m -ary Balanced Codes With Parallel Decoding

An m-ary block code, m = 2, 3, 4,..., of length n ϵ IN is called balanced if, and only if, every codeword is balanced; that is, the real sum of the codeword components, or weight, is equal to ⌊(m - 1)n/2⌋. This paper presents efficient encoding schemes to m-ary balanced codes with parallel (hence, f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 61; číslo 6; s. 3251 - 3264
Hlavní autoři: Pelusi, Danilo, Elmougy, Samir, Tallini, Luca G., Bose, Bella
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An m-ary block code, m = 2, 3, 4,..., of length n ϵ IN is called balanced if, and only if, every codeword is balanced; that is, the real sum of the codeword components, or weight, is equal to ⌊(m - 1)n/2⌋. This paper presents efficient encoding schemes to m-ary balanced codes with parallel (hence, fast) decoding. In fact, the decoding time complexity is O(1) digit operations. These schemes are a generalization to the m-ary alphabet of Knuth's complementation method with parallel decoding. Let ( n w ) m indicate the number of m-ary words w of length n and weight w ϵ(0,1, ... , (m - 1)n}. For any m ϵ IN, m ≥ 2, a simple implementation of the method is given which uses r ϵ IN check digits to balance k ≤ {(⌊(m-1) r /2⌋) m - (m mod 2 + [(m - 1)k] mod 2}}/(m - 1) information digits with an encoding time complexity of O(mk log m k) digit operations. A refined implementation of the parallel decoding method is also given with r check digits and k ≤ (m r -1)/(m -1) information digits, where the encoding time complexity is O(k√log m k). Thus, the proposed codes are less redundant than the m-ary balanced codes with parallel decoding found in the literature and yet maintain the same complexity.
AbstractList An m-ary block code, m = 2, 3, 4,..., of length n ϵ IN is called balanced if, and only if, every codeword is balanced; that is, the real sum of the codeword components, or weight, is equal to ⌊(m - 1)n/2⌋. This paper presents efficient encoding schemes to m-ary balanced codes with parallel (hence, fast) decoding. In fact, the decoding time complexity is O(1) digit operations. These schemes are a generalization to the m-ary alphabet of Knuth's complementation method with parallel decoding. Let ( n w ) m indicate the number of m-ary words w of length n and weight w ϵ(0,1, ... , (m - 1)n}. For any m ϵ IN, m ≥ 2, a simple implementation of the method is given which uses r ϵ IN check digits to balance k ≤ {(⌊(m-1) r /2⌋) m - (m mod 2 + [(m - 1)k] mod 2}}/(m - 1) information digits with an encoding time complexity of O(mk log m k) digit operations. A refined implementation of the parallel decoding method is also given with r check digits and k ≤ (m r -1)/(m -1) information digits, where the encoding time complexity is O(k√log m k). Thus, the proposed codes are less redundant than the m-ary balanced codes with parallel decoding found in the literature and yet maintain the same complexity.
An $m$ -ary block code, $m=2,3,4,ldots $ , of length $n !in ! ...mathbf...I...!...mathbf...I...mskip -7mu...mathbf...N... $ is called balanced if, and only if, every codeword is balanced; that is, the real sum of the codeword components, or weight, is equal to $ left lfloor... (m-1)n/2 ...right rfloor $ . This paper presents efficient encoding schemes to $m$ -ary balanced codes with parallel (hence, fast) decoding. In fact, the decoding time complexity is $O(1)$ digit operations. These schemes are a generalization to the $m$ -ary alphabet of Knuth's complementation method with parallel decoding. Let $binom...n... w..._...m...$ indicate the number of $m$ -ary words of length $n$ and weight $w !in !...0,1,ldots ,(m-1)n...$ . For any $m !in ! ...mathbf...I...!...mathbf...I...mskip -7mu...mathbf...N... $ , $mgeq 2$ , a simple implementation of the method is given which uses $r !in ! ...mathbf...I...!...mathbf...I...mskip -7mu...mathbf...N... $ check digits to balance $kleq ...binom...r... ... left lfloor... (m-1)r/2 ...right rfloor ..._...vphantom ...R_...R_...m...-...mbmod ...2...+[(m-1)k]bmod 2.../(m-1)$ information digits with an encoding time complexity of $O(mklog _...m...k)$ digit operations. A refined implementation of the parallel decoding method is also given with $r$ check digits and $kleq (m...r...-1)/(m-1)$ information digits, where the encoding time complexity is $O(ksqrt ...log _...m...k...)$ . Thus, the proposed codes are less redundant than the $m$ -ary balanced codes with parallel decoding found in the literature and yet maintain the same complexity. (ProQuest: ... denotes formulae/symbols omitted.)
Author Elmougy, Samir
Bose, Bella
Tallini, Luca G.
Pelusi, Danilo
Author_xml – sequence: 1
  givenname: Danilo
  surname: Pelusi
  fullname: Pelusi, Danilo
  email: dpelusi@unite.it
  organization: Fac. di Sci. della Comun., Univ. degli Studi di Teramo, Teramo, Italy
– sequence: 2
  givenname: Samir
  surname: Elmougy
  fullname: Elmougy, Samir
  email: mougy@ksu.edu.sa
  organization: Dept. of Comput. Sci., King Saud Univ., Riyadh, Saudi Arabia
– sequence: 3
  givenname: Luca G.
  surname: Tallini
  fullname: Tallini, Luca G.
  email: ltallini@unite.it
  organization: Fac. di Sci. della Comun., Univ. degli Studi di Teramo, Teramo, Italy
– sequence: 4
  givenname: Bella
  surname: Bose
  fullname: Bose, Bella
  email: bose@eecs.orst.edu
  organization: Sch. of Electr. Eng. & Comput. Sci., Oregon State Univ., Corvallis, OR, USA
BookMark eNp9kE1LAzEQhoNUsK3eBS8LXt2az01y1PpVKOhhxWOI2Ylu2W5qsj34701p8eDB0_DCPPMyzwSN-tADQucEzwjB-rpe1DOKiZhRTjVh-giNiRCy1JXgIzTGmKhSc65O0CSlVY5cEDpGV-uitPG7uLWd7R00xTw0kIq3dvgsXmy0XQddcQcuNG3_cYqOve0SnB3mFL0-3Nfzp3L5_LiY3yxLl6uH0ntMHcf0vXJcaK8045CjBUyl5V4r6ioMllohvWOScY8bbAVVjriqkZJN0eX-7iaGry2kwazCNva50pBKcaGUIDpv4f2WiyGlCN5sYrvOzxiCzc6JyU7Mzok5OMlI9Qdx7WCHNvRDtG33H3ixB1sA-O2RBBPKGfsBgr1tbA
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2016_2555322
crossref_primary_10_1109_TIT_2017_2721423
crossref_primary_10_1109_TIT_2018_2868453
crossref_primary_10_1109_TIT_2017_2766668
crossref_primary_10_1109_TIT_2022_3203594
crossref_primary_10_1109_ACCESS_2019_2934847
crossref_primary_10_1016_j_eswa_2018_02_026
crossref_primary_10_1016_j_knosys_2019_105277
crossref_primary_10_1109_TCE_2017_015067
crossref_primary_10_3390_sym10110609
crossref_primary_10_1109_TIT_2018_2844834
crossref_primary_10_7717_peerj_cs_1883
crossref_primary_10_1049_iet_com_2016_0097
crossref_primary_10_1109_TIT_2017_2767034
Cites_doi 10.1109/TIT.1986.1057136
10.1109/ISIT.2009.5205824
10.1109/18.490545
10.1109/12.795122
10.1109/TIT.2008.2011441
10.1109/TC.2007.1014
10.1109/TIT.2007.915919
10.1109/JSAC.2010.100207
10.1016/S0166-218X(98)00129-2
10.1109/TIT.1973.1054929
10.1109/18.2610
10.1109/18.52490
10.1109/TIT.2006.885524
10.1109/TIT.2010.2040868
10.1109/TC.2005.18
10.1109/TIT.2011.2173633
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2015.2429139
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 3264
ExternalDocumentID 3701035291
10_1109_TIT_2015_2429139
7101243
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1117215
  funderid: 10.13039/100000001
– fundername: Italian MIUR
  grantid: PRIN 2009-2009EL7424
– fundername: NPST Program through King Saud University, Riyadh, Saudi Arabia
  grantid: 10-INF1165-02
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-ff02c402b6c459f8934e402ae027a4f982c60ea2a57fc3734f0d0a528c1c6d773
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354943600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Mon Nov 10 02:54:06 EST 2025
Sat Nov 29 03:31:34 EST 2025
Tue Nov 18 22:05:35 EST 2025
Tue Aug 26 16:50:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords optical and magnetic recording
Balanced codes
parallel decoding scheme
unidirectional error detection
m -ary alphabet
Knuth’s complementation method
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ff02c402b6c459f8934e402ae027a4f982c60ea2a57fc3734f0d0a528c1c6d773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1684588519
PQPubID 36024
PageCount 14
ParticipantIDs crossref_primary_10_1109_TIT_2015_2429139
ieee_primary_7101243
crossref_citationtrail_10_1109_TIT_2015_2429139
proquest_journals_1684588519
PublicationCentury 2000
PublicationDate 2015-June
2015-6-00
20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-June
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
schouhamer immink (ref5) 2004
ref1
ref17
tallini (ref16) 2013
ref18
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref7
  doi: 10.1109/TIT.1986.1057136
– ident: ref9
  doi: 10.1109/ISIT.2009.5205824
– ident: ref10
  doi: 10.1109/18.490545
– ident: ref12
  doi: 10.1109/12.795122
– ident: ref17
  doi: 10.1109/TIT.2008.2011441
– ident: ref3
  doi: 10.1109/TC.2007.1014
– ident: ref15
  doi: 10.1109/TIT.2007.915919
– ident: ref6
  doi: 10.1109/JSAC.2010.100207
– ident: ref11
  doi: 10.1016/S0166-218X(98)00129-2
– start-page: 694
  year: 2013
  ident: ref16
  article-title: On $L_{1}$ metric asymmetric/unidirectional error control codes, constrained weight codes and $\sigma $ -codes
  publication-title: Proc IEEE ISIT
– ident: ref4
  doi: 10.1109/TIT.1973.1054929
– ident: ref2
  doi: 10.1109/18.2610
– ident: ref1
  doi: 10.1109/18.52490
– ident: ref14
  doi: 10.1109/TIT.2006.885524
– ident: ref18
  doi: 10.1109/TIT.2010.2040868
– year: 2004
  ident: ref5
  publication-title: Codes for Mass Data Storage Systems
– ident: ref13
  doi: 10.1109/TC.2005.18
– ident: ref8
  doi: 10.1109/TIT.2011.2173633
SSID ssj0014512
Score 2.2777133
Snippet An m-ary block code, m = 2, 3, 4,..., of length n ϵ IN is called balanced if, and only if, every codeword is balanced; that is, the real sum of the codeword...
An $m$ -ary block code, $m=2,3,4,ldots $ , of length $n !in ! ...mathbf...I...!...mathbf...I...mskip -7mu...mathbf...N... $ is called balanced if, and only if,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3251
SubjectTerms Balanced codes
Coding theory
Combinatorics
Decoding
Electronics
Encoding
Frequency modulation
Indexes
Knuth's complementation method
m-ary alphabet
optical and magnetic recording
parallel decoding scheme
Redundancy
Time complexity
unidirectional error detection
Title m -ary Balanced Codes With Parallel Decoding
URI https://ieeexplore.ieee.org/document/7101243
https://www.proquest.com/docview/1684588519
Volume 61
WOSCitedRecordID wos000354943600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MenG6K0yk5eBHWLW3TpD3qdCjI2GHibiXNDxzMTbpO8L836Y-hKIK3FpKSfOnry9e89z2Ay0TQUOOIOxH3DUEJrAYkc7mTECaTUPlK8zxR-JGNx-FsFk1q0Nvmwiil8uAz1beX-Vm-XImN_VU2YFaMivh1qDNGi1yt7YkBCdxCGdw1Bmw4R3UkiaPB9GFqY7iCvnFHVgXzmwvKa6r8-BDn3mXU_N-4DmC_3EWi62LZD6Gmli1oVhUaUGmwLdj7IjfYht4rcnj6gW5sOKNQEg1XUq3R8zx7QROe2qoqC3Rr-Kj1Z0fwNLqbDu-dslqCI8ysMkdr7AnDBhMqDOTa7EOIMrdcGeLJiY5CT1CsuMcDpoXPfKKxxDzwQuEKKhnzj6GxXC3VCaDApRRLornhGsSauPaCxExQRr4ZHJEdGFQAxqKUErcVLRZxTilwFBvIYwt5XELegattj7dCRuOPtm0L8bZdiW4HutUaxaWdrWOXhjbV1mxDT3_vdQa79tlFcFcXGlm6UeewI96z-Tq9yF-hT4i3wG4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKagHp1NxOjUHL8K6pW3666jTseEcO1TcraT5gYO5SdcJ_vcmbVcURfDWQkKTL319-Zr3vgdwFTPXlzigRkBtRVAcrQHpmdSIicdjX9hC0ixReOiNRv5kEowr0CpzYYQQWfCZaOvL7CyfL9hK_yrreFqMitgbsOkQYuE8W6s8MyCOmWuDm8qEFetYH0rioBMOQh3F5bSVQ9I6mN-cUFZV5cenOPMvvdr_RrYPe8U-Et3kC38AFTGvQ21dowEVJluH3S-Cg4fQekUGTT7QrQ5oZIKj7oKLJXqepi9oTBNdV2WG7hQj1R7tCJ5692G3bxT1EgymZpUaUmKLKT4Yu0yBLtVOhAh1S4WinpTIwLeYiwW1qONJZns2kZhj6lg-M5nLPc8-hup8MRcngBzTdTEnkiq2QbSRS8uJ1QR5YKvBEd6AzhrAiBVi4rqmxSzKSAUOIgV5pCGPCsgbcF32eMuFNP5oe6ghLtsV6DaguV6jqLC0ZWS6vk62VRvR0997XcJ2P3wcRsPB6OEMdvRz8lCvJlTTZCXOYYu9p9NlcpG9Tp-7usO1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=m%24+-ary+Balanced+Codes+With+Parallel+Decoding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Pelusi%2C+Danilo&rft.au=Elmougy%2C+Samir&rft.au=Tallini%2C+Luca+G.&rft.au=Bose%2C+Bella&rft.date=2015-06-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=61&rft.issue=6&rft.spage=3251&rft.epage=3264&rft_id=info:doi/10.1109%2FTIT.2015.2429139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2015_2429139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon