakzQFplrEmMrlhwoJJrLVo6olm2gp2Tmqz-QwuCNWpjU2eQgRpnHCwArhGCsATnTKuQtEg7fUWZ7oSGXe9LqaZDzZCmSEomQMlq0BpkLvNjPdSYOOPsXUHwta4cv8bpLmGMatMcJkxpLopriySl79MuyL77u1lckqT1IrFCq7Jnv4oJsvFjf-6PgGvO8_a
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHnkOMZw5cOBTapiXNccAGCJgQGhK3kiaONAltaOv4_ThZx0MIJG49JGqUr67txP4-gMNChJoncRQ4ahZKULIwoLRZBUrpWFpUGBWJF5sQnU729CTvq2Z13wuDiL74DI_do7_LNwM9dkdlZOEu25HZLMw56ayqXevzSCXlKUU708vIUJ50uy1KAePkmJNbDWXyzfl4NZUfv2DvV9or_1zRKixXASRrThBfgxnsr8PSF1rBDXi-dCzUrDkuB46m0uAwOCNnZdi9k0RjzbJ0jfXsAktfh9VnFLiyBxz1XlxzJGt5ZZyepeCUfXCfewBZxW9eh8d2q3t-FVRKCgHteFwGlEUopTJheahiJSNLVicKRIHKCiFPpS2QAi1jTWQKwzOLJrHWkrEnmmub8U2o9Qd93AKmUxubIsUI0zgRaDMUmoIAkeiUCxVmDTiZbnGuK5pxp3bxkvt0I5Q5gZI7UPIKlAYcfcx4nVBs_DG27kD4Mm6y_w3YncKYV0Y4yjkFuymtLJLbv0w7gIWr7t1tfnvdudmBRfemSanKLtTK4Rj3YF6_lb3RcN9_ae-pK9Mj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Autoencoder-Based+Power+Attacks+Detection+for+Resilient+Electrified+Transportation+Systems&rft.jtitle=IEEE+transactions+on+transportation+electrification&rft.au=Fahim%2C+Shahriar+Rahman&rft.au=Atat%2C+Rachad&rft.au=Kececi%2C+Cihat&rft.au=Takiddin%2C+Abdulrahman&rft.date=2024-12-01&rft.issn=2332-7782&rft.eissn=2332-7782&rft.volume=10&rft.issue=4&rft.spage=9539&rft.epage=9553&rft_id=info:doi/10.1109%2FTTE.2024.3355094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TTE_2024_3355094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7782&client=summon