Topology Optimization for Large‐Scale Unsteady Flow With the Building‐Cube Method

ABSTRACT This study proposes a novel framework for solving large‐scale unsteady flow topology optimization problems. While most previous studies on fluid topology optimization assume steady‐state flows, an increasing number of recent studies deal with unsteady flows, which are more general in engine...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 126; číslo 5
Hlavní autoři: Katsumata, Ryohei, Nishiguchi, Koji, Hoshiba, Hiroya, Kato, Junji
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.03.2025
Wiley Subscription Services, Inc
Témata:
ISSN:0029-5981, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT This study proposes a novel framework for solving large‐scale unsteady flow topology optimization problems. While most previous studies on fluid topology optimization assume steady‐state flows, an increasing number of recent studies deal with unsteady flows, which are more general in engineering. However, unsteady flow topology optimization involves solving the governing and adjoint equations of a time‐evolving system, which requires a significant computational cost for topology optimization with a fine mesh. Therefore, we propose a large‐scale unsteady flow topology optimization based on the building‐cube method (BCM), which is one of the hierarchical Cartesian mesh methods. Although the BCM has been confirmed to have excellent scalability and is suitable for massively parallel computing, there are no studies that have applied it to unsteady flow topology optimization. In the proposed method, the governing and adjoint equations are discretized by a cell‐centered finite volume method based on the BCM, which can achieve high parallel efficiency even with a fine mesh. The effectiveness of the proposed method for large‐scale computing is discussed through several examples of optimization and verification of computational efficiency by weak scaling.
AbstractList This study proposes a novel framework for solving large‐scale unsteady flow topology optimization problems. While most previous studies on fluid topology optimization assume steady‐state flows, an increasing number of recent studies deal with unsteady flows, which are more general in engineering. However, unsteady flow topology optimization involves solving the governing and adjoint equations of a time‐evolving system, which requires a significant computational cost for topology optimization with a fine mesh. Therefore, we propose a large‐scale unsteady flow topology optimization based on the building‐cube method (BCM), which is one of the hierarchical Cartesian mesh methods. Although the BCM has been confirmed to have excellent scalability and is suitable for massively parallel computing, there are no studies that have applied it to unsteady flow topology optimization. In the proposed method, the governing and adjoint equations are discretized by a cell‐centered finite volume method based on the BCM, which can achieve high parallel efficiency even with a fine mesh. The effectiveness of the proposed method for large‐scale computing is discussed through several examples of optimization and verification of computational efficiency by weak scaling.
ABSTRACT This study proposes a novel framework for solving large‐scale unsteady flow topology optimization problems. While most previous studies on fluid topology optimization assume steady‐state flows, an increasing number of recent studies deal with unsteady flows, which are more general in engineering. However, unsteady flow topology optimization involves solving the governing and adjoint equations of a time‐evolving system, which requires a significant computational cost for topology optimization with a fine mesh. Therefore, we propose a large‐scale unsteady flow topology optimization based on the building‐cube method (BCM), which is one of the hierarchical Cartesian mesh methods. Although the BCM has been confirmed to have excellent scalability and is suitable for massively parallel computing, there are no studies that have applied it to unsteady flow topology optimization. In the proposed method, the governing and adjoint equations are discretized by a cell‐centered finite volume method based on the BCM, which can achieve high parallel efficiency even with a fine mesh. The effectiveness of the proposed method for large‐scale computing is discussed through several examples of optimization and verification of computational efficiency by weak scaling.
Author Kato, Junji
Hoshiba, Hiroya
Nishiguchi, Koji
Katsumata, Ryohei
Author_xml – sequence: 1
  givenname: Ryohei
  surname: Katsumata
  fullname: Katsumata, Ryohei
  organization: Nagoya University
– sequence: 2
  givenname: Koji
  orcidid: 0000-0003-2264-2840
  surname: Nishiguchi
  fullname: Nishiguchi, Koji
  email: nishiguchi.koji.r9@f.mail.nagoya-u.ac.jp
  organization: Nagoya University
– sequence: 3
  givenname: Hiroya
  surname: Hoshiba
  fullname: Hoshiba, Hiroya
  organization: Nagoya University
– sequence: 4
  givenname: Junji
  surname: Kato
  fullname: Kato, Junji
  organization: Nagoya University
BookMark eNp10L1OwzAQB3ALFYm2MPAGlpgY0trOh-MRqhaQWjrQitFK_NG6SuPgJKrCxCPwjDwJhrAynXT3uzvpPwKD0pYKgGuMJhghMi2PakIRwskZGGLEaIAIogMw9DMWxCzFF2BU1wcvcIzCIdhubGULu-vgumrM0bxnjbEl1NbBZeZ26uvj80VkhYLbsm5UJju4KOwJvppmD5u9gvetKaQpd97N2lzBlWr2Vl6Cc50Vtbr6q2OwXcw3s8dguX54mt0tA0EYSQIm8yTSKWZKyJT5TuarZkgJQmieaxGngiShJHmcEyxoKKhUeUSkt5GmOhyDm_5u5exbq-qGH2zrSv-Sh5jGUZwQGnl12yvhbF07pXnlzDFzHceI_6TGfWr8NzVvp709mUJ1_0P-vJr3G9-JzXIs
Cites_doi 10.1007/s00158-015-1377-y
10.1007/s00158-019-02406-4
10.1016/j.jsv.2008.03.042
10.1007/s00158-018-1922-6
10.1016/0021-9991(85)90148-2
10.1007/s004190050248
10.1016/j.camwa.2015.12.043
10.1007/s00158-012-0847-8
10.1016/j.cma.2012.11.015
10.1007/s00158-004-0508-7
10.1177/1094342018816377
10.1007/978-3-642-59334-5_7
10.1016/j.compfluid.2012.04.020
10.1002/nme.3151
10.1002/fld.3808
10.1016/j.jcp.2008.08.022
10.1002/fld.1770
10.1007/s12206-010-0328-1
10.1299/mej.17-00120
10.1103/PhysRevLett.100.153904
10.1016/j.ijheatmasstransfer.2020.119681
10.1002/nme.1468
10.1137/0917013
10.1007/s11831-014-9141-9
10.1016/j.jcp.2011.05.004
10.1016/j.ijheatmasstransfer.2014.11.005
10.1002/fld.426
10.1002/nme.1560
10.1007/s00158-012-0782-8
10.1016/0045-7825(88)90086-2
10.1002/nme.6923
10.1023/A:1016042505922
10.1016/j.cma.2019.112784
10.1007/BF01650949
10.1002/nme.1900
10.1016/j.icheatmasstransfer.2016.03.022
10.1016/j.jcp.2021.110630
10.4271/2014-01-0580
10.1016/j.cma.2021.113734
10.1002/nme.2616
10.1002/nme.6896
10.1016/j.cma.2016.01.014
10.1002/fld.3721
10.1299/jcst.2.435
10.1016/j.ijsolstr.2008.05.034
10.1007/s00158-007-0128-0
10.1177/10943420221116056
10.1080/10407790.2013.791785
10.1007/978-3-319-11541-2_10
10.2514/3.8284
10.1016/j.jcp.2014.06.004
10.1080/10618562.2017.1390085
10.1002/nme.5954
10.1007/BF03179047
10.1007/s00158-005-0584-3
10.1002/nme.1620240207
10.1016/j.compgeo.2024.106718
10.1002/nme.1974
10.1016/j.cam.2007.11.016
10.1016/S0017-9310(99)00008-3
10.1080/0305215X.2012.717074
10.1016/j.jcp.2015.12.008
10.1016/j.jcp.2015.12.023
10.1016/j.compfluid.2019.05.010
10.1016/j.cma.2017.03.007
10.1007/s00158-010-0591-x
10.1016/j.ast.2017.08.038
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
– notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.70016
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage n/a
ExternalDocumentID 10_1002_nme_70016
NME70016
Genre researchArticle
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: 22H00226; 24K14968
GroupedDBID -~X
.3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
.4S
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2926-9db64f819ecd89926acd8f90ec227bbfc58c263d2b5b21c73c7deb42d9924f7f3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001435943400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:09:58 EDT 2025
Sat Nov 29 07:53:12 EST 2025
Sun Jul 06 04:45:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2926-9db64f819ecd89926acd8f90ec227bbfc58c263d2b5b21c73c7deb42d9924f7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2264-2840
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.70016
PQID 3175456274
PQPubID 996376
PageCount 29
ParticipantIDs proquest_journals_3175456274
crossref_primary_10_1002_nme_70016
wiley_primary_10_1002_nme_70016_NME70016
PublicationCentury 2000
PublicationDate 15 March 2025
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 15 March 2025
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2009; 46
2006; 31
2017; 4
2020; 361
2016; 307
2020; 61
2021; 446
2013; 64
2016; 75
2013; 71
2007; 70
2008; 35
2008; 227
1999; 42
2007; 71
2016; 303
2016; 71
2008; 222
2008; 100
2008; 2
1988; 71
2011; 230
2022; 123
2017; 31
2010; 24
2017; 70
2015; 81
2006; 65
2006; 66
2005; 30
2008; 317
1983; 21
2022; 36
2019; 117
2017; 320
2007; 21
2014; 7
2003; 41
1985; 59
2013; 47
1996; 17
1989; 1
2019; 33
2013; 45
1999; 69
2008; 58
2016; 53
2003
2014; 274
2019; 188
1987; 24
2009; 79
2020; 154
2021; 378
2013; 73
2013; 255
2013; 80
2011; 44
2011; 87
2024; 176
2015
2001; 2
2012; 46
2016; 23
2018; 58
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 66
  start-page: 461
  issue: 3
  year: 2006
  end-page: 484
  article-title: Topology Optimization of Creeping Fluid Flows Using a Darcy–Stokes Finite Element
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 71
  start-page: 197
  issue: 2
  year: 1988
  end-page: 224
  article-title: Generating Optimal Topologies in Structural Design Using a Homogenization Method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 123
  start-page: 1954
  issue: 9
  year: 2022
  end-page: 1990
  article-title: Optimum Design and Thermal Modeling for 2D and 3D Natural Convection Problems Incorporating Level Set‐Based Topology Optimization With Body‐Fitted Mesh
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 307
  start-page: 355
  year: 2016
  end-page: 377
  article-title: Topology Optimization in Thermal‐Fluid Flow Using the Lattice Boltzmann Method
  publication-title: Journal of Computational Physics
– volume: 2
  start-page: 435
  issue: 4
  year: 2008
  end-page: 446
  article-title: Efficient and Robust Cartesian Mesh Generation for Building‐Cube Method
  publication-title: Journal of Computational Science and Technology
– volume: 79
  start-page: 1284
  issue: 10
  year: 2009
  end-page: 1308
  article-title: Level Set Topology Optimization of Fluids in Stokes Flow
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 31
  start-page: 476
  issue: 10
  year: 2017
  end-page: 487
  article-title: Adaptive Mesh Refinement and Load Balancing Based on Multi‐Level Block‐Structured Cartesian Mesh
  publication-title: International Journal of Computational Fluid Dynamics
– volume: 36
  start-page: 568
  issue: 5–6
  year: 2022
  article-title: Digital Transformation of Droplet/Aerosol Infection Risk Assessment Realized on “Fugaku” for the Fight Against COVID‐19
  publication-title: International Journal of High Performance Computing Applications
– volume: 64
  start-page: 239
  issue: 3
  year: 2013
  end-page: 262
  article-title: Topology Optimization of the Transient Heat Conduction Problem on a Triangular Mesh
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
– volume: 7
  start-page: 528
  issue: 3
  year: 2014
  end-page: 537
  article-title: Vehicle Aerodynamics Simulation for the Next Generation on the K Computer: Part 2 Use of Dirty CAD Data With Modified Cartesian Grid Approach
  publication-title: SAE International Journal of Passenger Cars ‐ Mechanical Systems
– volume: 33
  start-page: 678
  issue: 4
  year: 2019
  end-page: 698
  article-title: CUBE: A Scalable Framework for Large‐Scale Industrial Simulations
  publication-title: International Journal of High Performance Computing Applications
– volume: 17
  start-page: 180
  issue: 1
  year: 1996
  end-page: 192
  article-title: On Red‐Black SOR Smoothing in Multigrid
  publication-title: SIAM Journal on Scientific Computing
– volume: 75
  start-page: 52
  year: 2016
  end-page: 58
  article-title: Framework for Simulation of Natural Convection in Practical Applications
  publication-title: International Communications in Heat and Mass Transfer
– start-page: 77
  year: 2003
  end-page: 81
– volume: 41
  start-page: 77
  issue: 1
  year: 2003
  end-page: 107
  article-title: Topology Optimization of Fluids in Stokes Flow
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 44
  start-page: 31
  issue: 1
  year: 2011
  end-page: 37
  article-title: Topology Optimization of Fluid Channels With Flow Rate Equality Constraints
  publication-title: Structural and Multidisciplinary Optimization
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  end-page: 202
  article-title: Optimal Shape Design as a Material Distribution Problem
  publication-title: Structural Optimization
– volume: 222
  start-page: 487
  issue: 2
  year: 2008
  end-page: 499
  article-title: Shape‐Topology Optimization for Navier–Stokes Problem Using Variational Level Set Method
  publication-title: Journal of Computational and Applied Mathematics
– volume: 71
  start-page: 833
  issue: 3
  year: 2016
  end-page: 848
  article-title: Adjoint Lattice Boltzmann for Topology Optimization on Multi‐GPU Architecture
  publication-title: Computers & Mathematics with Applications
– volume: 188
  start-page: 86
  year: 2019
  end-page: 101
  article-title: Topology Optimization for Fluid Flows Using the MPS Method Incorporating the Level Set Method
  publication-title: Computers & Fluids
– volume: 117
  start-page: 221
  issue: 2
  year: 2019
  end-page: 248
  article-title: Full Eulerian Deformable Solid‐Fluid Interaction Scheme Based on Building‐Cube Method for Large‐Scale Parallel Computing
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 71
  start-page: 1261
  issue: 11
  year: 2007
  end-page: 1296
  article-title: Structural Topology Optimization for the Design of Broadband Dielectric Resonator Antennas Using the Finite Difference Time Domain Technique
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 21
  start-page: 1525
  issue: 11
  year: 1983
  end-page: 1532
  article-title: Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
  publication-title: AIAA Journal
– volume: 255
  start-page: 306
  year: 2013
  end-page: 321
  article-title: Topology Optimization of Steady Navier–Stokes Flow With Body Force
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 303
  start-page: 288
  year: 2016
  end-page: 311
  article-title: Topology Optimization for Turbulent Flow With Spalart–Allmaras Model
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2015
– volume: 446
  year: 2021
  article-title: Level Set‐Based Topology Optimization for Two Dimensional Turbulent Flow Using an Immersed Boundary Method
  publication-title: Journal of Computational Physics
– volume: 154
  year: 2020
  article-title: Topology Optimization of Heat Sinks for Instantaneous Chip Cooling Using a Transient Pseudo‐3D Thermofluid Model
  publication-title: International Journal of Heat and Mass Transfer
– volume: 21
  start-page: 1306
  issue: 8
  year: 2007
  end-page: 1319
  article-title: High‐Density Mesh Flow Computations by Building‐Cube Method
  publication-title: Journal of Mechanical Science and Technology
– volume: 361
  year: 2020
  article-title: Topology Optimization Method With Finite Elements Based on the ‐ Turbulence Model
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 46
  start-page: 2060
  issue: 10
  year: 2009
  end-page: 2074
  article-title: Topology Optimization of a Plate Coupled With Acoustic Cavity
  publication-title: International Journal of Solids and Structures
– volume: 87
  start-page: 1229
  issue: 13
  year: 2011
  end-page: 1253
  article-title: Topology Optimization for Unsteady Flow
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 80
  start-page: 116
  year: 2013
  end-page: 127
  article-title: Parallel Implementation of Large‐Scale CFD Data Compression Toward Aeroacoustic Analysis
  publication-title: Computers & Fluids
– volume: 46
  start-page: 311
  issue: 3
  year: 2012
  end-page: 326
  article-title: Levelset Based Fluid Topology Optimization Using the Extended Finite Element Method
  publication-title: Structural and Multidisciplinary Optimization
– volume: 320
  start-page: 444
  year: 2017
  end-page: 473
  article-title: CutFEM Topology Optimization of 3D Laminar Incompressible Flow Problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 73
  start-page: 462
  issue: 5
  year: 2013
  end-page: 476
  article-title: Wavelet‐Based Data Compression for Flow Simulation on Block‐Structured Cartesian Mesh
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 176
  year: 2024
  article-title: Multi‐Fidelity Learned Emulator for Waves and Porous Coastal Structures Interaction Modelling
  publication-title: Computers and Geotechnics
– volume: 30
  start-page: 181
  issue: 3
  year: 2005
  end-page: 192
  article-title: Topology Optimization of Channel Flow Problems
  publication-title: Structural and Multidisciplinary Optimization
– volume: 70
  start-page: 1049
  issue: 9
  year: 2007
  end-page: 1075
  article-title: Topology Optimization of Acoustic‐Structure Interaction Problems Using a Mixed Finite Element Formulation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 378
  year: 2021
  article-title: Topology‐Free Immersed Boundary Method for Incompressible Turbulence Flows: An Aerodynamic Simulation for “Dirty” CAD Geometry
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 31
  start-page: 251
  issue: 4
  year: 2006
  end-page: 259
  article-title: Topology Optimization of Heat Conduction Problems Using the Finite Volume Method
  publication-title: Structural and Multidisciplinary Optimization
– volume: 53
  start-page: 1047
  issue: 5
  year: 2016
  end-page: 1067
  article-title: A Level‐Set Method for Steady‐State and Transient Natural Convection Problems
  publication-title: Structural and Multidisciplinary Optimization
– volume: 24
  start-page: 1225
  issue: 6
  year: 2010
  end-page: 1233
  article-title: Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
  publication-title: Journal of Mechanical Science and Technology
– volume: 4
  start-page: 17
  issue: 3
  year: 2017
  end-page: 120
  article-title: Local‐In‐Time Adjoint‐Based Topology Optimization of Unsteady Fluid Flows Using the Lattice Boltzmann Method
  publication-title: Mechanical Engineering Journal
– volume: 23
  start-page: 255
  issue: 2
  year: 2016
  end-page: 299
  article-title: Continuous Adjoint Methods for Turbulent Flows, Applied to Shape and Topology Optimization: Industrial Applications
  publication-title: Archives of Computational Methods in Engineering
– volume: 274
  start-page: 158
  year: 2014
  end-page: 181
  article-title: Topology Optimization Using the Lattice Boltzmann Method Incorporating Level Set Boundary Expressions
  publication-title: Journal of Computational Physics
– volume: 307
  start-page: 291
  year: 2016
  end-page: 307
  article-title: Topology Optimization of Unsteady Flow Problems Using the Lattice Boltzmann Method
  publication-title: Journal of Computational Physics
– volume: 2
  start-page: 413
  issue: 4
  year: 2001
  end-page: 430
  article-title: An Overview of First‐Order Model Management for Engineering Optimization
  publication-title: Optimization and Engineering
– volume: 81
  start-page: 878
  year: 2015
  end-page: 888
  article-title: A Topology Optimization Method for a Coupled Thermal–Fluid Problem Using Level Set Boundary Expressions
  publication-title: International Journal of Heat and Mass Transfer
– volume: 227
  start-page: 10178
  issue: 24
  year: 2008
  end-page: 10195
  article-title: A Variational Level Set Method for the Topology Optimization of Steady‐State Navier–Stokes Flow
  publication-title: Journal of Computational Physics
– volume: 58
  start-page: 817
  issue: 2
  year: 2018
  end-page: 822
  article-title: Large‐Scale Topology Optimization Incorporating Local‐In‐Time Adjoint‐Based Method for Unsteady Thermal‐Fluid Problem
  publication-title: Structural and Multidisciplinary Optimization
– volume: 61
  start-page: 1071
  issue: 3
  year: 2020
  end-page: 1085
  article-title: Multifidelity Design Guided by Topology Optimization
  publication-title: Structural and Multidisciplinary Optimization
– volume: 70
  start-page: 615
  year: 2017
  end-page: 625
  article-title: Numerical Study on Jet‐Wake Vortex Interaction of Aircraft Configuration
  publication-title: Aerospace Science and Technology
– volume: 100
  issue: 15
  year: 2008
  article-title: Geometric Properties of Optimal Photonic Crystals
  publication-title: Physical Review Letters
– volume: 317
  start-page: 557
  issue: 3
  year: 2008
  end-page: 575
  article-title: Acoustic Design by Topology Optimization
  publication-title: Journal of Sound and Vibration
– volume: 58
  start-page: 861
  issue: 8
  year: 2008
  end-page: 877
  article-title: A Continuous Adjoint Formulation for the Computation of Topological and Surface Sensitivities of Ducted Flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 45
  start-page: 941
  issue: 8
  year: 2013
  end-page: 961
  article-title: Adjoint‐Based Constrained Topology Optimization for Viscous Flows, Including Heat Transfer
  publication-title: Engineering Optimization
– volume: 65
  start-page: 975
  issue: 7
  year: 2006
  end-page: 1001
  article-title: A High‐Level Programming‐Language Implementation of Topology Optimization Applied to Steady‐State Navier–Stokes Flow
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 59
  start-page: 308
  issue: 2
  year: 1985
  end-page: 323
  article-title: Application of a Fractional‐Step Method to Incompressible Navier‐Stokes Equations
  publication-title: Journal of Computational Physics
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  end-page: 373
  article-title: The Method of Moving Asymptotes—A New Method for Structural Optimization
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 42
  start-page: 3361
  issue: 17
  year: 1999
  end-page: 3371
  article-title: Shape and Topology Design for Heat Conduction by Evolutionary Structural Optimization
  publication-title: International Journal of Heat and Mass Transfer
– volume: 123
  start-page: 1294
  issue: 5
  year: 2022
  end-page: 1328
  article-title: Eulerian Finite Volume Formulation Using Lagrangian Marker Particles for Incompressible Fluid‐Structure Interaction Problems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 69
  start-page: 635
  issue: 9
  year: 1999
  end-page: 654
  article-title: Material Interpolation Schemes in Topology Optimization
  publication-title: Archive of Applied Mechanics
– volume: 71
  start-page: 1475
  issue: 12
  year: 2013
  end-page: 1493
  article-title: Optimization of Unsteady Incompressible Navier–Stokes Flows Using Variational Level Set Method
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 35
  start-page: 175
  issue: 2
  year: 2008
  end-page: 180
  article-title: Topology Optimization of Large Scale Stokes Flow Problems
  publication-title: Structural and Multidisciplinary Optimization
– volume: 47
  start-page: 555
  issue: 4
  year: 2013
  end-page: 570
  article-title: Topology Optimization of Steady and Unsteady Incompressible Navier–Stokes Flows Driven by Body Forces
  publication-title: Structural and Multidisciplinary Optimization
– volume: 230
  start-page: 6688
  issue: 17
  year: 2011
  end-page: 6708
  article-title: Topology Optimization of Unsteady Incompressible Navier–Stokes Flows
  publication-title: Journal of Computational Physics
– ident: e_1_2_8_38_1
  doi: 10.1007/s00158-015-1377-y
– ident: e_1_2_8_67_1
  doi: 10.1007/s00158-019-02406-4
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jsv.2008.03.042
– ident: e_1_2_8_44_1
  doi: 10.1007/s00158-018-1922-6
– ident: e_1_2_8_62_1
  doi: 10.1016/0021-9991(85)90148-2
– ident: e_1_2_8_4_1
  doi: 10.1007/s004190050248
– ident: e_1_2_8_46_1
  doi: 10.1016/j.camwa.2015.12.043
– ident: e_1_2_8_40_1
  doi: 10.1007/s00158-012-0847-8
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cma.2012.11.015
– ident: e_1_2_8_6_1
  doi: 10.1007/s00158-004-0508-7
– ident: e_1_2_8_54_1
  doi: 10.1177/1094342018816377
– ident: e_1_2_8_48_1
  doi: 10.1007/978-3-642-59334-5_7
– ident: e_1_2_8_56_1
  doi: 10.1016/j.compfluid.2012.04.020
– ident: e_1_2_8_34_1
  doi: 10.1002/nme.3151
– ident: e_1_2_8_57_1
  doi: 10.1002/fld.3808
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jcp.2008.08.022
– ident: e_1_2_8_23_1
  doi: 10.1002/fld.1770
– ident: e_1_2_8_31_1
  doi: 10.1007/s12206-010-0328-1
– ident: e_1_2_8_43_1
  doi: 10.1299/mej.17-00120
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevLett.100.153904
– ident: e_1_2_8_45_1
  doi: 10.1016/j.ijheatmasstransfer.2020.119681
– ident: e_1_2_8_16_1
  doi: 10.1002/nme.1468
– ident: e_1_2_8_63_1
  doi: 10.1137/0917013
– ident: e_1_2_8_27_1
  doi: 10.1007/s11831-014-9141-9
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jcp.2011.05.004
– ident: e_1_2_8_32_1
  doi: 10.1016/j.ijheatmasstransfer.2014.11.005
– ident: e_1_2_8_5_1
  doi: 10.1002/fld.426
– ident: e_1_2_8_15_1
  doi: 10.1002/nme.1560
– ident: e_1_2_8_21_1
  doi: 10.1007/s00158-012-0782-8
– ident: e_1_2_8_2_1
  doi: 10.1016/0045-7825(88)90086-2
– ident: e_1_2_8_47_1
  doi: 10.1002/nme.6923
– ident: e_1_2_8_66_1
  doi: 10.1023/A:1016042505922
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cma.2019.112784
– ident: e_1_2_8_3_1
  doi: 10.1007/BF01650949
– ident: e_1_2_8_14_1
  doi: 10.1002/nme.1900
– ident: e_1_2_8_51_1
  doi: 10.1016/j.icheatmasstransfer.2016.03.022
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jcp.2021.110630
– ident: e_1_2_8_50_1
  doi: 10.4271/2014-01-0580
– ident: e_1_2_8_55_1
  doi: 10.1016/j.cma.2021.113734
– ident: e_1_2_8_20_1
  doi: 10.1002/nme.2616
– ident: e_1_2_8_60_1
  doi: 10.1002/nme.6896
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cma.2016.01.014
– ident: e_1_2_8_36_1
  doi: 10.1002/fld.3721
– ident: e_1_2_8_53_1
  doi: 10.1299/jcst.2.435
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ijsolstr.2008.05.034
– ident: e_1_2_8_17_1
  doi: 10.1007/s00158-007-0128-0
– ident: e_1_2_8_61_1
  doi: 10.1177/10943420221116056
– ident: e_1_2_8_9_1
  doi: 10.1080/10407790.2013.791785
– ident: e_1_2_8_37_1
  doi: 10.1007/978-3-319-11541-2_10
– ident: e_1_2_8_64_1
  doi: 10.2514/3.8284
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jcp.2014.06.004
– ident: e_1_2_8_58_1
  doi: 10.1080/10618562.2017.1390085
– ident: e_1_2_8_59_1
  doi: 10.1002/nme.5954
– ident: e_1_2_8_49_1
  doi: 10.1007/BF03179047
– ident: e_1_2_8_8_1
  doi: 10.1007/s00158-005-0584-3
– ident: e_1_2_8_65_1
  doi: 10.1002/nme.1620240207
– ident: e_1_2_8_68_1
  doi: 10.1016/j.compgeo.2024.106718
– ident: e_1_2_8_10_1
  doi: 10.1002/nme.1974
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cam.2007.11.016
– ident: e_1_2_8_7_1
  doi: 10.1016/S0017-9310(99)00008-3
– ident: e_1_2_8_26_1
  doi: 10.1080/0305215X.2012.717074
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jcp.2015.12.008
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jcp.2015.12.023
– ident: e_1_2_8_39_1
  doi: 10.1016/j.compfluid.2019.05.010
– ident: e_1_2_8_41_1
  doi: 10.1016/j.cma.2017.03.007
– ident: e_1_2_8_24_1
  doi: 10.1007/s00158-010-0591-x
– ident: e_1_2_8_52_1
  doi: 10.1016/j.ast.2017.08.038
SSID ssj0011503
Score 2.4638302
Snippet ABSTRACT This study proposes a novel framework for solving large‐scale unsteady flow topology optimization problems. While most previous studies on fluid...
This study proposes a novel framework for solving large‐scale unsteady flow topology optimization problems. While most previous studies on fluid topology...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms building‐cube method
Computational efficiency
Computing costs
Finite volume method
large‐scale computing
Optimization
Topology optimization
Unsteady flow
Title Topology Optimization for Large‐Scale Unsteady Flow With the Building‐Cube Method
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.70016
https://www.proquest.com/docview/3175456274
Volume 126
WOSCitedRecordID wos001435943400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4geNCDD9SIrzTGg5dVdthnPClCPAgShchts-22kUTAuKjh5k_wN_pLnO4D8WBi4ml3k2mz6XSm37TTbwCOaEnHMHRNw1fS1Fs3yuBcmQaF10pzwQg39JJiE2677fX7fqcAZ_ldmJQfYrbhpi0j8dfawEMen86Rhg7liT40dRagpC9VUeRVurxt9q5nhwiEdWp5hofte2ZOLFTF01njn8vRN8acR6rJUtNc_ddPrsFKhjDZeTol1qEgR2VYzdAmy2w5LsPyHBUhfbVm_K3xBvS6ae2EKbshlzLM7moyArjsWqeOf75_3JFyJeuNklkyZc3H8Ru7H0weGHXDLrJi2yRXf-GStZI61ZvQaza69SsjK8BgCPTRMfyIO5YizCBFRHEZOiE9lV-VAtEllQrbE-jUIuQ2R1O4NeFGklsYkaylXFXbguJoPJLbwHSeYBR56NtKWL7HyQlLW5AHkVHVCRErcJjrIXhKeTaClFEZAxrEIBnECuzlGgoyU4sDDYB0GOdaFThOdPF7B0G71Uhedv4uugtLqGv-6hw-ew-Kk-cXuQ-L4nUyiJ8PYAGtzkE2874ALyHcKA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60CurBR1WszyAevKztzr7Bi4qlYlsLttjbsptNsGBbsVXx5k_wN_pLnGR3az0IgqfdhSQsmczMl8nkG4AjcukYRZ5pBFKYKnQjjTiWpkHba6m4YLgX-brYhNds-t1u0JqB0_wuTMoPMQm4Kc3Q9lopuApIl6dYQ_viRJ2aurMwZ5NXUgl9aLcmZwgEdaw8wcMJfDPnFapgedL1pzf6hpjTQFV7murK__5xFZYzhMnO0iWxBjNiUISVDG2yTJdHRViaoiKkr8aEv3W0Dp12Wjvhjd2QSelndzUZAVxWV6njn-8ftyRcwToDvUreWPVh-MrueuN7RsOw86zYNrW7eI4Fa-g61RvQqV62L2pGVoDB4BigawRJ7NqSMIPgCe3L0I3oKYOK4IgeiZQ7PkfXSjB2YjS5Z3EvEbGNCbW1pSetTSgMhgOxBUzlCSaJj4EjuR34MRlh4XCyICKpuBFiCQ5zQYSPKc9GmDIqY0iTGOpJLMFuLqIwU7VRqACQ2sZ5dgmOtTB-HyBsNi71y_bfmx7AQq3dqIf1q-b1Diyiqv-r8vmcXSiMn57FHszzl3Fv9LSvl98XHkvdpg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IXrwLdbnIh68xDbTJJuAF19F0daCFr2FZB8oaFtsVbz5E_yN_hJnN0mtB0HwlAR2l7CzM_PN7uw3ADvk0jFJuOtEWrlm60Y7aapdh8JrbbhgBE9CW2yCNxrh7W3UHIH94i5Mxg8x2HAzmmHttVFw1ZW6PMQa-qj2zKlpMArjns-tWqLXHJwhENSpFgkefhS6Ba9QBcuDrj-90TfEHAaq1tPUZv_3j3MwkyNMdpAtiXkYUe0FmM3RJst1ubcA00NUhPRVH_C39hahdZ3VTnhjl2RSHvO7mowALrswqeOf7x9XJFzFWm27St5Y7aHzym7u-3eMhmGHebFtanf0nCpWt3Wql6BVO7k-OnXyAgyOwAgDJ5Jp4GnCDEpIisswSOipo4oSiJxEKvxQYFCVmPopuoJXBZcq9VBSW09zXV2GsXanrVaAmTxBKUOMfC28KEzJCCtfkAVRshIkiCXYLgQRdzOejThjVMaYJjG2k1iC9UJEca5qvdgAIBPGca8Eu1YYvw8QN-on9mX17023YLJ5XIsvzhrnazCFpvyvSefz12Gs__SsNmBCvPTve0-bdvV9Adwn3SE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+Optimization+for+Large%E2%80%90Scale+Unsteady+Flow+With+the+Building%E2%80%90Cube+Method&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Katsumata%2C+Ryohei&rft.au=Nishiguchi%2C+Koji&rft.au=Hoshiba%2C+Hiroya&rft.au=Kato%2C+Junji&rft.date=2025-03-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=126&rft.issue=5&rft_id=info:doi/10.1002%2Fnme.70016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon