A multi-objective thermal exchange optimization model for solving optimal power flow problems in hybrid power systems

This study addresses the challenges associated with optimal power flow (OPF) management in hybrid power systems incorporating diverse energy sources, particularly focusing on the unpredictability of renewable energy sources (RESs). A novel analytics approach is introduced using Multi-Objective Therm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Decision analytics journal Ročník 8; s. 100299
Hlavní autori: Agrawal, Sunilkumar, Pandya, Sundaram, Jangir, Pradeep, Kalita, Kanak, Chakraborty, Shankar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.09.2023
Predmet:
ISSN:2772-6622, 2772-6622
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study addresses the challenges associated with optimal power flow (OPF) management in hybrid power systems incorporating diverse energy sources, particularly focusing on the unpredictability of renewable energy sources (RESs). A novel analytics approach is introduced using Multi-Objective Thermal Exchange Optimization (MOTEO). MOTEO is based on modeling energy transfer grounded on Newton’s Law of Cooling. The model integrates innovative non-dominated sorting and crowing distance strategies to effectively solve the multi-objective optimization problem. The proposed hybrid OPF model incorporates four primary types of energy resources: thermal, wind, solar, and small-hydro, offering a holistic approach to power management in hybrid systems. Our model’s practical applicability and efficiency are validated through rigorous testing on a modified IEEE 30-Bus system, benchmarked against other contemporary optimization methodologies. The results demonstrate that the MOTEO model successfully identifies optimal solutions for the multi-objective optimal power flow (MOOPF) problem while maintaining compliance with stringent power system constraints. This novel contribution enhances the field of analytics by providing a robust and efficient model to handle the complex problem of OPF in hybrid systems, thereby ensuring increased system reliability. •Propose a novel approach to optimize power flow in hybrid energy systems.•Use Newton’s Law of Cooling to model energy transfer in the system.•Apply new non-dominated sorting and crowding distance strategies.•Perform comprehensive tests on a modified IEEE 30-Bus system.•Show improved solutions and strong convergence.
AbstractList This study addresses the challenges associated with optimal power flow (OPF) management in hybrid power systems incorporating diverse energy sources, particularly focusing on the unpredictability of renewable energy sources (RESs). A novel analytics approach is introduced using Multi-Objective Thermal Exchange Optimization (MOTEO). MOTEO is based on modeling energy transfer grounded on Newton’s Law of Cooling. The model integrates innovative non-dominated sorting and crowing distance strategies to effectively solve the multi-objective optimization problem. The proposed hybrid OPF model incorporates four primary types of energy resources: thermal, wind, solar, and small-hydro, offering a holistic approach to power management in hybrid systems. Our model’s practical applicability and efficiency are validated through rigorous testing on a modified IEEE 30-Bus system, benchmarked against other contemporary optimization methodologies. The results demonstrate that the MOTEO model successfully identifies optimal solutions for the multi-objective optimal power flow (MOOPF) problem while maintaining compliance with stringent power system constraints. This novel contribution enhances the field of analytics by providing a robust and efficient model to handle the complex problem of OPF in hybrid systems, thereby ensuring increased system reliability. •Propose a novel approach to optimize power flow in hybrid energy systems.•Use Newton’s Law of Cooling to model energy transfer in the system.•Apply new non-dominated sorting and crowding distance strategies.•Perform comprehensive tests on a modified IEEE 30-Bus system.•Show improved solutions and strong convergence.
ArticleNumber 100299
Author Chakraborty, Shankar
Jangir, Pradeep
Kalita, Kanak
Pandya, Sundaram
Agrawal, Sunilkumar
Author_xml – sequence: 1
  givenname: Sunilkumar
  surname: Agrawal
  fullname: Agrawal, Sunilkumar
  email: sunil11187@gmail.com
  organization: Government Engineering College, Gandhinagar, Gujarat, India
– sequence: 2
  givenname: Sundaram
  surname: Pandya
  fullname: Pandya, Sundaram
  email: sundarampandya@gmail.com
  organization: Department of Electrical Engineering, Shri K.J. Polytechnic, Bharuch, India
– sequence: 3
  givenname: Pradeep
  surname: Jangir
  fullname: Jangir, Pradeep
  email: pkjmtech@gmail.com
  organization: Rajasthan Rajya Vidyut Prasaran Nigam Ltd., Sikar, Rajasthan, India
– sequence: 4
  givenname: Kanak
  orcidid: 0000-0001-9289-9495
  surname: Kalita
  fullname: Kalita, Kanak
  email: drkanakkalita@veltech.edu.in
  organization: Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, India
– sequence: 5
  givenname: Shankar
  surname: Chakraborty
  fullname: Chakraborty, Shankar
  email: s_chakraborty00@yahoo.in
  organization: Department of Production Engineering, Jadavpur University, Kolkata, India
BookMark eNqFkE1PAyEQhompibX2H3jgD2wFtvvlwaRp_EqaeNEzAXZo2ewuDdDW-uulrgfjQU-QeeeZzDyXaNTbHhC6pmRGCc1vmlktGrtzM0ZYGkuEVdUZGrOiYEmeMzb68b9AU-8bEntKSlOSjtFugbtdG0xiZQMqmD3gsAHXiRbDu9qIfg3YboPpzIcIxva4szW0WFuHvW33pl8Pcezf2gM4rFt7wFtnZQudx6bHm6N0pv5O_dGHWL9C51q0Hqbf7wS9Pdy_Lp-S1cvj83KxShSrWJUwKGUlSE3SgtE0B1mwnGS5qoioZKnTrGAZZIpRXUs2j0SZEaE1LZQs05imEzQf5ipnvXeg-dbFXd2RU8JP9njDB3v8ZI8P9iJ2-wtTJnydH5ww7X_w3QBDPGxvwHGvDPQKauOiYV5b8_eAT2x6kac
CitedBy_id crossref_primary_10_1038_s41598_023_45447_y
crossref_primary_10_4018_IJSIR_336530
crossref_primary_10_1016_j_eswa_2025_128799
crossref_primary_10_1016_j_jestch_2023_101551
crossref_primary_10_1016_j_buildenv_2025_113156
crossref_primary_10_1088_2631_8695_ad4cb7
crossref_primary_10_1109_ACCESS_2023_3333280
crossref_primary_10_1016_j_engappai_2025_111412
crossref_primary_10_1088_2631_8695_ad6af1
crossref_primary_10_1007_s42452_025_06585_2
crossref_primary_10_1007_s00202_024_02690_4
crossref_primary_10_1016_j_eswa_2023_122568
crossref_primary_10_1016_j_heliyon_2024_e39308
crossref_primary_10_3389_fenrg_2023_1339020
crossref_primary_10_1016_j_eswa_2023_122367
crossref_primary_10_1016_j_eswa_2025_128127
crossref_primary_10_1049_rpg2_13113
crossref_primary_10_1016_j_eswa_2025_128120
crossref_primary_10_1007_s12008_024_01960_6
Cites_doi 10.1016/0142-0615(79)90026-7
10.1016/j.asoc.2021.108045
10.1016/j.energy.2018.03.002
10.1108/COMPEL-03-2021-0103
10.1016/j.asoc.2021.108334
10.1142/S0218126623502006
10.1016/j.eswa.2015.10.039
10.1016/j.advengsoft.2016.01.008
10.3390/math10101636
10.1007/s00500-019-04077-1
10.1016/j.ejor.2021.10.051
10.1016/j.asoc.2023.110612
10.1016/j.future.2019.02.028
10.1080/23080477.2021.1916853
10.1007/s10489-016-0825-8
10.1016/j.apenergy.2022.119228
10.1080/0305215X.2017.1318872
10.1016/j.energy.2023.127000
10.1016/j.eswa.2022.116625
10.1109/ACCESS.2022.3209996
10.1016/j.ijepes.2023.109250
10.1016/j.enconman.2017.06.071
10.1016/j.energy.2011.09.027
10.3390/app13053330
10.3390/su14042305
10.1016/j.ejor.2022.10.024
10.1016/j.asoc.2015.03.035
10.1016/j.advengsoft.2013.12.007
10.3390/app12167959
10.5152/electrica.2021.21014
10.1016/j.enconman.2013.09.028
10.1016/j.ijepes.2014.02.017
10.1016/j.asoc.2014.04.010
10.1016/j.energy.2022.123795
10.1016/j.eswa.2020.113338
10.1016/j.advengsoft.2017.03.014
10.1016/j.engappai.2022.104753
10.1016/j.ejor.2021.10.003
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.dajour.2023.100299
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2772-6622
ExternalDocumentID 10_1016_j_dajour_2023_100299
S277266222300139X
GroupedDBID 6I.
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c2929-2e8b9a0d0372136eb726056c90a9b8f35725e5c21fdb24929850aff17cb833573
ISSN 2772-6622
IngestDate Sat Nov 29 07:34:04 EST 2025
Tue Nov 18 21:48:54 EST 2025
Sat Sep 30 17:10:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pareto front
Multi-objective optimization
Optimal power flow
Metaheuristics
Physics-based algorithm
Renewable energy resources
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2929-2e8b9a0d0372136eb726056c90a9b8f35725e5c21fdb24929850aff17cb833573
ORCID 0000-0001-9289-9495
OpenAccessLink http://dx.doi.org/10.1016/j.dajour.2023.100299
ParticipantIDs crossref_primary_10_1016_j_dajour_2023_100299
crossref_citationtrail_10_1016_j_dajour_2023_100299
elsevier_sciencedirect_doi_10_1016_j_dajour_2023_100299
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Decision analytics journal
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Aigner, Clarner, Liers, Martin (b31) 2022; 301
Biswas, Suganthan, Mallipeddi, Amaratunga (b36) 2020; 24
Kahraman, Akbel, Duman (b4) 2022; 116
Pandya, Ravichandran, Manoharan, Jangir, Alhelou (b17) 2022; 10
Mandal, Roy (b23) 2014; 21
Agrawal, Kundu (b18) 2021; 41
Shabanpour-Haghighi, Seifi, Niknam (b22) 2014; 77
Kaveh, Dadras (b37) 2017; 110
Shaheen, El-Sehiemy, Hasanien, Ginidi (b3) 2022; 250
Weng, Xuan, Heidari, Cai, Chen, Mansour, Ragab (b8) 2023; 271
Nguyen, Nguyen, Duong (b9) 2023; 13
Biswas, Suganthan, Amaratunga (b34) 2017; 148
Mirjalili, Mirjalili, Lewis (b40) 2014; 69
Carpentier (b1) 1979; 1
Ramachandran, Mirjalili, Nazari-Heris, Parvathysankar, Sundaram, Gnanakkan (b14) 2022; 111
Ramachandran, Mirjalili, Ramalingam, Gnanakkan, Parvathysankar, Sundaram (b15) 2022; 197
Mirjalili, Jangir, Saremi (b45) 2017; 46
Li, Gong, Wang, Gu (b30) 2022; 114
Javidy, Hatamlou, Mirjalili (b42) 2015; 32
Mirjalili, Saremi, Mirjalili, Coelho (b44) 2016; 47
Esteban-Pérez, Morales (b28) 2023; 306
Khishe, Mosavi (b41) 2020; 149
Pandya, Jariwala (b16) 2021; 9
Vijaya Bhaskar, Ramesh, Karunanithi, Raja (b24) 2023; 32
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b39) 2019; 97
Dao, Tran, Duong, Do, Nguyen, Vo (b11) 2024; 18
Logeswaran, Raja, Hameed, Abdulrahim (b7) 2022; 319
Agrawal, Kundu (b19) 2021; 21
Zhang, Cai, Zhang, Chen (b26) 2023; 146
Biswas, Suganthan, Qu, Amaratunga (b35) 2018; 150
Ong, Ong, Sia (b33) 2022; 5
Shaheen, Ginidi, El-Sehiemy, Elsayed, Elattar, Dorrah (b2) 2022; 10
Li, Zhou, Zhou, Deng, Luo (b27) 2023; 13
Ebeed, Mostafa, Aly, Jurado, Kamel (b13) 2023; 152
Ghasemi, kadkhoda Mohammadi, Zare, Mirjalili, Gil, Hemmati (b32) 2022; 5
Naidu, Balasubramanian, Rao (b10) 2023; 13
Chen, Bo, Zhu (b21) 2014; 60
Avvari, V. Kumar (b25) 2023; 11
Farhat, Kamel, Atallah, Hassan, Agwa (b5) 2022; 14
Niknam, Rasoul Narimani, Jabbari, Malekpour (b20) 2011; 36
Sulaiman, Mustaffa (b12) 2023; 5
Alanazi, Memon, Mosavi (b6) 2022; 12
Skolfield, Escobedo (b29) 2022; 300
Mirjalili, Lewis (b43) 2016; 95
Kaveh, Dadras (b38) 2018; 50
Javidy (10.1016/j.dajour.2023.100299_b42) 2015; 32
Pandya (10.1016/j.dajour.2023.100299_b16) 2021; 9
Agrawal (10.1016/j.dajour.2023.100299_b19) 2021; 21
Niknam (10.1016/j.dajour.2023.100299_b20) 2011; 36
Shaheen (10.1016/j.dajour.2023.100299_b2) 2022; 10
Kahraman (10.1016/j.dajour.2023.100299_b4) 2022; 116
Shaheen (10.1016/j.dajour.2023.100299_b3) 2022; 250
Skolfield (10.1016/j.dajour.2023.100299_b29) 2022; 300
Alanazi (10.1016/j.dajour.2023.100299_b6) 2022; 12
Mirjalili (10.1016/j.dajour.2023.100299_b45) 2017; 46
Pandya (10.1016/j.dajour.2023.100299_b17) 2022; 10
Nguyen (10.1016/j.dajour.2023.100299_b9) 2023; 13
Chen (10.1016/j.dajour.2023.100299_b21) 2014; 60
Carpentier (10.1016/j.dajour.2023.100299_b1) 1979; 1
Shabanpour-Haghighi (10.1016/j.dajour.2023.100299_b22) 2014; 77
Zhang (10.1016/j.dajour.2023.100299_b26) 2023; 146
Khishe (10.1016/j.dajour.2023.100299_b41) 2020; 149
Vijaya Bhaskar (10.1016/j.dajour.2023.100299_b24) 2023; 32
Ebeed (10.1016/j.dajour.2023.100299_b13) 2023; 152
Ong (10.1016/j.dajour.2023.100299_b33) 2022; 5
Kaveh (10.1016/j.dajour.2023.100299_b37) 2017; 110
Li (10.1016/j.dajour.2023.100299_b30) 2022; 114
Agrawal (10.1016/j.dajour.2023.100299_b18) 2021; 41
Sulaiman (10.1016/j.dajour.2023.100299_b12) 2023; 5
Biswas (10.1016/j.dajour.2023.100299_b35) 2018; 150
Aigner (10.1016/j.dajour.2023.100299_b31) 2022; 301
Biswas (10.1016/j.dajour.2023.100299_b34) 2017; 148
Farhat (10.1016/j.dajour.2023.100299_b5) 2022; 14
Dao (10.1016/j.dajour.2023.100299_b11) 2024; 18
Ramachandran (10.1016/j.dajour.2023.100299_b15) 2022; 197
Avvari (10.1016/j.dajour.2023.100299_b25) 2023; 11
Mirjalili (10.1016/j.dajour.2023.100299_b43) 2016; 95
Logeswaran (10.1016/j.dajour.2023.100299_b7) 2022; 319
Ghasemi (10.1016/j.dajour.2023.100299_b32) 2022; 5
Li (10.1016/j.dajour.2023.100299_b27) 2023; 13
Kaveh (10.1016/j.dajour.2023.100299_b38) 2018; 50
Naidu (10.1016/j.dajour.2023.100299_b10) 2023; 13
Mandal (10.1016/j.dajour.2023.100299_b23) 2014; 21
Mirjalili (10.1016/j.dajour.2023.100299_b40) 2014; 69
Ramachandran (10.1016/j.dajour.2023.100299_b14) 2022; 111
Weng (10.1016/j.dajour.2023.100299_b8) 2023; 271
Esteban-Pérez (10.1016/j.dajour.2023.100299_b28) 2023; 306
Mirjalili (10.1016/j.dajour.2023.100299_b44) 2016; 47
Biswas (10.1016/j.dajour.2023.100299_b36) 2020; 24
Heidari (10.1016/j.dajour.2023.100299_b39) 2019; 97
References_xml – volume: 50
  start-page: 430
  year: 2018
  end-page: 451
  ident: b38
  article-title: Structural damage identification using an enhanced thermal exchange optimization algorithm
  publication-title: Eng. Optim.
– volume: 5
  year: 2022
  ident: b32
  article-title: A new firefly algorithm with improved global exploration and convergence with application to engineering optimization
  publication-title: Decis. Anal. J.
– volume: 110
  start-page: 69
  year: 2017
  end-page: 84
  ident: b37
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
– volume: 18
  start-page: 84
  year: 2024
  end-page: 105
  ident: b11
  article-title: Temperature dependent optimal power flow using combined particle swarm optimization and differential evolution method
  publication-title: GMSARN Int. J.
– volume: 36
  start-page: 6420
  year: 2011
  end-page: 6432
  ident: b20
  article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow
  publication-title: Energy
– volume: 60
  start-page: 203
  year: 2014
  end-page: 220
  ident: b21
  article-title: Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 5
  year: 2023
  ident: b12
  article-title: An application of improved salp swarm algorithm for optimal power flow solution considering stochastic solar power generation, e-Prime - Advances in Electrical Engineering
  publication-title: Electron. Energy
– volume: 5
  year: 2022
  ident: b33
  article-title: A new flower pollination algorithm with improved convergence and its application to engineering optimization
  publication-title: Decis. Anal. J.
– volume: 271
  year: 2023
  ident: b8
  article-title: A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems
  publication-title: Energy
– volume: 146
  year: 2023
  ident: b26
  article-title: NSGA-III integrating eliminating strategy and dynamic constraint relaxation mechanism to solve many-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
– volume: 300
  start-page: 387
  year: 2022
  end-page: 404
  ident: b29
  article-title: Operations research in optimal power flow: A guide to recent and emerging methodologies and applications
  publication-title: European J. Oper. Res.
– volume: 114
  year: 2022
  ident: b30
  article-title: Multi-objective optimal power flow with stochastic wind and solar power
  publication-title: Appl. Soft Comput.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b39
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b43
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 21
  start-page: 590
  year: 2014
  end-page: 606
  ident: b23
  article-title: Multi-objective optimal power flow using quasi-oppositional teaching learning based optimization
  publication-title: Appl. Soft Comput.
– volume: 10
  start-page: 1636
  year: 2022
  ident: b2
  article-title: Developed Gorilla troops technique for optimal power flow problem in electrical power systems
  publication-title: Mathematics
– volume: 12
  start-page: 7959
  year: 2022
  ident: b6
  article-title: Determining optimal power flow solutions using new adaptive Gaussian TLBO method
  publication-title: Appl. Sci.
– volume: 197
  year: 2022
  ident: b15
  article-title: A ranking-based fuzzy adaptive hybrid crow search algorithm for combined heat and power economic dispatch
  publication-title: Expert Syst. Appl.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b40
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 319
  year: 2022
  ident: b7
  article-title: Power flow management of hybrid system in smart grid requirements using ITSA-MOAT approach
  publication-title: Appl. Energy
– volume: 148
  start-page: 1194
  year: 2017
  end-page: 1207
  ident: b34
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energy Convers. Manage.
– volume: 24
  start-page: 2999
  year: 2020
  end-page: 3023
  ident: b36
  article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
  publication-title: Soft Comput.
– volume: 47
  start-page: 106
  year: 2016
  end-page: 119
  ident: b44
  article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization
  publication-title: Expert Syst. Appl.
– volume: 32
  year: 2023
  ident: b24
  article-title: Multi-objective optimal power flow solutions using improved multi-objective mayfly algorithm (IMOMA)
  publication-title: J. Circuits Syst. Comput.
– volume: 111
  year: 2022
  ident: b14
  article-title: A hybrid grasshopper optimization algorithm and harris hawks optimizer for combined heat and power economic dispatch problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 152
  year: 2023
  ident: b13
  article-title: Stochastic optimal power flow analysis of power systems with wind/PV/ TCSC using a developed Runge Kutta optimizer
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 301
  start-page: 318
  year: 2022
  end-page: 333
  ident: b31
  article-title: Robust approximation of chance constrained DC optimal power flow under decision-dependent uncertainty
  publication-title: European J. Oper. Res.
– volume: 9
  start-page: 186
  year: 2021
  end-page: 215
  ident: b16
  article-title: A different perception of hybrid renewable energy sources integrated multi-objective optimal power flow considering performance parameters and penetration
  publication-title: Smart Sci.
– volume: 14
  start-page: 2305
  year: 2022
  ident: b5
  article-title: ESMA-OPF: Enhanced slime mould algorithm for solving optimal power flow problem
  publication-title: Sustainability
– volume: 13
  start-page: 3330
  year: 2023
  ident: b9
  article-title: Optimal power flow solutions for power system considering electric market and renewable energy
  publication-title: Appl. Sci.
– volume: 13
  start-page: 4835
  year: 2023
  end-page: 4844
  ident: b10
  article-title: Optimal power flow with distributed energy sources using whale optimization algorithm
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 13
  year: 2023
  ident: b27
  article-title: Multi-objective pathfinder algorithm for multi-objective optimal power flow problem with random renewable energy sources: wind, photovoltaic and tidal
  publication-title: Sci. Rep.
– volume: 32
  start-page: 72
  year: 2015
  end-page: 79
  ident: b42
  article-title: Ions motion algorithm for solving optimization problems
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 3
  year: 1979
  end-page: 15
  ident: b1
  article-title: Optimal power flows
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 11
  start-page: 130
  year: 2023
  end-page: 143
  ident: b25
  article-title: A novel hybrid multi-objective evolutionary algorithm for optimal power flow in wind, PV, and PEV systems
  publication-title: J. Oper. Autom. Power Eng.
– volume: 21
  start-page: 352
  year: 2021
  end-page: 365
  ident: b19
  article-title: Techno-economic unified OPF modeling for VSC-HVDC converter installation
  publication-title: Electrica
– volume: 150
  start-page: 1039
  year: 2018
  end-page: 1057
  ident: b35
  article-title: Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power
  publication-title: Energy
– volume: 77
  start-page: 597
  year: 2014
  end-page: 607
  ident: b22
  article-title: A modified teaching- learning based optimization for multi-objective optimal power flow problem
  publication-title: Energy Convers. Manage.
– volume: 149
  year: 2020
  ident: b41
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 250
  year: 2022
  ident: b3
  article-title: An improved heap optimization algorithm for efficient energy management based optimal power flow model
  publication-title: Energy
– volume: 116
  year: 2022
  ident: b4
  article-title: Optimization of optimal power flow problem using multi-objective manta ray foraging optimizer
  publication-title: Appl. Soft Comput.
– volume: 41
  start-page: 283
  year: 2021
  end-page: 303
  ident: b18
  article-title: A unified optimal power flow modeling for VSC-HVDC converter: a novel methodology for optimal installation based on average loadability index
  publication-title: Int. J. Comput. Math. Electr. Electron. Eng.
– volume: 306
  start-page: 1047
  year: 2023
  end-page: 1058
  ident: b28
  article-title: Distributionally robust optimal power flow with contextual information
  publication-title: European J. Oper. Res.
– volume: 10
  year: 2022
  ident: b17
  article-title: Multi-objective optimization framework for optimal power flow problem of hybrid power systems considering security constraints
  publication-title: IEEE Access
– volume: 46
  start-page: 79
  year: 2017
  end-page: 95
  ident: b45
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
– volume: 1
  start-page: 3
  year: 1979
  ident: 10.1016/j.dajour.2023.100299_b1
  article-title: Optimal power flows
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/0142-0615(79)90026-7
– volume: 13
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b27
  article-title: Multi-objective pathfinder algorithm for multi-objective optimal power flow problem with random renewable energy sources: wind, photovoltaic and tidal
  publication-title: Sci. Rep.
– volume: 114
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b30
  article-title: Multi-objective optimal power flow with stochastic wind and solar power
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108045
– volume: 150
  start-page: 1039
  year: 2018
  ident: 10.1016/j.dajour.2023.100299_b35
  article-title: Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.002
– volume: 41
  start-page: 283
  year: 2021
  ident: 10.1016/j.dajour.2023.100299_b18
  article-title: A unified optimal power flow modeling for VSC-HVDC converter: a novel methodology for optimal installation based on average loadability index
  publication-title: Int. J. Comput. Math. Electr. Electron. Eng.
  doi: 10.1108/COMPEL-03-2021-0103
– volume: 116
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b4
  article-title: Optimization of optimal power flow problem using multi-objective manta ray foraging optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108334
– volume: 32
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b24
  article-title: Multi-objective optimal power flow solutions using improved multi-objective mayfly algorithm (IMOMA)
  publication-title: J. Circuits Syst. Comput.
  doi: 10.1142/S0218126623502006
– volume: 47
  start-page: 106
  year: 2016
  ident: 10.1016/j.dajour.2023.100299_b44
  article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.039
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.dajour.2023.100299_b43
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 11
  start-page: 130
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b25
  article-title: A novel hybrid multi-objective evolutionary algorithm for optimal power flow in wind, PV, and PEV systems
  publication-title: J. Oper. Autom. Power Eng.
– volume: 10
  start-page: 1636
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b2
  article-title: Developed Gorilla troops technique for optimal power flow problem in electrical power systems
  publication-title: Mathematics
  doi: 10.3390/math10101636
– volume: 24
  start-page: 2999
  year: 2020
  ident: 10.1016/j.dajour.2023.100299_b36
  article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04077-1
– volume: 301
  start-page: 318
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b31
  article-title: Robust approximation of chance constrained DC optimal power flow under decision-dependent uncertainty
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2021.10.051
– volume: 13
  start-page: 4835
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b10
  article-title: Optimal power flow with distributed energy sources using whale optimization algorithm
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 146
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b26
  article-title: NSGA-III integrating eliminating strategy and dynamic constraint relaxation mechanism to solve many-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110612
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.dajour.2023.100299_b39
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 9
  start-page: 186
  year: 2021
  ident: 10.1016/j.dajour.2023.100299_b16
  article-title: A different perception of hybrid renewable energy sources integrated multi-objective optimal power flow considering performance parameters and penetration
  publication-title: Smart Sci.
  doi: 10.1080/23080477.2021.1916853
– volume: 46
  start-page: 79
  year: 2017
  ident: 10.1016/j.dajour.2023.100299_b45
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0825-8
– volume: 319
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b7
  article-title: Power flow management of hybrid system in smart grid requirements using ITSA-MOAT approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119228
– volume: 18
  start-page: 84
  year: 2024
  ident: 10.1016/j.dajour.2023.100299_b11
  article-title: Temperature dependent optimal power flow using combined particle swarm optimization and differential evolution method
  publication-title: GMSARN Int. J.
– volume: 5
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b33
  article-title: A new flower pollination algorithm with improved convergence and its application to engineering optimization
  publication-title: Decis. Anal. J.
– volume: 50
  start-page: 430
  year: 2018
  ident: 10.1016/j.dajour.2023.100299_b38
  article-title: Structural damage identification using an enhanced thermal exchange optimization algorithm
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2017.1318872
– volume: 271
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b8
  article-title: A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127000
– volume: 197
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b15
  article-title: A ranking-based fuzzy adaptive hybrid crow search algorithm for combined heat and power economic dispatch
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116625
– volume: 10
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b17
  article-title: Multi-objective optimization framework for optimal power flow problem of hybrid power systems considering security constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3209996
– volume: 152
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b13
  article-title: Stochastic optimal power flow analysis of power systems with wind/PV/ TCSC using a developed Runge Kutta optimizer
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2023.109250
– volume: 5
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b32
  article-title: A new firefly algorithm with improved global exploration and convergence with application to engineering optimization
  publication-title: Decis. Anal. J.
– volume: 148
  start-page: 1194
  year: 2017
  ident: 10.1016/j.dajour.2023.100299_b34
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.06.071
– volume: 36
  start-page: 6420
  year: 2011
  ident: 10.1016/j.dajour.2023.100299_b20
  article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow
  publication-title: Energy
  doi: 10.1016/j.energy.2011.09.027
– volume: 13
  start-page: 3330
  issue: 5
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b9
  article-title: Optimal power flow solutions for power system considering electric market and renewable energy
  publication-title: Appl. Sci.
  doi: 10.3390/app13053330
– volume: 14
  start-page: 2305
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b5
  article-title: ESMA-OPF: Enhanced slime mould algorithm for solving optimal power flow problem
  publication-title: Sustainability
  doi: 10.3390/su14042305
– volume: 306
  start-page: 1047
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b28
  article-title: Distributionally robust optimal power flow with contextual information
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2022.10.024
– volume: 32
  start-page: 72
  year: 2015
  ident: 10.1016/j.dajour.2023.100299_b42
  article-title: Ions motion algorithm for solving optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.035
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.dajour.2023.100299_b40
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 12
  start-page: 7959
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b6
  article-title: Determining optimal power flow solutions using new adaptive Gaussian TLBO method
  publication-title: Appl. Sci.
  doi: 10.3390/app12167959
– volume: 21
  start-page: 352
  year: 2021
  ident: 10.1016/j.dajour.2023.100299_b19
  article-title: Techno-economic unified OPF modeling for VSC-HVDC converter installation
  publication-title: Electrica
  doi: 10.5152/electrica.2021.21014
– volume: 77
  start-page: 597
  year: 2014
  ident: 10.1016/j.dajour.2023.100299_b22
  article-title: A modified teaching- learning based optimization for multi-objective optimal power flow problem
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.09.028
– volume: 60
  start-page: 203
  year: 2014
  ident: 10.1016/j.dajour.2023.100299_b21
  article-title: Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.02.017
– volume: 21
  start-page: 590
  year: 2014
  ident: 10.1016/j.dajour.2023.100299_b23
  article-title: Multi-objective optimal power flow using quasi-oppositional teaching learning based optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.04.010
– volume: 250
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b3
  article-title: An improved heap optimization algorithm for efficient energy management based optimal power flow model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123795
– volume: 149
  year: 2020
  ident: 10.1016/j.dajour.2023.100299_b41
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 110
  start-page: 69
  year: 2017
  ident: 10.1016/j.dajour.2023.100299_b37
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 111
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b14
  article-title: A hybrid grasshopper optimization algorithm and harris hawks optimizer for combined heat and power economic dispatch problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104753
– volume: 5
  year: 2023
  ident: 10.1016/j.dajour.2023.100299_b12
  article-title: An application of improved salp swarm algorithm for optimal power flow solution considering stochastic solar power generation, e-Prime - Advances in Electrical Engineering
  publication-title: Electron. Energy
– volume: 300
  start-page: 387
  year: 2022
  ident: 10.1016/j.dajour.2023.100299_b29
  article-title: Operations research in optimal power flow: A guide to recent and emerging methodologies and applications
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2021.10.003
SSID ssj0002811303
Score 2.42348
Snippet This study addresses the challenges associated with optimal power flow (OPF) management in hybrid power systems incorporating diverse energy sources,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100299
SubjectTerms Metaheuristics
Multi-objective optimization
Optimal power flow
Pareto front
Physics-based algorithm
Renewable energy resources
Title A multi-objective thermal exchange optimization model for solving optimal power flow problems in hybrid power systems
URI https://dx.doi.org/10.1016/j.dajour.2023.100299
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2772-6622
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811303
  issn: 2772-6622
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2772-6622
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811303
  issn: 2772-6622
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOqLxEoa184BZlldhNHB9XUMSBVj0UqbfIThzYbZpdZfvYXvhV_EBmbCcb2qrQA5doZSe2d-fb8Xgy3wwhH7TgZWoyFYpICzigmCTUkdShYKWOZSlF4YjCX8XhYXZyIo9Go18dF-ayFk2TrVZy8V9FDW0gbKTOPkDc_aDQAJ9B6HAFscP1nwQ_cUGC4VzPnDJD2xLUbx2YlaP5BnPQE2eegOlq4dhoQ1iXdS_YbmRoYQW1oKrnV4GvO2ODZ39cI8vL9y4HGc-9jfvJl-0JFCY8sWmghwtHdH1v1ZWtNACKq5nWpxjnvX6Z1ZTXyveVqlVnfZQPLH5qEXbUqtKYRb9b4GHCc9sadTr0ZDDeh2p5hcfA0g_T1PGUx-aONq-xs4HGxRSyrsTSrc3A-SVmMCF-yzFOOV7f_mfu7Rt7Yh-p2AXBzXI3So6j5G6UR-QxE4lEXXrwc-3ZY1mMhgFWNewW33E2bWDh7eXcbRMN7JzjTfLcH1DoxAHrBRmZ5iV5dtBn912-IhcTegNi1EOMdhCjQ4hRCzEKEKMeYtRDjFoQUYQY7SBGpw11EPO9HmKvybfP-8cfv4S-fEdYMDC6Q2YyLVVURlywmKdGCzw7p4WMlNRZxRPBEpMULK5KjXkrZZZEqqpiUWhkAgr-hmw088a8JRSMaA3nYK44B2tKpDLmXEc6EzyJ9gpdbRHe_YB54XPbY4mVOr9Pflsk7J9auNwuf7lfdLLJvX3q7M4cEHfvk-8eONN78nT9B9kmG-fthdkhT4rL8-my3bV-o10Lut-RdLkK
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+thermal+exchange+optimization+model+for+solving+optimal+power+flow+problems+in+hybrid+power+systems&rft.jtitle=Decision+analytics+journal&rft.au=Agrawal%2C+Sunilkumar&rft.au=Pandya%2C+Sundaram&rft.au=Jangir%2C+Pradeep&rft.au=Kalita%2C+Kanak&rft.date=2023-09-01&rft.issn=2772-6622&rft.eissn=2772-6622&rft.volume=8&rft.spage=100299&rft_id=info:doi/10.1016%2Fj.dajour.2023.100299&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dajour_2023_100299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-6622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-6622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-6622&client=summon