A TransISP Based Image Enhancement Method for Visual Disbalance in Low‐light Images

Existing image enhancement algorithms often fail to effectively address issues of visual disbalance, such as brightness unevenness and color distortion, in low‐light images. To overcome these challenges, we propose a TransISP‐based image enhancement method specifically designed for low‐light images....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 43; číslo 7
Hlavní autoři: Wu, Jiaqi, Guo, Jing, Jing, Rui, Zhang, Shihao, Tian, Zijian, Chen, Wei, Wang, Zehua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.10.2024
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Existing image enhancement algorithms often fail to effectively address issues of visual disbalance, such as brightness unevenness and color distortion, in low‐light images. To overcome these challenges, we propose a TransISP‐based image enhancement method specifically designed for low‐light images. To mitigate color distortion, we design dual encoders based on decoupled representation learning, which enable complete decoupling of the reflection and illumination components, thereby preventing mutual interference during the image enhancement process. To address brightness unevenness, we introduce CNNformer, a hybrid model combining CNN and Transformer. This model efficiently captures local details and long‐distance dependencies between pixels, contributing to the enhancement of brightness features across various local regions. Additionally, we integrate traditional image signal processing algorithms to achieve efficient color correction and denoising of the reflection component. Furthermore, we employ a generative adversarial network (GAN) as the overarching framework to facilitate unsupervised learning. The experimental results show that, compared with six SOTA image enhancement algorithms, our method obtains significant improvement in evaluation indexes (e.g., on LOL, PSNR: 15.59%, SSIM: 9.77%, VIF: 9.65%), and it can improve visual disbalance defects in low‐light images captured from real‐world coal mine underground scenarios.
AbstractList Existing image enhancement algorithms often fail to effectively address issues of visual disbalance, such as brightness unevenness and color distortion, in low‐light images. To overcome these challenges, we propose a TransISP‐based image enhancement method specifically designed for low‐light images. To mitigate color distortion, we design dual encoders based on decoupled representation learning, which enable complete decoupling of the reflection and illumination components, thereby preventing mutual interference during the image enhancement process. To address brightness unevenness, we introduce CNNformer, a hybrid model combining CNN and Transformer. This model efficiently captures local details and long‐distance dependencies between pixels, contributing to the enhancement of brightness features across various local regions. Additionally, we integrate traditional image signal processing algorithms to achieve efficient color correction and denoising of the reflection component. Furthermore, we employ a generative adversarial network (GAN) as the overarching framework to facilitate unsupervised learning. The experimental results show that, compared with six SOTA image enhancement algorithms, our method obtains significant improvement in evaluation indexes (e.g., on LOL, PSNR: 15.59%, SSIM: 9.77%, VIF: 9.65%), and it can improve visual disbalance defects in low‐light images captured from real‐world coal mine underground scenarios.
Author Zhang, Shihao
Chen, Wei
Wu, Jiaqi
Jing, Rui
Tian, Zijian
Wang, Zehua
Guo, Jing
Author_xml – sequence: 1
  givenname: Jiaqi
  orcidid: 0000-0002-1587-163X
  surname: Wu
  fullname: Wu, Jiaqi
  organization: University of British Columbia
– sequence: 2
  givenname: Jing
  surname: Guo
  fullname: Guo, Jing
  organization: China University of Mining & Technology
– sequence: 3
  givenname: Rui
  surname: Jing
  fullname: Jing, Rui
  organization: China University of Mining & Technology
– sequence: 4
  givenname: Shihao
  surname: Zhang
  fullname: Zhang, Shihao
  organization: China University of Mining & Technology
– sequence: 5
  givenname: Zijian
  orcidid: 0000-0002-4389-8821
  surname: Tian
  fullname: Tian, Zijian
  organization: China University of Mining & Technology
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-7663-278X
  surname: Chen
  fullname: Chen, Wei
  email: chenwdavior@163.com
  organization: China University of Mining and Technology
– sequence: 7
  givenname: Zehua
  orcidid: 0000-0001-9040-847X
  surname: Wang
  fullname: Wang, Zehua
  organization: University of British Columbia
BookMark eNp1kMFOAjEYhBuDiYAefIMmnjwstF262x4RAUkwmghem9L9F5YsXWyXEG4-gs_ok1hcr85l_sM38yfTQS1bWUDolpIeDeqbdd6jnBF5gdp0kKSRSLhsoTah4U4J51eo4_2WEDJIE95GyyFeOG397O0VP2gPGZ7t9Brw2G60NbADW-NnqDdVhvPK4ffCH3SJHwu_0uUZwIXF8-r4_flVFutN3aT9NbrMdenh5s-7aDkZL0ZP0fxlOhsN55FhkslICENyyjTLTcZkSoFrCSBSwgRZZZkAIRihqZY51zlNgKeQkEBQSWJjslXcRXdN795VHwfwtdpWB2fDSxXTUMKD4kDdN5RxlfcOcrV3xU67k6JEnVdTYTX1u1pg-w17LEo4_Q-q0XTSJH4Asstveg
Cites_doi 10.1109/TIP.2007.901238
10.1109/ACCESS.2023.3286538
10.1109/CVPR.2011.5995413
10.1109/INFOCT.2019.8710893
10.1109/TIP.2021.3051462
10.1016/j.patcog.2016.06.008
10.1038/s42256-020-00270-2
10.3390/app13042672
10.1109/ACSSC.2003.1292216
10.1007/978-3-319-46475-6_43
10.1109/TPAMI.2021.3126387
10.1109/83.557356
10.1117/1.JEI.29.3.033012
10.1016/j.eswa.2021.115034
10.1155/2021/5578289
10.1109/ICCV51070.2023.00743
10.1109/JSEN.2020.2981719
10.1109/TPAMI.2022.3164083
10.1109/CVPR42600.2020.00185
10.1109/TBC.2019.2960942
10.1109/CVPR.2018.00165
10.1109/ICIP.2015.7351031
10.1109/CVPR52688.2022.00581
10.1145/3422622
ContentType Journal Article
Copyright 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
2024 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
– notice: 2024 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.15209
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage n/a
ExternalDocumentID 10_1111_cgf_15209
CGF15209
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China‐Shanxi Provincial People's Government Coal‐based Low Carbon Joint Fund
  funderid: U1510115
– fundername: National Natural Science Foundation of China
  funderid: 52074305; 52274160; 51874300
– fundername: Fundamental Research Funds for the Central Universities
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2929-88c0f12a2fcd2971e5a9ee870280bdd8e882017a9f5af16e57e609ee1903ccdb3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341387100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sat Jul 26 00:07:31 EDT 2025
Sat Nov 29 03:41:24 EST 2025
Wed Jan 22 17:12:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2929-88c0f12a2fcd2971e5a9ee870280bdd8e882017a9f5af16e57e609ee1903ccdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4389-8821
0000-0002-7663-278X
0000-0002-1587-163X
0000-0001-9040-847X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.15209
PQID 3128055553
PQPubID 30877
PageCount 12
ParticipantIDs proquest_journals_3128055553
crossref_primary_10_1111_cgf_15209
wiley_primary_10_1111_cgf_15209_CGF15209
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 61
2023; 13
2021; 3
2021; 44
2015; 18
2020; 20
2011
2020; 63
2021; 182
2022; 45
1997; 6
2021; 30
2016; 14
2007; 16
2021; 34
2023
2022
2021
2020
2015; 20
2003; 2
2019
2018
2015
2020; 66
2018; 37
2020; 29
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
Ronneberger O. (e_1_2_7_25_2) 2015
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Tian X. (e_1_2_7_30_2) 2015; 20
Xiao T. (e_1_2_7_35_2) 2021; 34
e_1_2_7_24_2
Cui Z. (e_1_2_7_4_2) 2022
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
Zhi N. (e_1_2_7_37_2) 2018; 37
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – year: 2011
– volume: 2
  start-page: 1398
  year: 2003
  end-page: 1402
  article-title: Multiscale structural similarity for image quality assessment
– volume: 29
  start-page: 033012
  issue: 3
  year: 2020
  end-page: 033012
  article-title: Tunable color correction for noisy images
  publication-title: Journal of Electronic Imaging
– volume: 30
  start-page: 2340
  year: 2021
  end-page: 2349
  article-title: Enlightengan: Deep light enhancement without paired supervision
  publication-title: IEEE transactions on image processing
– volume: 37
  start-page: 191
  issue: 1
  year: 2018
  end-page: 197
  article-title: An enhancement algorithm for coal mine low illumination images based on bi‐gamma function
  publication-title: Journal of Liaoning Technical University (Natural Science)
– start-page: 5901
  year: 2022
  end-page: 5910
– volume: 20
  start-page: 58
  issue: 2
  year: 2015
  end-page: 63
  article-title: Color image enhancement based on bi‐histogram equalization
  publication-title: J. Xian Univ. Posts Telecommun.
– volume: 45
  start-page: 1489
  issue: 2
  year: 2022
  end-page: 1500
  article-title: Contextual transformer networks for visual recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  end-page: 144
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
– volume: 20
  start-page: 8062
  issue: 14
  year: 2020
  end-page: 8072
  article-title: Image dehazing by an artificial image fusion method based on adaptive structure decomposition
  publication-title: IEEE Sensors Journal
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  article-title: Image denoising by sparse 3‐d transform‐domain collaborative filtering
  publication-title: IEEE Transactions on image processing
– volume: 66
  start-page: 153
  issue: 1
  year: 2020
  end-page: 169
  article-title: Enhancement of underwater images with statistical model of background light and optimization of transmission map
  publication-title: IEEE Transactions on Broadcasting
– start-page: 12826
  year: 2020
  end-page: 12835
– volume: 61
  start-page: 650
  year: 2017
  end-page: 662
  article-title: Llnet: A deep autoencoder approach to natural low‐light image enhancement
  publication-title: Pattern Recognition
– year: 2018
– start-page: 172
  year: 2018
  end-page: 189
– year: 2022
  article-title: You only need 90k parameters to adapt light: a light weight transformer for image enhancement and exposure correction
– volume: 13
  start-page: 2672
  issue: 4
  year: 2023
  article-title: Research on improved retinex‐based image enhancement method for mine monitoring
  publication-title: Applied Sciences
– start-page: 1526
  year: 2018
  end-page: 1535
– start-page: 1
  year: 2021
  end-page: 12
– start-page: 8094
  year: 2023
  end-page: 8103
– start-page: 126
  year: 2019
  end-page: 132
  article-title: Image denoising using a generative adversarial network
– volume: 182
  year: 2021
  article-title: Divide and conquer: Ill‐light image enhancement via hybrid deep network
  publication-title: Expert Systems with Applications
– volume: 34
  start-page: 30392
  year: 2021
  end-page: 30400
  article-title: Early convolutions help transformers see better
  publication-title: Advances in neural information processing systems
– volume: 14
  start-page: 694
  year: 2016
  end-page: 711
  article-title: Perceptual losses for real‐time style transfer and super‐resolution
– year: 2020
– start-page: 1404
  year: 2015
  end-page: 1408
  article-title: Dark image enhancement based onpairwise target contrast and multi‐scale detail boosting
– year: 2023
– volume: 6
  start-page: 451
  issue: 3
  year: 1997
  end-page: 462
  article-title: Properties and performance of a center/surround retinex
  publication-title: IEEE transactions on image processing
– start-page: 1
  year: 2023
  end-page: 34
– volume: 44
  start-page: 9396
  issue: 12
  year: 2021
  end-page: 9416
  article-title: Low‐light image and video enhancement using deep learning: A survey
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– start-page: 5637
