Graph Autoencoder-Based Power Attacks Detection for Resilient Electrified Transportation Systems
The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure. With the increasing prevalence of electric vehicles (EVs), power system attacks that can lower customers charging satisfaction rates are on the...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on transportation electrification Jg. 10; H. 4; S. 9539 - 9553 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2332-7782, 2577-4212, 2332-7782 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure. With the increasing prevalence of electric vehicles (EVs), power system attacks that can lower customers charging satisfaction rates are on the rise. The existing false data injection attack (FDIA) detection strategies are not suitable for protecting the power-dependent transportation infrastructure since: 1) these detectors are primarily optimized for power grids alone and 2) they overlook the impact of attacks on the quality-of-service of EVs and charging stations (CSs). In response to these challenges, this article aims to develop an FDIA detection strategy that takes advantage of the data correlations between power and transportation systems, ultimately enhancing the charging satisfaction rate. To achieve this goal, we propose a graph autoencoder-based FDIA detection scheme capable of extracting spatiotemporal features from both power and transportation data. The input features of power systems are active and reactive power, while those for transportation systems are the hourly traffic volume in CSs. The proposed model undergoes comprehensive training and testing on various types of FDIAs, showcasing improved generalization abilities. Simulations are conducted on the 2000-bus power grid of the state of Texas, featuring 360 active CSs. Our investigations reveal an average detection rate of 98.3%, representing a substantial improvement of 15%-25% compared to state-of-the-art detectors. This underscores the effectiveness of our proposed approach in addressing the unique challenges posed by power-dependent electrified transportation systems. |
|---|---|
| AbstractList | The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure. With the increasing prevalence of electric vehicles (EVs), power system attacks that can lower customers charging satisfaction rates are on the rise. The existing false data injection attack (FDIA) detection strategies are not suitable for protecting the power-dependent transportation infrastructure since: 1) these detectors are primarily optimized for power grids alone and 2) they overlook the impact of attacks on the quality-of-service of EVs and charging stations (CSs). In response to these challenges, this article aims to develop an FDIA detection strategy that takes advantage of the data correlations between power and transportation systems, ultimately enhancing the charging satisfaction rate. To achieve this goal, we propose a graph autoencoder-based FDIA detection scheme capable of extracting spatiotemporal features from both power and transportation data. The input features of power systems are active and reactive power, while those for transportation systems are the hourly traffic volume in CSs. The proposed model undergoes comprehensive training and testing on various types of FDIAs, showcasing improved generalization abilities. Simulations are conducted on the 2000-bus power grid of the state of Texas, featuring 360 active CSs. Our investigations reveal an average detection rate of 98.3%, representing a substantial improvement of 15%–25% compared to state-of-the-art detectors. This underscores the effectiveness of our proposed approach in addressing the unique challenges posed by power-dependent electrified transportation systems. |
| Author | Fahim, Shahriar Rahman Atat, Rachad Ismail, Muhammad Takiddin, Abdulrahman Kececi, Cihat Serpedin, Erchin Davis, Katherine R. |
| Author_xml | – sequence: 1 givenname: Shahriar Rahman orcidid: 0000-0001-9185-4658 surname: Fahim fullname: Fahim, Shahriar Rahman email: sr-fahim@tamu.edu organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA – sequence: 2 givenname: Rachad orcidid: 0000-0001-8075-6243 surname: Atat fullname: Atat, Rachad email: rachad.atat@qatar.tamu.edu organization: Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar – sequence: 3 givenname: Cihat orcidid: 0000-0002-2097-5855 surname: Kececi fullname: Kececi, Cihat email: kececi@tamu.edu organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA – sequence: 4 givenname: Abdulrahman orcidid: 0000-0003-4793-003X surname: Takiddin fullname: Takiddin, Abdulrahman email: a.takiddin@fsu.edu organization: Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA – sequence: 5 givenname: Muhammad orcidid: 0000-0002-8051-9747 surname: Ismail fullname: Ismail, Muhammad email: mismail@tntech.edu organization: Department of Computer Science, Tennessee Tech University, Cookeville, TN, USA – sequence: 6 givenname: Katherine R. orcidid: 0000-0002-1603-1122 surname: Davis fullname: Davis, Katherine R. email: katedavis@tamu.edu organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA – sequence: 7 givenname: Erchin orcidid: 0000-0001-9069-770X surname: Serpedin fullname: Serpedin, Erchin email: eserpedin@tamu.edu organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA |
| BookMark | eNp9kD1PwzAQhi1UJErpzsAQiTnFH0kcj6WUglQJBGE2bnIWLmkcbFeo_56UdKgYmO50ep873XOOBo1tAKFLgieEYHFTFPMJxTSZMJamWCQnaEgZozHnOR0c9Wdo7P0aY0xSlgqSDdH7wqn2I5pug4WmtBW4-FZ5qKJn-w0umoagyk8f3UGAMhjbRNq66AW8qQ00IZrX3dgZbTqicKrxrXVB_QZfdz7Axl-gU61qD-NDHaG3-3kxe4iXT4vH2XQZl1TQEBOSK6VyrhlWVAmiM5bzFQAHpTkXmdArIDitdEWqVcVyDVWitWaUJiUrdc5G6Lrf2zr7tQUf5NpuXdOdlIykOE15QkSXwn2qdNZ7B1q2zmyU20mC5V6l7FTKvUp5UNkh2R-kNP2LwSlT_wde9aABgKM7CaZY5OwHckqErw |
| CODEN | ITTEBP |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3580856 crossref_primary_10_1007_s00521_025_11090_z crossref_primary_10_1016_j_segan_2025_101927 |
| Cites_doi | 10.1109/TSG.2016.2540439 10.1049/iet-cps.2018.5022 10.1109/TSG.2020.3010510 10.1109/TSG.2016.2561303 10.1109/TITS.2022.3223337 10.1109/TCSII.2022.3181827 10.1109/PESGM.2018.8586535 10.35833/MPCE.2019.000216 10.1016/j.jisa.2019.02.008 10.1109/TTE.2021.3055218 10.1109/TETCI.2022.3232821 10.1016/j.cie.2022.108313 10.1109/ACCESS.2019.2902910 10.1109/TSG.2019.2895306 10.1109/TSG.2019.2949998 10.1109/ACCESS.2023.3273292 10.1016/j.cose.2022.103016 10.1109/TPDS.2017.2763951 10.1140/epjb/e2005-00237-9 10.1109/JIOT.2021.3113900 10.1109/JSYST.2021.3109082 10.1109/AIAM50918.2020.00033 10.1109/ISGT51731.2023.10066446 10.1109/TPWRS.2022.3195301 10.1109/ICEEE55327.2022.9772523 10.1016/j.epsr.2013.04.003 10.1109/TSG.2020.3047864 10.1109/TPWRS.2021.3107402 10.1109/TSG.2017.2675960 10.1109/ACCESS.2018.2888582 10.1109/TSG.2021.3109628 10.1109/JPROC.2018.2812298 10.1109/TSG.2016.2598881 10.1016/b978-0-12-410491-4.00005-1 10.1109/TPWRS.2016.2515368 10.1109/JESTIE.2021.3112919 10.1109/TITS.2021.3085196 10.3390/en14051380 10.1016/j.egypro.2019.01.070 10.1016/j.ijepes.2017.03.011 10.1109/TPWRS.2010.2051168 10.1109/JSYST.2019.2928852 10.1109/TSG.2021.3117977 10.1109/tetci.2022.3209306 10.1109/TSG.2019.2891900 10.1109/JSYST.2014.2341597 10.1109/JSYST.2021.3136683 10.1109/CSCI.2017.1 10.1109/JSYST.2012.2223512 10.1002/2050-7038.12103 10.1109/TSG.2021.3093515 10.1016/j.ins.2022.06.039 10.1016/j.epsr.2022.109005 10.1109/IECON.2011.6120079 10.1109/JIOT.2020.2983911 10.1109/RNDM.2015.7325231 10.1049/iet-stg.2020.0015 10.17775/CSEEJPES.2020.04970 10.35833/MPCE.2021.000058 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TTE.2024.3355094 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2332-7782 |
| EndPage | 9553 |
| ExternalDocumentID | 10_1109_TTE_2024_3355094 10402098 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF Energy, Power and Control Networks (EPCN) Awards grantid: 2220346; 2220347 funderid: 10.13039/100000148 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c292t-118aaa87f30a2a91f6387bee7eaf77969fbe105dfd1dbd38fed4fff3224c3cf83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001401791900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2332-7782 2577-4212 |
| IngestDate | Mon Jun 30 13:01:48 EDT 2025 Sat Nov 29 03:33:34 EST 2025 Tue Nov 18 21:42:11 EST 2025 Wed Aug 27 02:02:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-118aaa87f30a2a91f6387bee7eaf77969fbe105dfd1dbd38fed4fff3224c3cf83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1603-1122 0000-0002-2097-5855 0000-0003-4793-003X 0000-0001-9185-4658 0000-0001-8075-6243 0000-0002-8051-9747 0000-0001-9069-770X |
| PQID | 3150557419 |
| PQPubID | 4437205 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3150557419 ieee_primary_10402098 crossref_primary_10_1109_TTE_2024_3355094 crossref_citationtrail_10_1109_TTE_2024_3355094 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on transportation electrification |
| PublicationTitleAbbrev | TTE |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 Li (ref60) 2017 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 (ref58) 2020 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Stamile (ref59) 2021 ref24 ref23 Wolf (ref45) ref26 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref29 ref62 ref61 |
| References_xml | – ident: ref52 doi: 10.1109/TSG.2016.2540439 – ident: ref37 doi: 10.1049/iet-cps.2018.5022 – ident: ref15 doi: 10.1109/TSG.2020.3010510 – volume-title: Ercot 2020 year: 2020 ident: ref58 – ident: ref56 doi: 10.1109/TSG.2016.2561303 – ident: ref1 doi: 10.1109/TITS.2022.3223337 – ident: ref5 doi: 10.1109/TCSII.2022.3181827 – ident: ref29 doi: 10.1109/PESGM.2018.8586535 – ident: ref7 doi: 10.35833/MPCE.2019.000216 – ident: ref14 doi: 10.1016/j.jisa.2019.02.008 – ident: ref2 doi: 10.1109/TTE.2021.3055218 – ident: ref40 doi: 10.1109/TETCI.2022.3232821 – ident: ref36 doi: 10.1016/j.cie.2022.108313 – year: 2017 ident: ref60 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting publication-title: arXiv:1707.01926 – ident: ref16 doi: 10.1109/ACCESS.2019.2902910 – ident: ref8 doi: 10.1109/TSG.2019.2895306 – ident: ref25 doi: 10.1109/TSG.2019.2949998 – volume-title: Graph Machine Learning: Take Graph Data to the Next Level by Applying Machine Learning Techniques year: 2021 ident: ref59 – ident: ref34 doi: 10.1109/ACCESS.2023.3273292 – ident: ref39 doi: 10.1016/j.cose.2022.103016 – ident: ref51 doi: 10.1109/TPDS.2017.2763951 – ident: ref50 doi: 10.1140/epjb/e2005-00237-9 – ident: ref18 doi: 10.1109/JIOT.2021.3113900 – ident: ref24 doi: 10.1109/JSYST.2021.3109082 – ident: ref13 doi: 10.1109/AIAM50918.2020.00033 – ident: ref32 doi: 10.1109/ISGT51731.2023.10066446 – ident: ref47 doi: 10.1109/TPWRS.2022.3195301 – ident: ref48 doi: 10.1109/ICEEE55327.2022.9772523 – ident: ref49 doi: 10.1016/j.epsr.2013.04.003 – ident: ref41 doi: 10.1109/TSG.2020.3047864 – ident: ref3 doi: 10.1109/TPWRS.2021.3107402 – ident: ref10 doi: 10.1109/TSG.2017.2675960 – ident: ref20 doi: 10.1109/ACCESS.2018.2888582 – ident: ref23 doi: 10.1109/TSG.2021.3109628 – ident: ref27 doi: 10.1109/JPROC.2018.2812298 – ident: ref63 doi: 10.1109/TSG.2016.2598881 – ident: ref62 doi: 10.1016/b978-0-12-410491-4.00005-1 – ident: ref28 doi: 10.1109/TPWRS.2016.2515368 – ident: ref4 doi: 10.1109/JESTIE.2021.3112919 – ident: ref46 doi: 10.1109/TITS.2021.3085196 – ident: ref11 doi: 10.3390/en14051380 – ident: ref9 doi: 10.1016/j.egypro.2019.01.070 – ident: ref21 doi: 10.1016/j.ijepes.2017.03.011 – ident: ref57 doi: 10.1109/TPWRS.2010.2051168 – ident: ref35 doi: 10.1109/JSYST.2019.2928852 – ident: ref38 doi: 10.1109/TSG.2021.3117977 – start-page: 1 volume-title: Proc. Workshop Embedded Security Cars ident: ref45 article-title: Security in automotive bus systems – ident: ref44 doi: 10.1109/tetci.2022.3209306 – ident: ref61 doi: 10.1109/TSG.2019.2891900 – ident: ref12 doi: 10.1109/JSYST.2014.2341597 – ident: ref42 doi: 10.1109/JSYST.2021.3136683 – ident: ref17 doi: 10.1109/CSCI.2017.1 – ident: ref53 doi: 10.1109/JSYST.2012.2223512 – ident: ref19 doi: 10.1002/2050-7038.12103 – ident: ref31 doi: 10.1109/TSG.2021.3093515 – ident: ref33 doi: 10.1016/j.ins.2022.06.039 – ident: ref26 doi: 10.1016/j.epsr.2022.109005 – ident: ref55 doi: 10.1109/IECON.2011.6120079 – ident: ref22 doi: 10.1109/JIOT.2020.2983911 – ident: ref54 doi: 10.1109/RNDM.2015.7325231 – ident: ref6 doi: 10.1049/iet-stg.2020.0015 – ident: ref30 doi: 10.17775/CSEEJPES.2020.04970 – ident: ref43 doi: 10.35833/MPCE.2021.000058 |
| SSID | ssj0001535916 |
| Score | 2.3927264 |
| Snippet | The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9539 |
| SubjectTerms | Cybersecurity Detectors Electric power grids Electric vehicle charging electric vehicles (EVs) false data injection attacks (FDIAs) graph autoencoder (GAE) graph neural networks (GNNs) Infrastructure Mathematical models Power grids Power measurement Power system stability Power systems Reactive power Resilience smart grids System effectiveness System reliability Traffic volume Transportation Transportation systems |
| Title | Graph Autoencoder-Based Power Attacks Detection for Resilient Electrified Transportation Systems |
| URI | https://ieeexplore.ieee.org/document/10402098 https://www.proquest.com/docview/3150557419 |
| Volume | 10 |
| WOSCitedRecordID | wos001401791900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2332-7782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001535916 issn: 2332-7782 databaseCode: RIE dateStart: 20150101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6UeNCDPzGiaHrw4mGwrRttj6igJ0IMJtxm174mJAQMDP9-X7uBGKOJtx3apem3t_e99r3vEXKb81CzJI4CJ82CAYoIAwybVaCUjqUFBVGe-GYTfDAQ47EcVsXqvhYGAHzyGbTco7_LN3O9ckdlaOEu2pFil-xy3imLtb4OVFKWItdZX0WGsj0a9TAAjJMWQ6cayuSb6_G9VH78gL1X6R_9cz3H5LCij7Rb4n1CdmB2Sg62RAXPyNuT06Cm3VUxdyKVBhbBPboqQ4euIRrtFoUrq6ePUPgsrBlF2kpfYDmZutJI2vN9cSYWqSndKJ97-Gilbl4nr_3e6OE5qPooBLjfcRFgDKGUEtyyUMVKRhZtjucAHJTlXHakzQFplrEmMrlhwoJJrLVo6olm2gp2Tmqz-QwuCNWpjU2eQgRpnHCwArhGCsATnTKuQtEg7fUWZ7oSGXe9LqaZDzZCmSEomQMlq0BpkLvNjPdSYOOPsXUHwta4cv8bpLmGMatMcJkxpLopriySl79MuyL77u1lckqT1IrFCq7Jnv4oJsvFjf-6PgGvO8_a |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHnkOMZw5cOBTapiXNccAGCJgQGhK3kiaONAltaOv4_ThZx0MIJG49JGqUr67txP4-gMNChJoncRQ4ahZKULIwoLRZBUrpWFpUGBWJF5sQnU729CTvq2Z13wuDiL74DI_do7_LNwM9dkdlZOEu25HZLMw56ayqXevzSCXlKUU708vIUJ50uy1KAePkmJNbDWXyzfl4NZUfv2DvV9or_1zRKixXASRrThBfgxnsr8PSF1rBDXi-dCzUrDkuB46m0uAwOCNnZdi9k0RjzbJ0jfXsAktfh9VnFLiyBxz1XlxzJGt5ZZyepeCUfXCfewBZxW9eh8d2q3t-FVRKCgHteFwGlEUopTJheahiJSNLVicKRIHKCiFPpS2QAi1jTWQKwzOLJrHWkrEnmmub8U2o9Qd93AKmUxubIsUI0zgRaDMUmoIAkeiUCxVmDTiZbnGuK5pxp3bxkvt0I5Q5gZI7UPIKlAYcfcx4nVBs_DG27kD4Mm6y_w3YncKYV0Y4yjkFuymtLJLbv0w7gIWr7t1tfnvdudmBRfemSanKLtTK4Rj3YF6_lb3RcN9_ae-pK9Mj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Autoencoder-Based+Power+Attacks+Detection+for+Resilient+Electrified+Transportation+Systems&rft.jtitle=IEEE+transactions+on+transportation+electrification&rft.au=Fahim%2C+Shahriar+Rahman&rft.au=Atat%2C+Rachad&rft.au=Kececi%2C+Cihat&rft.au=Takiddin%2C+Abdulrahman&rft.date=2024-12-01&rft.issn=2332-7782&rft.eissn=2332-7782&rft.volume=10&rft.issue=4&rft.spage=9539&rft.epage=9553&rft_id=info:doi/10.1109%2FTTE.2024.3355094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TTE_2024_3355094 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7782&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7782&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7782&client=summon |