Solving Multiobjective Fuzzy Job-Shop Scheduling Problem by a Hybrid Adaptive Differential Evolution Algorithm
The job-shop scheduling problem (JSP) is NP hard, which has very important practical significance. Because of many uncontrollable factors, such as machine delay or human factors, it is difficult to use a single real-number to express the processing and completion time of the jobs. JSP with fuzzy pro...
Uložené v:
| Vydané v: | IEEE transactions on industrial informatics Ročník 18; číslo 12; s. 8519 - 8528 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The job-shop scheduling problem (JSP) is NP hard, which has very important practical significance. Because of many uncontrollable factors, such as machine delay or human factors, it is difficult to use a single real-number to express the processing and completion time of the jobs. JSP with fuzzy processing time and completion time (FJSP) can model the scheduling more comprehensively, which benefits from the developments of fuzzy sets. Fuzzy relative entropy leads to a method that can evaluate the quality of a feasible solution following the comparison between the actual value and the ideal value (the due date). Therefore, the multiobjective FJSP can be transformed into a single-objective optimization problem and solved by a hybrid adaptive differential evolution (HADE) algorithm. The maximum completion time, the total delay time, and the total energy consumption of jobs will be considered. HADE adopts a mutation strategy based on DE-current-to-best. Its parameters (CR and F ) are all made adaptive and normally distributed. The new individuals are selected according to the fitness value (FRE) obtained from a population consisting of N parents and N children in HADE. The algorithm is analyzed from different viewpoints. As the experimental results demonstrate, the performance of the HADE algorithm is better than those of some other state-of-the-art algorithms (namely, ant colony optimization, artificial bee colony, and particle swarm optimization). |
|---|---|
| AbstractList | The job-shop scheduling problem (JSP) is NP hard, which has very important practical significance. Because of many uncontrollable factors, such as machine delay or human factors, it is difficult to use a single real-number to express the processing and completion time of the jobs. JSP with fuzzy processing time and completion time (FJSP) can model the scheduling more comprehensively, which benefits from the developments of fuzzy sets. Fuzzy relative entropy leads to a method that can evaluate the quality of a feasible solution following the comparison between the actual value and the ideal value (the due date). Therefore, the multiobjective FJSP can be transformed into a single-objective optimization problem and solved by a hybrid adaptive differential evolution (HADE) algorithm. The maximum completion time, the total delay time, and the total energy consumption of jobs will be considered. HADE adopts a mutation strategy based on DE-current-to-best. Its parameters (CR and F ) are all made adaptive and normally distributed. The new individuals are selected according to the fitness value (FRE) obtained from a population consisting of N parents and N children in HADE. The algorithm is analyzed from different viewpoints. As the experimental results demonstrate, the performance of the HADE algorithm is better than those of some other state-of-the-art algorithms (namely, ant colony optimization, artificial bee colony, and particle swarm optimization). |
| Author | Pedrycz, Witold Gao, Da Wang, Gai-Ge |
| Author_xml | – sequence: 1 givenname: Gai-Ge orcidid: 0000-0002-3295-8972 surname: Wang fullname: Wang, Gai-Ge email: gaigewang@163.com organization: Department of Computer Science and Technology, Ocean University of China, Qingdao, China – sequence: 2 givenname: Da surname: Gao fullname: Gao, Da email: gaoda@stu.ouc.edu.cn organization: Department of Computer Science and Technology, Ocean University of China, Qingdao, China – sequence: 3 givenname: Witold orcidid: 0000-0002-9335-9930 surname: Pedrycz fullname: Pedrycz, Witold email: wpedrycz@ualberta.ca organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada |
| BookMark | eNp9kD1PwzAQhi0EEp87Eosl5pSzHSfxWAGFIhBIhTmynQt15cbFSSqVX09KEQMD093wPu-dnmOy34QGCTlnMGIM1NXrdDriwPlIsExmItsjR0ylLAGQsD_sUrJEcBCH5LhtFwAiB6GOSDMLfu2ad_rU-84Fs0DbuTXSSf_5uaEPwSSzeVjRmZ1j1ftt8CUG43FJzYZqer8x0VV0XOnVN3bj6hojNp3Tnt6ug--H0oaO_XuIrpsvT8lBrX2LZz_zhLxNbl-v75PH57vp9fgxsVyxLqnrQslaWiNTkxdcG27zArIKoFIsRywEVogZs5YpzgUwnQKovGaZkZKnIE7I5a53FcNHj21XLkIfm-FkyXOmpJTFdyrbpWwMbRuxLq3r9PbjLmrnSwbl1m05uC23bssftwMIf8BVdEsdN_8hFzvEIeJvXOWSiTQTX7MrhtI |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_3390_app13084795 crossref_primary_10_1007_s11227_025_07095_z crossref_primary_10_1016_j_knosys_2023_111227 crossref_primary_10_1002_cpe_8312 crossref_primary_10_32604_cmes_2024_049756 crossref_primary_10_1109_JIOT_2025_3532782 crossref_primary_10_3390_math10111827 crossref_primary_10_1016_j_asoc_2024_111522 crossref_primary_10_1016_j_engappai_2025_111951 crossref_primary_10_3233_JIFS_230410 crossref_primary_10_1093_jcde_qwac119 crossref_primary_10_1016_j_aei_2023_102230 crossref_primary_10_1109_TETCI_2024_3367809 crossref_primary_10_1093_jcde_qwac112 crossref_primary_10_1002_cta_4377 crossref_primary_10_1109_TCYB_2023_3336656 crossref_primary_10_1007_s42235_022_00292_z crossref_primary_10_1016_j_cie_2024_110835 crossref_primary_10_1093_jcde_qwac111 crossref_primary_10_1177_14727978251364430 crossref_primary_10_1093_jcde_qwad044 crossref_primary_10_3390_biomimetics9090516 crossref_primary_10_1109_TII_2023_3326533 crossref_primary_10_1016_j_ins_2023_119139 crossref_primary_10_1155_2022_8011003 crossref_primary_10_3390_s23177508 crossref_primary_10_1016_j_dajour_2023_100356 crossref_primary_10_3390_math10234607 crossref_primary_10_3390_app122312179 crossref_primary_10_1080_0305215X_2024_2425724 crossref_primary_10_3389_fninf_2022_1041799 crossref_primary_10_1016_j_knosys_2023_110808 crossref_primary_10_3389_fninf_2022_1063048 crossref_primary_10_1016_j_eswa_2022_118134 crossref_primary_10_1016_j_solener_2022_06_046 crossref_primary_10_1007_s00607_025_01504_0 crossref_primary_10_1016_j_eswa_2022_118810 crossref_primary_10_1109_ACCESS_2023_3312010 crossref_primary_10_1109_TMTT_2024_3358300 crossref_primary_10_1016_j_compbiomed_2022_106227 crossref_primary_10_1016_j_asoc_2024_111876 crossref_primary_10_1016_j_nima_2025_170651 crossref_primary_10_1155_2022_1867321 crossref_primary_10_1016_j_cie_2025_111354 crossref_primary_10_3390_math11102301 crossref_primary_10_1016_j_cor_2024_106785 crossref_primary_10_1093_jcde_qwac107 crossref_primary_10_1016_j_swevo_2025_101884 crossref_primary_10_1109_TSIPI_2024_3490512 crossref_primary_10_1016_j_swevo_2023_101400 crossref_primary_10_1016_j_ins_2025_121906 crossref_primary_10_1007_s10586_024_04915_4 crossref_primary_10_1007_s11432_023_3895_3 crossref_primary_10_1007_s10878_024_01176_0 crossref_primary_10_54097_jceim_v10i3_8705 crossref_primary_10_1016_j_eswa_2023_119731 crossref_primary_10_1109_ACCESS_2024_3443139 crossref_primary_10_26599_TST_2023_9010098 crossref_primary_10_26599_TST_2023_9010015 crossref_primary_10_1016_j_compbiomed_2023_106657 crossref_primary_10_1016_j_eswa_2023_121417 crossref_primary_10_1038_s41598_025_11566_x crossref_primary_10_1002_dac_5760 crossref_primary_10_1016_j_engappai_2025_110528 crossref_primary_10_1016_j_cie_2024_110738 crossref_primary_10_3390_math10122117 crossref_primary_10_4218_etrij_2023_0083 crossref_primary_10_1007_s11227_024_06498_8 crossref_primary_10_32604_cmes_2023_026098 crossref_primary_10_3390_math11081811 crossref_primary_10_1177_00368504231175328 crossref_primary_10_1007_s12597_024_00763_3 crossref_primary_10_1016_j_cie_2023_109454 crossref_primary_10_1016_j_eswa_2022_119041 crossref_primary_10_3389_fninf_2022_1078685 crossref_primary_10_1016_j_swevo_2025_102040 crossref_primary_10_1016_j_jmsy_2024_11_003 crossref_primary_10_1007_s10462_022_10370_7 crossref_primary_10_1016_j_compbiomed_2022_106405 crossref_primary_10_1007_s10489_023_04819_7 crossref_primary_10_1016_j_asoc_2024_111342 crossref_primary_10_3390_math11153355 crossref_primary_10_1016_j_compchemeng_2024_108640 crossref_primary_10_1016_j_asoc_2025_113137 crossref_primary_10_3390_biomedicines10082052 crossref_primary_10_1016_j_compbiomed_2022_106002 crossref_primary_10_32604_cmc_2023_038640 crossref_primary_10_3390_math13172867 crossref_primary_10_1016_j_ins_2024_120110 crossref_primary_10_1016_j_jprocont_2024_103233 crossref_primary_10_12677_mos_2025_148577 crossref_primary_10_3390_math10214162 crossref_primary_10_1007_s10489_022_03964_9 crossref_primary_10_1177_18724981251328140 crossref_primary_10_1016_j_eswa_2023_122076 crossref_primary_10_3389_fninf_2022_956423 crossref_primary_10_1016_j_cie_2025_110917 crossref_primary_10_1016_j_engappai_2023_106962 crossref_primary_10_1515_jisys_2022_0269 crossref_primary_10_2174_1574893617666220920102401 crossref_primary_10_1007_s10489_023_05105_2 crossref_primary_10_1016_j_jclepro_2024_142660 crossref_primary_10_1007_s00500_023_09558_y crossref_primary_10_1007_s00500_023_08342_2 crossref_primary_10_1007_s11227_023_05516_5 crossref_primary_10_1016_j_asoc_2025_113510 crossref_primary_10_1007_s10696_024_09543_z crossref_primary_10_1109_TASE_2024_3448435 crossref_primary_10_1016_j_compbiomed_2023_107769 crossref_primary_10_3390_electronics13183696 crossref_primary_10_1016_j_eswa_2023_120944 crossref_primary_10_1016_j_knosys_2025_113335 crossref_primary_10_4018_IJSIR_342098 crossref_primary_10_1016_j_compbiomed_2023_106950 crossref_primary_10_1002_ese3_1329 crossref_primary_10_3390_su151914264 crossref_primary_10_1016_j_eswa_2023_119714 crossref_primary_10_1093_jcde_qwad008 crossref_primary_10_3390_a16060279 crossref_primary_10_1109_TVT_2024_3408756 crossref_primary_10_1109_TASE_2024_3421889 crossref_primary_10_1016_j_swevo_2024_101793 crossref_primary_10_1093_jcde_qwad002 crossref_primary_10_1109_TII_2023_3241583 crossref_primary_10_3390_systems11080383 crossref_primary_10_1016_j_ins_2024_120449 crossref_primary_10_3390_sym15010130 crossref_primary_10_1016_j_cie_2023_109513 crossref_primary_10_32604_cmes_2023_024247 crossref_primary_10_3389_fninf_2022_1029690 crossref_primary_10_3390_electronics11244224 crossref_primary_10_1016_j_compbiomed_2022_105618 crossref_primary_10_1038_s41598_024_68964_w crossref_primary_10_1111_mice_13535 crossref_primary_10_1016_j_asoc_2024_112247 crossref_primary_10_1109_TASE_2024_3393897 crossref_primary_10_1016_j_swevo_2023_101449 crossref_primary_10_1177_09544054251360043 crossref_primary_10_1016_j_asoc_2024_111554 crossref_primary_10_1016_j_eswa_2022_118859 crossref_primary_10_32604_cmes_2023_022864 crossref_primary_10_32604_cmc_2023_038026 crossref_primary_10_1109_TASE_2023_3236317 crossref_primary_10_1016_j_compbiomed_2022_106384 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_1016_j_dwt_2024_100714 crossref_primary_10_1016_j_eswa_2024_124245 crossref_primary_10_1093_jcde_qwac090 crossref_primary_10_1016_j_eswa_2022_118162 crossref_primary_10_1016_j_isatra_2024_12_048 crossref_primary_10_1371_journal_pone_0304971 crossref_primary_10_1007_s10479_024_05992_9 crossref_primary_10_1016_j_ins_2023_119707 crossref_primary_10_1016_j_engappai_2023_105977 crossref_primary_10_1177_16878132231218517 crossref_primary_10_1155_2023_4573352 crossref_primary_10_1016_j_ins_2022_09_057 crossref_primary_10_1016_j_rineng_2025_104234 crossref_primary_10_1093_jcde_qwad109 crossref_primary_10_1007_s42235_023_00367_5 crossref_primary_10_1109_TSMC_2024_3370376 crossref_primary_10_1016_j_eswa_2022_118967 crossref_primary_10_1016_j_eswa_2023_119813 crossref_primary_10_1016_j_eswa_2024_125690 crossref_primary_10_1109_ACCESS_2024_3376253 crossref_primary_10_7717_peerj_cs_2023 crossref_primary_10_1093_jcde_qwad101 crossref_primary_10_1007_s42235_022_00295_w crossref_primary_10_1109_JSEN_2025_3568124 crossref_primary_10_3390_math13172790 crossref_primary_10_3390_pr11030755 crossref_primary_10_1016_j_ins_2023_119714 crossref_primary_10_1093_jcde_qwac085 crossref_primary_10_1109_TII_2025_3563555 crossref_primary_10_1111_exsy_13802 crossref_primary_10_3390_math10193533 crossref_primary_10_26599_TST_2023_9010067 crossref_primary_10_3390_math11153396 crossref_primary_10_1002_adc2_172 crossref_primary_10_1080_00207543_2024_2357740 crossref_primary_10_1016_j_compbiomed_2022_105910 crossref_primary_10_1111_exsy_13245 crossref_primary_10_1016_j_eswa_2023_121868 crossref_primary_10_3390_sym16020168 crossref_primary_10_1016_j_compbiomed_2022_106321 crossref_primary_10_1016_j_eswa_2023_119789 crossref_primary_10_1016_j_eswa_2023_120899 crossref_primary_10_1016_j_eswa_2023_122439 crossref_primary_10_1016_j_eswa_2025_128054 crossref_primary_10_1016_j_ins_2025_122638 |
| Cites_doi | 10.1109/TFUZZ.2019.2957263 10.1109/TDSC.2018.2867595 10.1109/TFUZZ.2019.2955916 10.1007/s00500-005-0537-1 10.1109/TFUZZ.2019.2943813 10.1109/TSMCB.2012.2231860 10.1109/TFUZZ.2020.3037933 10.1109/TVT.2019.2956217 10.1109/TCYB.2019.2922266 10.1016/S0360-8352(99)00135-7 10.1109/TSTE.2018.2882203 10.1109/TII.2020.3032158 10.1016/j.ins.2015.09.042 10.1109/TII.2020.3022369 10.1109/TII.2020.2983393 10.1109/TFUZZ.2019.2910499 10.1109/TII.2020.2981039 10.1016/S0019-9958(72)90199-4 10.1016/S0377-2217(99)00094-6 10.1109/CEC.2005.1554904 10.1109/TEVC.2006.872133 10.1109/TFUZZ.2016.2617378 10.1109/TII.2020.2978870 10.1109/TFUZZ.2020.2973123 10.1109/TPDS.2018.2829860 10.1109/TFUZZ.2020.3032794 10.1109/TII.2020.3005440 10.1109/TFUZZ.2020.3003506 10.1109/TEVC.2017.2745715 10.1109/CEC.2014.6900380 10.1109/TSMC.2019.2907575 10.1109/TSMC.2015.2507161 10.1109/TAC.2017.2731817 10.1109/TEVC.2009.2014613 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2022.3165636 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 1941-0050 |
| EndPage | 8528 |
| ExternalDocumentID | 10_1109_TII_2022_3165636 9751346 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61503165; 41576011; U1706218; 41706010 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-ff895f5cb54b782ab2c7806d00d917ee83edee61cc1922301a40097f16b552403 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 243 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862429800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:18:26 EDT 2025 Tue Nov 18 22:37:10 EST 2025 Sat Nov 29 04:17:01 EST 2025 Wed Aug 27 02:14:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-ff895f5cb54b782ab2c7806d00d917ee83edee61cc1922301a40097f16b552403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9335-9930 0000-0002-3295-8972 |
| PQID | 2719555840 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_TII_2022_3165636 crossref_primary_10_1109_TII_2022_3165636 proquest_journals_2719555840 ieee_primary_9751346 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 storn (ref21) 1995; 23 |
| References_xml | – ident: ref31 doi: 10.1109/TFUZZ.2019.2957263 – ident: ref17 doi: 10.1109/TDSC.2018.2867595 – ident: ref19 doi: 10.1109/TFUZZ.2019.2955916 – ident: ref27 doi: 10.1007/s00500-005-0537-1 – ident: ref28 doi: 10.1109/TFUZZ.2019.2943813 – ident: ref32 doi: 10.1109/TSMCB.2012.2231860 – ident: ref18 doi: 10.1109/TFUZZ.2020.3037933 – ident: ref3 doi: 10.1109/TVT.2019.2956217 – ident: ref8 doi: 10.1109/TCYB.2019.2922266 – ident: ref35 doi: 10.1016/S0360-8352(99)00135-7 – ident: ref9 doi: 10.1109/TSTE.2018.2882203 – ident: ref10 doi: 10.1109/TII.2020.3032158 – ident: ref33 doi: 10.1016/j.ins.2015.09.042 – ident: ref14 doi: 10.1109/TII.2020.3022369 – ident: ref5 doi: 10.1109/TII.2020.2983393 – ident: ref16 doi: 10.1109/TFUZZ.2019.2910499 – ident: ref7 doi: 10.1109/TII.2020.2981039 – ident: ref15 doi: 10.1016/S0019-9958(72)90199-4 – volume: 23 start-page: 341 year: 1995 ident: ref21 article-title: Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces publication-title: J Glob Optim – ident: ref34 doi: 10.1016/S0377-2217(99)00094-6 – ident: ref24 doi: 10.1109/CEC.2005.1554904 – ident: ref25 doi: 10.1109/TEVC.2006.872133 – ident: ref11 doi: 10.1109/TFUZZ.2016.2617378 – ident: ref2 doi: 10.1109/TII.2020.2978870 – ident: ref30 doi: 10.1109/TFUZZ.2020.2973123 – ident: ref12 doi: 10.1109/TPDS.2018.2829860 – ident: ref1 doi: 10.1109/TFUZZ.2020.3032794 – ident: ref13 doi: 10.1109/TII.2020.3005440 – ident: ref29 doi: 10.1109/TFUZZ.2020.3003506 – ident: ref6 doi: 10.1109/TEVC.2017.2745715 – ident: ref20 doi: 10.1109/CEC.2014.6900380 – ident: ref26 doi: 10.1109/TSMC.2019.2907575 – ident: ref22 doi: 10.1109/TSMC.2015.2507161 – ident: ref4 doi: 10.1109/TAC.2017.2731817 – ident: ref23 doi: 10.1109/TEVC.2009.2014613 |
| SSID | ssj0037039 |
| Score | 2.691197 |
| Snippet | The job-shop scheduling problem (JSP) is NP hard, which has very important practical significance. Because of many uncontrollable factors, such as machine... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8519 |
| SubjectTerms | Adaptive algorithms Adaptive parameter control Algorithms Ant colony optimization Completion time Delay time differential evolution Energy consumption Entropy Evolutionary algorithms Evolutionary computation fuzzy processing and date time Fuzzy sets fuzzy sets theory Genetic algorithms Human factors HyperText Markup Language Job shop scheduling Mutation Optimization Particle swarm optimization Scheduling selection mechanism Sociology Statistics |
| Title | Solving Multiobjective Fuzzy Job-Shop Scheduling Problem by a Hybrid Adaptive Differential Evolution Algorithm |
| URI | https://ieeexplore.ieee.org/document/9751346 https://www.proquest.com/docview/2719555840 |
| Volume | 18 |
| WOSCitedRecordID | wos000862429800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4B6gEOffBQQ2m1By5ImKzX9j6OUUsEFUJIAYmbtS8DVRpHIYkUfn1n106oBELi5sOuZfmbnf1md-YbgENmhTa4AhOGZDTJudGJdDJUo3EvKyW5dRHpC3F5KW9v1dUaHK9qYbz3MfnMn4THeJfvajsLR2VdJYo0y_k6rAvBm1qtpdfN0HJV1EYt0iRjNFteSVLVvT4_x0CQMYxPkb1EMebnLSj2VHnhiOPu0v_0vu_6DB9bFkl6DexfYM2PtmHrP23BbdgMNLJRYd6B0aAehpMDEutta_OncXOkP3t6WpDftUkG9_WYDBBBF1LT78hV02iGmAXR5GwR6rpIz-lxnPar7aqC3mFITuet9ZLe8K6ePEzv_-7CTf_0-udZ0nZaSCxT6TSpKqmKqrCmyA1SBm0QQkm5o9RhOOe9zLzznqfWIiHEoCXVeSgAqVJuiiIo-u3Bxqge-a9AdKEt9RrDKmGRDDpZcUMVq5gWgR2JDnSXP7-0rQx56IYxLGM4QlWJcJUBrrKFqwNHqxnjRoLjjbE7AZ7VuBaZDhws8S3bNfpYMpGqoHaW0_3XZ32DzfDuJnnlADamk5n_Dh_sHNGb_Ijm9w8rxNeE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgcR42MYGomwDP-wFiVDHiRP7sdpWtdBVk1qkvUX-lQ1Umqq0k7q_nrOTdpOGkHjLg61E-c7n7-y77wBOmcmVxhUYMSSjUZppFQkrfDVa5kQpRWZsQHqQD4fi-lpebcHnTS2Mcy4kn7kv_jHc5dvKLP1RWVvmPE7S7Bk852nKaF2ttfa7CdquDOqoPI4SRpP1pSSV7XG_j6EgYxihIn8JcswPm1DoqvLEFYf9pbv3f1-2D7sNjySdGvjXsOWmB_DqkbrgAex4IlnrMB_CdFRN_NkBCRW3lf5ZOzrSXd7fr8jXSkej22pGRoih9cnpN-SqbjVD9Ioo0lv5yi7SsWoWpp03fVXQP0zIxV1jv6QzuanmPxa3v97A9-7F-KwXNb0WIsNkvIjKUkhecqN5qpE0KI0gCppZSi0GdM6JxFnnstgYpIQYtsQq9SUgZZxpzr2m31vYnlZT9w6I4spQpzCwyg3SQSvKTFPJSqZyz4_yFrTXP78wjRC574cxKUJAQmWBcBUerqKBqwWfNjNmtQjHP8Yeeng24xpkWnC8xrdoVunvguWx9HpnKX3_91kf4WVvfDkoBv3htyPY8e-pU1mOYXsxX7oTeGHuEMn5h2CKfwCInNrL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Multiobjective+Fuzzy+Job-Shop+Scheduling+Problem+by+a+Hybrid+Adaptive+Differential+Evolution+Algorithm&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Wang%2C+Gai-Ge&rft.au=Gao%2C+Da&rft.au=Pedrycz%2C+Witold&rft.date=2022-12-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=18&rft.issue=12&rft.spage=8519&rft.epage=8528&rft_id=info:doi/10.1109%2FTII.2022.3165636&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2022_3165636 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |