CAT-EDNet: Cross-Attention Transformer-Based Encoder-Decoder Network for Salient Defect Detection of Strip Steel Surface
The morphologies of various surface defects on strip steel suffer from oil stain, water drops, steel textures, and erratic illumination. It is still challenging to recognize defect boundary precisely from cluttered backgrounds. This article emphasizes such a fact that skip connections between encode...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 71; S. 1 - 13 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!