  year: 2022
  end-page: 5646
– start-page: 367
  year: 2021
  end-page: 376
– volume: 3
  start-page: 60
  issue: 1
  year: 2021
  end-page: 67
  article-title: Learning mri artefact removal with unpaired data
  publication-title: Nature Machine Intelligence
– volume: 18
  start-page: 234
  year: 2015
  end-page: 241
  article-title: U‐net: Convolutional networks for biomedical image segmentation
– start-page: 1780
  year: 2020
  end-page: 1789
– ident: e_1_2_7_5_2
– ident: e_1_2_7_6_2
  doi: 10.1109/TIP.2007.901238
– ident: e_1_2_7_27_2
  doi: 10.1109/ACCESS.2023.3286538
– volume: 34
  start-page: 30392
  year: 2021
  ident: e_1_2_7_35_2
  article-title: Early convolutions help transformers see better
  publication-title: Advances in neural information processing systems
– ident: e_1_2_7_3_2
  doi: 10.1109/CVPR.2011.5995413
– ident: e_1_2_7_2_2
  doi: 10.1109/INFOCT.2019.8710893
– ident: e_1_2_7_13_2
  doi: 10.1109/TIP.2021.3051462
– ident: e_1_2_7_24_2
– ident: e_1_2_7_32_2
– ident: e_1_2_7_17_2
  doi: 10.1016/j.patcog.2016.06.008
– ident: e_1_2_7_20_2
  doi: 10.1038/s42256-020-00270-2
– ident: e_1_2_7_28_2
  doi: 10.3390/app13042672
– ident: e_1_2_7_31_2
  doi: 10.1109/ACSSC.2003.1292216
– volume: 37
  start-page: 191
  issue: 1
  year: 2018
  ident: e_1_2_7_37_2
  article-title: An enhancement algorithm for coal mine low illumination images based on bi‐gamma function
  publication-title: Journal of Liaoning Technical University (Natural Science)
– ident: e_1_2_7_12_2
  doi: 10.1007/978-3-319-46475-6_43
– ident: e_1_2_7_18_2
  doi: 10.1109/TPAMI.2021.3126387
– ident: e_1_2_7_14_2
  doi: 10.1109/83.557356
– volume-title: 33rd British Machine Vision Conference 2022, BMVC 2022, London, UK, November 21–24, 2022
  year: 2022
  ident: e_1_2_7_4_2
– volume: 20
  start-page: 58
  issue: 2
  year: 2015
  ident: e_1_2_7_30_2
  article-title: Color image enhancement based on bi‐histogram equalization
  publication-title: J. Xian Univ. Posts Telecommun.
– ident: e_1_2_7_23_2
– ident: e_1_2_7_36_2
  doi: 10.1117/1.JEI.29.3.033012
– ident: e_1_2_7_16_2
  doi: 10.1016/j.eswa.2021.115034
– ident: e_1_2_7_8_2
  doi: 10.1155/2021/5578289
– ident: e_1_2_7_19_2
  doi: 10.1109/ICCV51070.2023.00743
– ident: e_1_2_7_38_2
  doi: 10.1109/JSEN.2020.2981719
– ident: e_1_2_7_21_2
  doi: 10.1109/TPAMI.2022.3164083
– ident: e_1_2_7_11_2
– ident: e_1_2_7_22_2
– ident: e_1_2_7_9_2
  doi: 10.1109/CVPR42600.2020.00185
– ident: e_1_2_7_26_2
  doi: 10.1109/TBC.2019.2960942
– ident: e_1_2_7_29_2
  doi: 10.1109/CVPR.2018.00165
– ident: e_1_2_7_33_2
– ident: e_1_2_7_15_2
  doi: 10.1109/ICIP.2015.7351031
– start-page: 234
  volume-title: Medical Image Computing and Computer‐Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III
  year: 2015
  ident: e_1_2_7_25_2
– ident: e_1_2_7_7_2
– ident: e_1_2_7_34_2
  doi: 10.1109/CVPR52688.2022.00581
– ident: e_1_2_7_10_2
  doi: 10.1145/3422622
SSID ssj0004765
Score 2.4170897
Snippet Existing image enhancement algorithms often fail to effectively address issues of visual disbalance, such as brightness unevenness and color distortion, in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Brightness
CCS Concepts
Coal mines
Color
Computing methodologies → Computer vision problems
Decoupling
Distortion
Generative adversarial networks
Image enhancement
Image processing
Light
Light reflection
Machine learning
Signal reflection
Underground mines
Unevenness
Unsupervised learning
Visibility
Title A TransISP Based Image Enhancement Method for Visual Disbalance in Low‐light Images
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15209
https://www.proquest.com/docview/3128055553
Volume 43
WOSCitedRecordID wos001341387100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSgMxEA7FetCD_2K1ShAPXhZ2k-wmi6fadrVQS1ErvS3ZbKIF3Uq31auP4DP6JCb709aDIHjLIQlhMpP5Jsx8A8CZjxl3MXcsaRNhEYIcixNpW4pzT_nYFsSPsmYTtNdjw6Hfr4CLshYm54eYf7gZy8jea2PgPEqXjFw8KtO8xxTvVU1RlY68qq3bYNBdlEVSzy2pvQ1pTEEsZBJ55ot_uqMFxlxGqpmrCTb_dcgtsFEgTNjIVWIbVGSyA9aXeAd3waABMx_VuevDS-3GYth50e8KbCdPRgnMhyG8yVpLQ41p4cMonekdWzoeNImQQsJRArvj96-Pz2cT2-er0z0wCNr3zWur6K9gCaRRkcWYsJWDOFIiRj51pMt9KbUBI2ZHccwkM_CAcl-5XDmedKn0bD1DYwgsRBzhfbCSjBN5ACAVnAjiYeorQbhiEXap4gIR7lBMJK2B01LM4WtOoxGW4YeWUZjJqAbq5QWEhSWlIdYO1JCSubgGzjNR_75B2LwKssHh36cegTWkcUqen1cHK9PJTB6DVfE2HaWTk0KlvgHm7c4x
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSgMxEB6kFdSD_2K1ahAPXhZ2N9lNFrxUbbVYi6gVb0s2m2hBt9Jt9eoj-Iw-icn-2HoQBG97SMIymcl8M8x8A3AQYMY9zB1L2kRYhLiOxYm0LcW5rwJsCxJE2bAJ2u2y-_vgagaOyl6YnB_iO-FmLCN7r42Bm4T0lJWLB2Wm95juvSrxMWUVqJ5et3qdSV8k9b2S29uwxhTMQqaS53vzT380AZnTUDXzNa2l__3lMiwWGBM1cqVYgRmZrMLCFPPgGvQaKPNS7ZsrdKwdWYzaz_plQc3k0aiBSRmiy2y4NNKoFt3107E-8VRHhKYUUkjUT1Bn8Pb5_vFkovt8d7oOvVbz9uTcKiYsWMLVuMhiTNjKcbmrROwG1JEeD6TUJuwyO4pjJpkBCJQHyuPK8aVHpW_rFRpFYCHiCG9AJRkkchMQFZwIcw2BEoQrFmGPKi5cwh2KiaQ12C_lHL7kRBphGYBoGYWZjGpQL28gLGwpDbF2oYaWzMM1OMxk_fsB4clZK_vY-vvSPZg7v73shJ1292Ib5l2NWvJqvTpURsOx3IFZ8Trqp8PdQr--AEw-0iE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kiujBt1itGsSDl4XdTbLZgBdtXS3WUtRKb0uaTbSgW7E-rv4Ef6O_xGQftR4EwVsOSQiTmcw3YeYbgH2OQ0Gx8BzlEukQ4nuOIMp1tBCB5tiVhPezZhOs3Q57Pd6ZgsOyFibnhxh_uFnLyN5ra-DqMdETVi5vte3eY6v3pgnllFRgunEZdVvfdZEsoCW3t2WNKZiFbCbPePFPf_QNMiehauZrosX_nXIJFgqMiY5ypViGKZWuwPwE8-AqdI9Q5qWaVx10bBxZgpoP5mVBJ-mdVQP7ZYgusubSyKBadDMYvZgdGyYitKmQUqFBilrDt8_3j3sb3eerR2vQjU6u62dO0WHBkb7BRU4YSld7vvC1THzOPEUFV8qYsB-6_SQJVWgBAhNcU6G9QFGmAtfMMCgCS5n08TpU0mGqNgAxKYgkAWZcSyJ02MeUaSF9IjyGiWJV2CvlHD_mRBpxGYAYGcWZjKpQK28gLmxpFGPjQi0tGcVVOMhk_fsGcf00ygabf5-6C7OdRhS3mu3zLZjzDWjJk_VqUHl-elHbMCNfnwejp51Cvb4AGoTRnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+TransISP+Based+Image+Enhancement+Method+for+Visual+Disbalance+in+Low%E2%80%90light+Images&rft.jtitle=Computer+graphics+forum&rft.au=Wu%2C+Jiaqi&rft.au=Guo%2C+Jing&rft.au=Jing%2C+Rui&rft.au=Zhang%2C+Shihao&rft.date=2024-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=7&rft_id=info:doi/10.1111%2Fcgf.15209&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon