CAT-EDNet: Cross-Attention Transformer-Based Encoder-Decoder Network for Salient Defect Detection of Strip Steel Surface

The morphologies of various surface defects on strip steel suffer from oil stain, water drops, steel textures, and erratic illumination. It is still challenging to recognize defect boundary precisely from cluttered backgrounds. This article emphasizes such a fact that skip connections between encode...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 13
Main Authors: Luo, Qiwu, Su, Jiaojiao, Yang, Chunhua, Gui, Weihua, Silven, Olli, Liu, Li
Format: Journal Article
Language:English
Published: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The morphologies of various surface defects on strip steel suffer from oil stain, water drops, steel textures, and erratic illumination. It is still challenging to recognize defect boundary precisely from cluttered backgrounds. This article emphasizes such a fact that skip connections between encoder and decoder are not equally effective, attempts to adaptively allocate the aggregation weights that represent differentiated information entropy values in channelwise, by importing a stack of cross-attention transformer (CAT) into the encoder-decoder network (EDNet). Besides, a cross-attention refinement module (CARM) is constructed closely after the decoder to further optimize the coarse saliency maps. This newly nominated CAT-EDNet can well address the semantic gap issue among the multiscale features for its multihead attention structure. The CAT-EDNet performs best on insuring defect integrity and maintaining defect boundary details when compared with 12 state-of-the-arts, and the detection efficiency is at 28 fps even under the noise interfered scenario.
AbstractList The morphologies of various surface defects on strip steel suffer from oil stain, water drops, steel textures, and erratic illumination. It is still challenging to recognize defect boundary precisely from cluttered backgrounds. This article emphasizes such a fact that skip connections between encoder and decoder are not equally effective, attempts to adaptively allocate the aggregation weights that represent differentiated information entropy values in channelwise, by importing a stack of cross-attention transformer (CAT) into the encoder-decoder network (EDNet). Besides, a cross-attention refinement module (CARM) is constructed closely after the decoder to further optimize the coarse saliency maps. This newly nominated CAT-EDNet can well address the semantic gap issue among the multiscale features for its multihead attention structure. The CAT-EDNet performs best on insuring defect integrity and maintaining defect boundary details when compared with 12 state-of-the-arts, and the detection efficiency is at 28 fps even under the noise interfered scenario.
Author Gui, Weihua
Silven, Olli
Liu, Li
Su, Jiaojiao
Luo, Qiwu
Yang, Chunhua
Author_xml – sequence: 1
  givenname: Qiwu
  orcidid: 0000-0003-2822-5538
  surname: Luo
  fullname: Luo, Qiwu
  organization: School of Automation, Central South University, Changsha, China
– sequence: 2
  givenname: Jiaojiao
  orcidid: 0000-0002-2115-0978
  surname: Su
  fullname: Su, Jiaojiao
  organization: School of Automation, Central South University, Changsha, China
– sequence: 3
  givenname: Chunhua
  orcidid: 0000-0003-2550-1509
  surname: Yang
  fullname: Yang, Chunhua
  email: ychh@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 4
  givenname: Weihua
  orcidid: 0000-0002-5337-6445
  surname: Gui
  fullname: Gui, Weihua
  organization: School of Automation, Central South University, Changsha, China
– sequence: 5
  givenname: Olli
  orcidid: 0000-0002-2661-804X
  surname: Silven
  fullname: Silven, Olli
  organization: Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Oulu, Finland
– sequence: 6
  givenname: Li
  orcidid: 0000-0002-2011-2873
  surname: Liu
  fullname: Liu, Li
  organization: College of System Engineering, National University of Defense Technology, Changsha, China
BookMark eNp9kEFPwyAYhomZidv0buKFxHMn0EKLt9lNXTL1sHpuKPtIOrsyKYv676Vu8eDBC28I7_N94RmhQWtbQOiSkgmlRN4Ui6cJI4xNYio4S8kJGlLO00gKwQZoSAjNIplwcYZGXbchhKQiSYfoM58W0Xz2DP4W5852XTT1Hlpf2xYXTrWdsW4LLrpTHazxvNV2HW4z-EkcsA_r3nAo4ZVq6gDiGRjQffgQ_Rhr8Mq7ehdOgAav9s4oDefo1Kimg4tjjtHr_bzIH6Ply8Miny4jzST1kQHDFYnXFQhdVZkgoCGhcZaxJDMMjACdSFVxphIS3kSSpMZIKSRnlIKp4jG6PszdOfu-h86XG7t3bVhZMsF5FhwJGlrk0NK9Awem3Ll6q9xXSUnZ-y2D37L3Wx79BkT8QXTtVf9j71Td_AdeHcAaAH73yJSnMmbxN-Pgil4
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TASE_2023_3307588
crossref_primary_10_1109_TIM_2023_3307753
crossref_primary_10_1007_s00371_024_03442_y
crossref_primary_10_1088_1361_6501_adc1f3
crossref_primary_10_1109_TIM_2025_3551901
crossref_primary_10_1109_JSEN_2022_3229031
crossref_primary_10_1109_TIM_2024_3470998
crossref_primary_10_1109_TITS_2023_3293822
crossref_primary_10_3390_s23063216
crossref_primary_10_3390_s25072043
crossref_primary_10_3390_asi7010011
crossref_primary_10_1109_TIM_2025_3558829
crossref_primary_10_1109_JSEN_2024_3407874
crossref_primary_10_1109_TIM_2024_3504562
crossref_primary_10_1007_s11042_024_18684_0
crossref_primary_10_1109_TASE_2024_3457829
crossref_primary_10_1109_TIM_2023_3336452
crossref_primary_10_1109_TIM_2022_3214605
crossref_primary_10_1109_TII_2023_3348835
crossref_primary_10_1109_TIM_2023_3246519
crossref_primary_10_1109_TGRS_2024_3383649
Cites_doi 10.1109/TIM.2019.2963555
10.1109/CVPR.2014.39
10.1109/CVPR.2019.00766
10.1609/aaai.v36i3.20144
10.1109/CVPR.2009.5206596
10.1109/TIM.2012.2218677
10.1109/CVPR.2017.189
10.1109/CVPR.2019.00403
10.1109/ICCV.2019.00736
10.1007/978-3-319-50835-1_22
10.1109/CVPR46437.2021.00865
10.1109/CVPR46437.2021.00681
10.1109/ICCV.2015.123
10.1109/CVPR.2015.7299184
10.1109/CVPR42600.2020.00285
10.1109/ICCV.2017.487
10.1109/ICCV.2019.00887
10.1007/978-3-319-75238-9_6
10.1109/TIP.2021.3072811
10.1016/j.patcog.2020.107404
10.1109/CVPR.2018.00326
10.1109/TIM.2019.2915404
10.24963/ijcai.2018/97
10.1109/CVPR.2019.00320
10.1109/CVPR.2019.00404
10.1109/TIP.2020.2965989
10.1109/TPAMI.2016.2562626
10.1109/ACSSC.2003.1292216
10.1109/CVPR.2012.6247743
10.1007/978-3-030-58452-8_13
10.1109/ICCV.2017.433
10.1109/TIM.2020.3030167
10.1109/CVPR.2018.00187
10.1109/TII.2019.2958826
10.1109/TNNLS.2022.3227717
10.1109/ICCV48922.2021.00683
10.1007/s10479-005-5724-z
10.1109/TIM.2018.2852918
10.1109/TIM.2020.3002277
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3165270
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 13
ExternalDocumentID 10_1109_TIM_2022_3165270
9757932
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Innovation Program of Hunan Province
  grantid: 2021RC3019; 2021RC1001
  funderid: 10.13039/501100019081
– fundername: Hunan Provincial Natural Science Foundation
  grantid: 2021JJ20078
  funderid: 10.13039/501100004735
– fundername: National Natural Science Foundation of China
  grantid: 61973323; 6201101509
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-fef5a03dbe6cbb860ece41388248f2ef6ec49ab52a400ec6447ff99695211efb3
IEDL.DBID RIE
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794225000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:12:54 EDT 2025
Sat Nov 29 04:38:21 EST 2025
Tue Nov 18 22:11:17 EST 2025
Wed Aug 27 02:40:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fef5a03dbe6cbb860ece41388248f2ef6ec49ab52a400ec6447ff99695211efb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2822-5538
0000-0002-2661-804X
0000-0002-5337-6445
0000-0003-2550-1509
0000-0002-2115-0978
0000-0002-2011-2873
PQID 2655855761
PQPubID 85462
PageCount 13
ParticipantIDs crossref_primary_10_1109_TIM_2022_3165270
crossref_citationtrail_10_1109_TIM_2022_3165270
proquest_journals_2655855761
ieee_primary_9757932
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Vaswani (ref15); 30
ref35
ref12
ref34
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
Chen (ref18) 2021
ref39
ref16
Xie (ref19) 2021
ref24
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Islam (ref23)
ref28
ref27
ref29
ref8
ref7
Nagendar (ref38)
ref9
ref4
ref3
ref6
ref5
ref40
Tieleman (ref32) 2012; 4
References_xml – ident: ref2
  doi: 10.1109/TIM.2019.2963555
– ident: ref34
  doi: 10.1109/CVPR.2014.39
– ident: ref26
  doi: 10.1109/CVPR.2019.00766
– ident: ref27
  doi: 10.1609/aaai.v36i3.20144
– ident: ref4
  doi: 10.1109/CVPR.2009.5206596
– ident: ref7
  doi: 10.1109/TIM.2012.2218677
– ident: ref22
  doi: 10.1109/CVPR.2017.189
– volume: 4
  start-page: 26
  issue: 2
  year: 2012
  ident: ref32
  article-title: RMSprop: Divide the gradient by a running average of its recent magnitude
  publication-title: Neural Netw. Mach. Learn.
– ident: ref41
  doi: 10.1109/CVPR.2019.00403
– ident: ref10
  doi: 10.1109/ICCV.2019.00736
– ident: ref29
  doi: 10.1007/978-3-319-50835-1_22
– ident: ref13
  doi: 10.1109/CVPR46437.2021.00865
– ident: ref17
  doi: 10.1109/CVPR46437.2021.00681
– ident: ref31
  doi: 10.1109/ICCV.2015.123
– ident: ref9
  doi: 10.1109/CVPR.2015.7299184
– ident: ref43
  doi: 10.1109/CVPR42600.2020.00285
– volume: 30
  start-page: 5998
  volume-title: Proc. NIPS
  ident: ref15
  article-title: Attention is all you need
– ident: ref33
  doi: 10.1109/ICCV.2017.487
– ident: ref42
  doi: 10.1109/ICCV.2019.00887
– volume-title: Proc. BMVC
  ident: ref38
  article-title: Neuro-IoU: Learning a surrogate loss for semantic segmentation
– ident: ref37
  doi: 10.1007/978-3-319-75238-9_6
– ident: ref11
  doi: 10.1109/TIP.2021.3072811
– ident: ref12
  doi: 10.1016/j.patcog.2020.107404
– ident: ref39
  doi: 10.1109/CVPR.2018.00326
– ident: ref6
  doi: 10.1109/TIM.2019.2915404
– ident: ref36
  doi: 10.24963/ijcai.2018/97
– ident: ref44
  doi: 10.1109/CVPR.2019.00320
– ident: ref40
  doi: 10.1109/CVPR.2019.00404
– ident: ref45
  doi: 10.1109/TIP.2020.2965989
– ident: ref8
  doi: 10.1109/TPAMI.2016.2562626
– ident: ref30
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref35
  doi: 10.1109/CVPR.2012.6247743
– ident: ref20
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref24
  doi: 10.1109/ICCV.2017.433
– ident: ref1
  doi: 10.1109/TIM.2020.3030167
– year: 2021
  ident: ref19
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: arXiv:2105.15203
– start-page: 1
  volume-title: Proc. BMVC
  ident: ref23
  article-title: Salient object detection using a context-aware refinement network
– ident: ref25
  doi: 10.1109/CVPR.2018.00187
– ident: ref5
  doi: 10.1109/TII.2019.2958826
– ident: ref16
  doi: 10.1109/TNNLS.2022.3227717
– ident: ref21
  doi: 10.1109/ICCV48922.2021.00683
– ident: ref28
  doi: 10.1007/s10479-005-5724-z
– year: 2021
  ident: ref18
  article-title: TransUNet: Transformers make strong encoders for medical image segmentation
  publication-title: arXiv:2102.04306
– ident: ref3
  doi: 10.1109/TIM.2018.2852918
– ident: ref14
  doi: 10.1109/TIM.2020.3002277
SSID ssj0007647
Score 2.4974477
Snippet The morphologies of various surface defects on strip steel suffer from oil stain, water drops, steel textures, and erratic illumination. It is still...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Automated visual inspection (AVI)
Coders
Decoding
encoder–decoder network (EDNet)
Entropy (Information theory)
Feature extraction
Inspection
salient detection
Steel
steel strip
Strip steel
Strips
Surface defects
transformer
Transformers
Visualization
Water drops
Title CAT-EDNet: Cross-Attention Transformer-Based Encoder-Decoder Network for Salient Defect Detection of Strip Steel Surface
URI https://ieeexplore.ieee.org/document/9757932
https://www.proquest.com/docview/2655855761
Volume 71
WOSCitedRecordID wos000794225000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH-0ZYPusI-2Y9naosMug2mRZVu2dsuSlBa2MEg2ejOS_ASD4gzHGfvz9yQ7obBR2MXyQRKCn_Te70nvA-Ct8GVtpEQu0jTnGWLJS5sJbkthjdOlwZin4PvnYrEob2_11wN4v4-FQcTofIYfwm98y6_Xbhuuysa6yGk7kcA9LArVx2rtpW6hsj4_ZkIHmFjB7klS6PHq5gsZglKSfapyGcoS31NBsabKX4I4aperZ_-3rufwdGCRbNLD_gIOsDmBJ_dyC57A4-jb6Tan8Hs6WfH5bIHdRzYNK-KTruu9HNlqx1ux5Z9IodVs3oQo95bPMLZs0fuJM-rElkTaaSCbYXACoaaLjlwNW3u27Ej80Bfxji23rTcOz-Db1Xw1veZDwQXupE467tHnRqS1ReWsLZVAh6TkiIRnpZfoFbpMG5tLQycfHVGpwnsymDRxgAS9TV_CUbNu8BUwoTB1qs4xtzozNCXhbpOajEOTKF2IEYx3GFRuyEYeimLcVdEqEboi1KqAWjWgNoJ3-xE_-0wcD_Q9DSjt-w0AjeB8B3M1HNVNJVVOJhOZXcnrf496A8dh7v7e5RyOunaLF_DI_ep-bNrLuAv_ADjo2nM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLamAYId-LENrWOAD1yQMHWcxIl3K22nTXQRUgPaLbKdZwlpSlGaTvvzeXbSahIIiUucg51Y-eLn77Of3yPkA3d5rYUAxuM4ZQlAznKTcGZybrRVuYYQp-DHIiuK_OZGfdsjn3ZnYQAgOJ_BZ38b9vLrld34pbKxylL8ndDgPvKZs4bTWju7m8mkj5AZ4RBGXrDdlORqXF5doxQUAhWqTIVPTPxgEgpZVf4wxWF-uXjxfz17SZ4PPJJOeuBfkT1oDsnBg-iCh-RJ8O606yNyP52UbD4roDunU98jNum63s-RllvmCi37glNaTeeNP-feshmEkha9pzjFSnSJtB0b0hl4NxAsuuDK1dCVo8sODRBeAW7pctM6beGYfL-Yl9NLNqRcYFaoqGMOXKp5XBuQ1phccrCAXxppeJI7AU6CTZQ2qdA49sEimcqcQ8mkkAVE4Ez8muw3qwZOCOUSYivrFFKjEo2PRORNVKM81JFUGR-R8RaDyg7xyH1ajNsq6BKuKkSt8qhVA2oj8nHX4lcfi-MfdY88Srt6A0AjcraFuRoG67oSMkXRhMIrOv17q_fk6WV5vagWV8XXN-SZf0-_CnNG9rt2A2_JY3vX_Vy378If-RvBwt28
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAT-EDNet%3A+Cross-Attention+Transformer-Based+Encoder%E2%80%93Decoder+Network+for+Salient+Defect+Detection+of+Strip+Steel+Surface&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Luo%2C+Qiwu&rft.au=Su%2C+Jiaojiao&rft.au=Yang%2C+Chunhua&rft.au=Gui%2C+Weihua&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2022.3165270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3165270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon