The search for new efficient inhibitors of SARS-COV-2 through the De novo drug design developed by artificial intelligence
The pandemic caused by Sars-CoV-2 is a viral infection that has generated one of the most significant health problems worldwide. Previous studies report the main protease (Mpro) as a potential target for this virus, as it is considered a crucial enzyme in mediating replication and viral transcriptio...
Gespeichert in:
| Veröffentlicht in: | Journal of biomolecular structure & dynamics Jg. 41; H. 19; S. 9890 - 9906 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
24.11.2023
|
| Schlagworte: | |
| ISSN: | 0739-1102, 1538-0254, 1538-0254 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The pandemic caused by Sars-CoV-2 is a viral infection that has generated one of the most significant health problems worldwide. Previous studies report the main protease (Mpro) as a potential target for this virus, as it is considered a crucial enzyme in mediating replication and viral transcription. This work presented the construction of new bioactive compounds for possible inhibition. The De novo molecular design of drugs method in the incremental construction of a ligant model within a receptor model was used, producing new structures with the help of artificial intelligence. The research algorithm and the scoring function responsible for predicting orientation and affinity in the molecular target at the time of coupling showed, as a result of the simulation, the compound with the highest bioaffinity value, Hit 998, with the energy of −17.62 kcal/mol, and synthetic viability close to 50%. While hit 1103 presented better synthetic viability (80%), its affinity energy of −10.28 kcal/mol. Both were compared with the reference linker N3, with a binding affinity of −7.5 kcal/mol. ADMET tests demonstrated that simulated compounds have a low risk of metabolic activation and do not exert effective distribution in the CNS, suggesting a pharmacokinetic mechanism based on local action, even with high topological polarity, which resulted in low oral bioavailability. In conclusion, MMGBSA, H-bonds, RMSD, SASA, and RMSF values were also obtained through molecular dynamics to verify the stability of the receptor-ligant complex within the active protein site to seek new therapeutic propositions in the fight against the pandemic.
Communicated by Ramaswamy H. Sarma |
|---|---|
| AbstractList | The pandemic caused by Sars-CoV-2 is a viral infection that has generated one of the most significant health problems worldwide. Previous studies report the main protease (Mpro) as a potential target for this virus, as it is considered a crucial enzyme in mediating replication and viral transcription. This work presented the construction of new bioactive compounds for possible inhibition. The De novo molecular design of drugs method in the incremental construction of a ligant model within a receptor model was used, producing new structures with the help of artificial intelligence. The research algorithm and the scoring function responsible for predicting orientation and affinity in the molecular target at the time of coupling showed, as a result of the simulation, the compound with the highest bioaffinity value, Hit 998, with the energy of −17.62 kcal/mol, and synthetic viability close to 50%. While hit 1103 presented better synthetic viability (80%), its affinity energy of −10.28 kcal/mol. Both were compared with the reference linker N3, with a binding affinity of −7.5 kcal/mol. ADMET tests demonstrated that simulated compounds have a low risk of metabolic activation and do not exert effective distribution in the CNS, suggesting a pharmacokinetic mechanism based on local action, even with high topological polarity, which resulted in low oral bioavailability. In conclusion, MMGBSA, H-bonds, RMSD, SASA, and RMSF values were also obtained through molecular dynamics to verify the stability of the receptor-ligant complex within the active protein site to seek new therapeutic propositions in the fight against the pandemic.
Communicated by Ramaswamy H. Sarma The pandemic caused by Sars-CoV-2 is a viral infection that has generated one of the most significant health problems worldwide. Previous studies report the main protease (Mpro) as a potential target for this virus, as it is considered a crucial enzyme in mediating replication and viral transcription. This work presented the construction of new bioactive compounds for possible inhibition. The De novo molecular design of drugs method in the incremental construction of a ligant model within a receptor model was used, producing new structures with the help of artificial intelligence. The research algorithm and the scoring function responsible for predicting orientation and affinity in the molecular target at the time of coupling showed, as a result of the simulation, the compound with the highest bioaffinity value, Hit 998, with the energy of -17.62 kcal/mol, and synthetic viability close to 50%. While hit 1103 presented better synthetic viability (80%), its affinity energy of -10.28 kcal/mol. Both were compared with the reference linker N3, with a binding affinity of -7.5 kcal/mol. ADMET tests demonstrated that simulated compounds have a low risk of metabolic activation and do not exert effective distribution in the CNS, suggesting a pharmacokinetic mechanism based on local action, even with high topological polarity, which resulted in low oral bioavailability. In conclusion, MMGBSA, H-bonds, RMSD, SASA, and RMSF values were also obtained through molecular dynamics to verify the stability of the receptor-ligant complex within the active protein site to seek new therapeutic propositions in the fight against the pandemic.Communicated by Ramaswamy H. Sarma.The pandemic caused by Sars-CoV-2 is a viral infection that has generated one of the most significant health problems worldwide. Previous studies report the main protease (Mpro) as a potential target for this virus, as it is considered a crucial enzyme in mediating replication and viral transcription. This work presented the construction of new bioactive compounds for possible inhibition. The De novo molecular design of drugs method in the incremental construction of a ligant model within a receptor model was used, producing new structures with the help of artificial intelligence. The research algorithm and the scoring function responsible for predicting orientation and affinity in the molecular target at the time of coupling showed, as a result of the simulation, the compound with the highest bioaffinity value, Hit 998, with the energy of -17.62 kcal/mol, and synthetic viability close to 50%. While hit 1103 presented better synthetic viability (80%), its affinity energy of -10.28 kcal/mol. Both were compared with the reference linker N3, with a binding affinity of -7.5 kcal/mol. ADMET tests demonstrated that simulated compounds have a low risk of metabolic activation and do not exert effective distribution in the CNS, suggesting a pharmacokinetic mechanism based on local action, even with high topological polarity, which resulted in low oral bioavailability. In conclusion, MMGBSA, H-bonds, RMSD, SASA, and RMSF values were also obtained through molecular dynamics to verify the stability of the receptor-ligant complex within the active protein site to seek new therapeutic propositions in the fight against the pandemic.Communicated by Ramaswamy H. Sarma. |
| Author | Cabongo, Sadrack Queque Colares, Regilany Paulo Marinho, Emmanuel Silva da Fonseca, Aluísio Marques Fernandes, Carla Freire Celedonio Caluaco, Bernardino Joaquim dos Santos, Hélcio Silva de Lima-Neto, Pedro |
| Author_xml | – sequence: 1 givenname: Aluísio Marques orcidid: 0000-0002-8112-9513 surname: da Fonseca fullname: da Fonseca, Aluísio Marques organization: Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis - MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira – sequence: 2 givenname: Sadrack Queque surname: Cabongo fullname: Cabongo, Sadrack Queque organization: Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira – sequence: 3 givenname: Bernardino Joaquim surname: Caluaco fullname: Caluaco, Bernardino Joaquim organization: Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira – sequence: 4 givenname: Regilany Paulo orcidid: 0000-0001-5679-1575 surname: Colares fullname: Colares, Regilany Paulo organization: Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira – sequence: 5 givenname: Carla Freire Celedonio orcidid: 0000-0001-8586-2782 surname: Fernandes fullname: Fernandes, Carla Freire Celedonio organization: Fundação Oswaldo Cruz -Fiocruz – sequence: 6 givenname: Hélcio Silva orcidid: 0000-0001-5527-164X surname: dos Santos fullname: dos Santos, Hélcio Silva organization: Department Chemistry, Regional University of Cariri – sequence: 7 givenname: Pedro orcidid: 0000-0002-1613-4797 surname: de Lima-Neto fullname: de Lima-Neto, Pedro organization: Department of Analytical Chemistry and Physical Chemistry, Science Center, Federal University of Ceara – sequence: 8 givenname: Emmanuel Silva orcidid: 0000-0002-4774-8775 surname: Marinho fullname: Marinho, Emmanuel Silva organization: Grupo de química Teorica e Eletroquimica-GQTE, Universidade Estadual do Ceará |
| BookMark | eNp9kE9PAjEQxRuDiYB-BJMevSx2urvucpPg34SERNBrU7pTtmZpsV0g-OntBr16mXeY915mfgPSs84iIdfARsBKdsuKdAzA-IgzHgdkJfDyjPQhT8uE8TzrkX7nSTrTBRmE8MkYByigT76XNdKA0quaauepxQNFrY0yaFtqbG1WpnU-UKfpYvK2SKbzj4TTtvZut66jIn1Aat3e0crv1rTCYNY2yh4bt8WKro5U-tZ0jbKJhS02jVmjVXhJzrVsAl796pC8Pz0upy_JbP78Op3MEsXH0CYaUSNUHMpCAqr0blwxXo6xgFzHV3mRq7jOZKF53KegM61ArphmxUqllUqH5ObUu_Xua4ehFRsTVDxDWnS7IHhEU2QAKURrfrIq70LwqMXWm430RwFMdKzFH2vRsRa_rGPu_pQzNkLcyIPzTSVaeWyc115aZYJI_6_4ATACiIc |
| Cites_doi | 10.1016/j.bmcl.2008.07.071 10.1038/s41594-020-0440-6 10.2174/138620732301200316112000 10.1038/nrd1032 10.1016/j.bmcl.2009.08.045 10.1038/s41598-019-44773-4 10.1093/bioinformatics/bts267 10.1016/j.compbiomed.2021.104967 10.1021/ct4007037 10.22435/mpk.v31i3.4920 10.1038/s41586-020-2223-y 10.3389/fmolb.2017.00087 10.1016/j.physa.2019.122210 10.1016/j.chembiol.2003.09.002 10.1002/jcc.21256 10.1021/acs.jmedchem.9b00004 10.1021/jm901241e 10.1038/s41592-019-0403-1 10.1002/jcc.20289 10.1016/j.asoc.2014.09.042 10.1016/0263-7855(96)00018-5 10.1038/s41579-018-0118-9 10.1186/1471-2105-15-184 10.1002/0471720895 10.26633/RPSP.2020.51 10.1080/07391102.2020.1835719 10.1021/ci300505n 10.1080/17460441.2019.1581170 10.1186/1758-2946-1-8 10.1038/s42256-022-00454-y 10.1016/j.cell.2018.02.010 10.1002/jcc.21334 10.1002/jcc.21367 10.1111/j.1747-0285.2012.01380.x 10.1021/ci049958u 10.1038/s41467-020-17844-8 10.1016/j.ddtec.2004.11.007 10.1016/S1380-7323(99)80078-8 10.1038/nmeth.4067 10.1007/978-1-4939-2438-7_1 10.2174/138945009787581122 10.1093/nar/28.1.235 10.1021/jm020017n 10.1021/jp5012846 10.1021/ci800293n 10.1016/S0140-6736(20)30305-6 10.1517/17460441.2015.1032936 10.1007/978-3-030-53440-0_24 10.1042/BST20211240 10.2174/1568026611212240007 10.1016/j.addr.2016.05.007 10.1016/j.tips.2019.06.004 10.1073/pnas.1718910115 10.1093/bioinformatics/btl150 10.1016/j.jbi.2018.04.007 10.1093/bioinformatics/btp140 10.19363/J.cnki.cn10-1380/tn.2020.05.01 10.1186/s40779-020-00240-0 10.1007/s00894-015-2772-4 10.1134/S1607672916050173 10.3390/ijms22041676 10.1007/978-1-4939-7756-7_14 10.2174/156802610790232260 10.1126/science.abb3405 10.1261/rna.065896.118 10.1038/nrd1799 10.1016/j.jics.2022.100535 10.1016/S0006-3495(00)76372-7 10.1016/S0140-6736(20)30211-7 10.1016/j.cplett.2021.139022 10.1002/jcc.26717 10.1093/bib/bbaa161 10.1016/j.ijid.2020.03.004 10.4238/gmr.15027829 10.1016/b0-08-045044-x/00246-7 10.1016/j.sbi.2021.10.001 10.21577/1984-6835.20200115 10.1038/nature25978 10.1021/acschemneuro.6b00029 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1080/07391102.2022.2148128 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1538-0254 |
| EndPage | 9906 |
| ExternalDocumentID | 10_1080_07391102_2022_2148128 2148128 |
| Genre | Research Article |
| GroupedDBID | --- -~X .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG DGEBU DKSSO EBS EMOBN E~A E~B F5P GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NX0 O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TASJS TBQAZ TDBHL TEI TFL TFT TFW TQWBC TTHFI TUROJ UT5 ZGOLN ~KM ~S~ AAYXX CITATION 7X8 |
| ID | FETCH-LOGICAL-c291t-feefe1d2187a1ec369d0289e715f148275ce1d4a7f2a1e31f4fc1ab0f07bc3dc3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890511300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0739-1102 1538-0254 |
| IngestDate | Fri Sep 05 09:17:53 EDT 2025 Sat Nov 29 02:07:45 EST 2025 Mon Oct 20 23:48:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-feefe1d2187a1ec369d0289e715f148275ce1d4a7f2a1e31f4fc1ab0f07bc3dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8112-9513 0000-0001-5527-164X 0000-0001-5679-1575 0000-0001-8586-2782 0000-0002-1613-4797 0000-0002-4774-8775 |
| PQID | 2739741131 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1080_07391102_2022_2148128 informaworld_taylorfrancis_310_1080_07391102_2022_2148128 proquest_miscellaneous_2739741131 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-24 |
| PublicationDateYYYYMMDD | 2023-11-24 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of biomolecular structure & dynamics |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_7_81_1 e_1_3_7_62_1 e_1_3_7_41_1 e_1_3_7_60_1 e_1_3_7_83_1 e_1_3_7_66_1 e_1_3_7_20_1 e_1_3_7_45_1 e_1_3_7_64_1 e_1_3_7_22_1 e_1_3_7_43_1 e_1_3_7_24_1 e_1_3_7_49_1 e_1_3_7_26_1 e_1_3_7_47_1 e_1_3_7_68_1 e_1_3_7_28_1 e_1_3_7_70_1 e_1_3_7_51_1 e_1_3_7_74_1 e_1_3_7_30_1 e_1_3_7_72_1 e_1_3_7_32_1 e_1_3_7_55_1 e_1_3_7_11_1 e_1_3_7_34_1 e_1_3_7_53_1 e_1_3_7_76_1 e_1_3_7_13_1 e_1_3_7_36_1 Jain S. K. (e_1_3_7_37_1) 2004; 66 e_1_3_7_59_1 e_1_3_7_15_1 e_1_3_7_38_1 e_1_3_7_57_1 e_1_3_7_17_1 e_1_3_7_19_1 e_1_3_7_2_1 e_1_3_7_4_1 World Health Organization (e_1_3_7_78_1) 2022 e_1_3_7_6_1 e_1_3_7_8_1 e_1_3_7_80_1 e_1_3_7_40_1 e_1_3_7_63_1 e_1_3_7_61_1 e_1_3_7_82_1 e_1_3_7_21_1 e_1_3_7_44_1 e_1_3_7_67_1 e_1_3_7_23_1 e_1_3_7_42_1 e_1_3_7_65_1 e_1_3_7_25_1 e_1_3_7_48_1 e_1_3_7_27_1 e_1_3_7_46_1 e_1_3_7_69_1 e_1_3_7_29_1 e_1_3_7_52_1 e_1_3_7_73_1 e_1_3_7_50_1 e_1_3_7_71_1 e_1_3_7_10_1 e_1_3_7_31_1 e_1_3_7_56_1 e_1_3_7_77_1 e_1_3_7_12_1 e_1_3_7_33_1 e_1_3_7_54_1 e_1_3_7_75_1 e_1_3_7_14_1 e_1_3_7_35_1 e_1_3_7_16_1 e_1_3_7_58_1 e_1_3_7_79_1 e_1_3_7_18_1 e_1_3_7_39_1 e_1_3_7_3_1 e_1_3_7_5_1 e_1_3_7_7_1 e_1_3_7_9_1 |
| References_xml | – ident: e_1_3_7_34_1 doi: 10.1016/j.bmcl.2008.07.071 – ident: e_1_3_7_39_1 doi: 10.1038/s41594-020-0440-6 – ident: e_1_3_7_10_1 – ident: e_1_3_7_2_1 doi: 10.2174/138620732301200316112000 – ident: e_1_3_7_70_1 doi: 10.1038/nrd1032 – ident: e_1_3_7_41_1 doi: 10.1016/j.bmcl.2009.08.045 – ident: e_1_3_7_54_1 doi: 10.1038/s41598-019-44773-4 – ident: e_1_3_7_46_1 doi: 10.1093/bioinformatics/bts267 – ident: e_1_3_7_5_1 doi: 10.1016/j.compbiomed.2021.104967 – ident: e_1_3_7_79_1 doi: 10.1021/ct4007037 – ident: e_1_3_7_25_1 doi: 10.22435/mpk.v31i3.4920 – ident: e_1_3_7_38_1 doi: 10.1038/s41586-020-2223-y – ident: e_1_3_7_76_1 doi: 10.3389/fmolb.2017.00087 – ident: e_1_3_7_23_1 doi: 10.1016/j.physa.2019.122210 – ident: e_1_3_7_4_1 doi: 10.1016/j.chembiol.2003.09.002 – ident: e_1_3_7_56_1 doi: 10.1002/jcc.21256 – ident: e_1_3_7_36_1 doi: 10.1021/acs.jmedchem.9b00004 – ident: e_1_3_7_51_1 doi: 10.1021/jm901241e – ident: e_1_3_7_55_1 doi: 10.1038/s41592-019-0403-1 – ident: e_1_3_7_58_1 doi: 10.1002/jcc.20289 – ident: e_1_3_7_17_1 doi: 10.1016/j.asoc.2014.09.042 – volume: 66 start-page: 721 year: 2004 ident: e_1_3_7_37_1 article-title: De novo drug design: An overview publication-title: In Indian Journal of Pharmaceutical Sciences, – ident: e_1_3_7_35_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_3_7_14_1 doi: 10.1038/s41579-018-0118-9 – ident: e_1_3_7_18_1 doi: 10.1186/1471-2105-15-184 – ident: e_1_3_7_49_1 doi: 10.1002/0471720895 – ident: e_1_3_7_52_1 doi: 10.26633/RPSP.2020.51 – ident: e_1_3_7_21_1 doi: 10.1080/07391102.2020.1835719 – ident: e_1_3_7_40_1 doi: 10.1021/ci300505n – ident: e_1_3_7_50_1 doi: 10.1080/17460441.2019.1581170 – ident: e_1_3_7_22_1 doi: 10.1186/1758-2946-1-8 – ident: e_1_3_7_31_1 doi: 10.1038/s42256-022-00454-y – ident: e_1_3_7_43_1 doi: 10.1016/j.cell.2018.02.010 – ident: e_1_3_7_69_1 doi: 10.1002/jcc.21334 – ident: e_1_3_7_71_1 doi: 10.1002/jcc.21367 – ident: e_1_3_7_47_1 doi: 10.1111/j.1747-0285.2012.01380.x – ident: e_1_3_7_26_1 doi: 10.1021/ci049958u – ident: e_1_3_7_68_1 doi: 10.1038/s41467-020-17844-8 – volume-title: WHO health emergency dashboard WHO (COVID-19) homepage year: 2022 ident: e_1_3_7_78_1 – ident: e_1_3_7_48_1 doi: 10.1016/j.ddtec.2004.11.007 – ident: e_1_3_7_66_1 doi: 10.1016/S1380-7323(99)80078-8 – ident: e_1_3_7_33_1 doi: 10.1038/nmeth.4067 – ident: e_1_3_7_24_1 doi: 10.1007/978-1-4939-2438-7_1 – ident: e_1_3_7_16_1 doi: 10.2174/138945009787581122 – ident: e_1_3_7_9_1 doi: 10.1093/nar/28.1.235 – ident: e_1_3_7_72_1 doi: 10.1021/jm020017n – ident: e_1_3_7_62_1 doi: 10.1021/jp5012846 – ident: e_1_3_7_30_1 doi: 10.1021/ci800293n – ident: e_1_3_7_83_1 doi: 10.1016/S0140-6736(20)30305-6 – ident: e_1_3_7_27_1 doi: 10.1517/17460441.2015.1032936 – ident: e_1_3_7_3_1 doi: 10.1007/978-3-030-53440-0_24 – ident: e_1_3_7_45_1 doi: 10.1042/BST20211240 – ident: e_1_3_7_64_1 doi: 10.2174/1568026611212240007 – ident: e_1_3_7_8_1 doi: 10.1016/j.addr.2016.05.007 – ident: e_1_3_7_11_1 doi: 10.1016/j.tips.2019.06.004 – ident: e_1_3_7_19_1 doi: 10.1073/pnas.1718910115 – ident: e_1_3_7_67_1 doi: 10.1093/bioinformatics/btl150 – ident: e_1_3_7_60_1 doi: 10.1016/j.jbi.2018.04.007 – ident: e_1_3_7_82_1 doi: 10.1093/bioinformatics/btp140 – ident: e_1_3_7_32_1 doi: 10.19363/J.cnki.cn10-1380/tn.2020.05.01 – ident: e_1_3_7_28_1 doi: 10.1186/s40779-020-00240-0 – ident: e_1_3_7_53_1 doi: 10.1007/s00894-015-2772-4 – ident: e_1_3_7_20_1 doi: 10.1134/S1607672916050173 – ident: e_1_3_7_57_1 doi: 10.3390/ijms22041676 – ident: e_1_3_7_59_1 doi: 10.1007/978-1-4939-7756-7_14 – ident: e_1_3_7_73_1 doi: 10.2174/156802610790232260 – ident: e_1_3_7_81_1 doi: 10.1126/science.abb3405 – ident: e_1_3_7_12_1 doi: 10.1261/rna.065896.118 – ident: e_1_3_7_63_1 doi: 10.1038/nrd1799 – ident: e_1_3_7_61_1 doi: 10.1016/j.jics.2022.100535 – ident: e_1_3_7_7_1 doi: 10.1016/S0006-3495(00)76372-7 – ident: e_1_3_7_13_1 doi: 10.1016/S0140-6736(20)30211-7 – ident: e_1_3_7_42_1 doi: 10.1016/j.cplett.2021.139022 – ident: e_1_3_7_74_1 doi: 10.1002/jcc.26717 – ident: e_1_3_7_6_1 doi: 10.1093/bib/bbaa161 – ident: e_1_3_7_80_1 doi: 10.1016/j.ijid.2020.03.004 – ident: e_1_3_7_29_1 doi: 10.4238/gmr.15027829 – ident: e_1_3_7_44_1 doi: 10.1016/b0-08-045044-x/00246-7 – ident: e_1_3_7_77_1 doi: 10.1016/j.sbi.2021.10.001 – ident: e_1_3_7_15_1 doi: 10.21577/1984-6835.20200115 – ident: e_1_3_7_65_1 doi: 10.1038/nature25978 – ident: e_1_3_7_75_1 doi: 10.1021/acschemneuro.6b00029 |
| SSID | ssj0021171 |
| Score | 2.3487291 |
| Snippet | The pandemic caused by Sars-CoV-2 is a viral infection that has generated one of the most significant health problems worldwide. Previous studies report the... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 9890 |
| SubjectTerms | covid19 deep learning Main protease molecular docking pandemic |
| Title | The search for new efficient inhibitors of SARS-COV-2 through the De novo drug design developed by artificial intelligence |
| URI | https://www.tandfonline.com/doi/abs/10.1080/07391102.2022.2148128 https://www.proquest.com/docview/2739741131 |
| Volume | 41 |
| WOSCitedRecordID | wos000890511300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1538-0254 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021171 issn: 0739-1102 databaseCode: TFW dateStart: 19831001 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4qCl58i29G8Bpt2u52exR18aTic28lSWe0l1b2Ieivd5K2ooh40EtbCBNCZjKPZuYbIQ58n6McUVI3CmRMHS17lqNW6oaoKTDsI1vfbCK5uOgNBulVk004atIqXQxNNVCE19XucGszajPijtzlElstV0YV8oMdelayrIX5w8n4bf_hI-RSyodcjkI6kraG56dZvlinL9il33S1N0D9xX9Y-pJYaLxPOK7FZVlMYbki5up-lK-r4o2FBmrZB14TsMsN6DEm2DRBUT4VpnDdeaAiuDm-vpEnl_cyhKbXD78RThHK6qWCfDh5hNynh0BTmIU5mFdwolqjVkDxCQ50Tdz1z25PzmXTnEHaMFVjSYiEKmdWJ1qhjbpp7i4tMVEd8tiiHcvDsU4o5PFIUUxWaRNQkBgb5TZaFzNlVeKGAJsaIhMFmrpMYHuGvSTUSdih2Abs7myKw5Yp2XONwZGpFtq02dDMbWjWbOimSD-zLhv7nx9UdyrJol9o91s-Z3zS3PWJLrGajDJ29Dj4UipSW3-Yf1vMu471rpwxjHfEzHg4wV0xa1_GxWi4J6aTQW_Py_A7CgPttQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbKFlQubXlU0FIYJK6GOI_N5rjasqICthIsj5uVODOQS4KWXST66xk7CVqEUA_0khyssSzP2DNje75PiD3Hc5QjSuoGngwpSmXPcNZKXR9T8jKOkY0jm4hHo971dTJfC2OfVdocmmqgCLdX28VtD6PbJ3EH9naJ3Zato_L5wxE977IL4mPEvtY-6xsPr56TLqVc0mVFpJVpq3je6uaFf3qBXvpqt3YuaPjlfwz-q_jcBKDQry1mRXzAclUs1ZSUj2viL9sN1OYPPCjgqBvQwUywd4KivC2ywhL0QEVw3j87l4M_l9KHhu6H_wi_EMrqoYJ8MruB3L0QgaY2C3PIHsFaaw1cAcUcIui6uBgejgdHsuFnkMZP1FQSIqHKWdtxqtAE3SS395YYq4gcvGhkuDlMY_K5PVAUklFp5pEXZybITfBNdMqqxA0BJsmIssBLqcsCppdxoIRp7EcUGo8jnk2x32pF39UwHFq16KbNhGo7obqZ0E2RzOtOT935B9VkJTr4h-xuq2jNi83eoKQlVrN7zbEe519KBer7O_rfEZ-Oxqcn-uT36PiHWLYE9ra60Q-3RGc6meFPsWgepsX9ZNuZ8hNmu_Du |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZ4FXGBQkE8yyBxNY2T7GZzRMAKVLRF7NLuzUqcGcglQftAor-esZMgVgj1UC7JIRrL8ow9M_HM9wlx7HiOMkRJ7cCTIbUS2TGctVLbx4S8lGNk48gmol6vMxzGN3U14bguq7Q5NFVAEe6stpv7MaOmIu6HvVxir2XbqHx-cEDPh-y8WHTgWGzSg-6f15xLKZdzWRFpZZomno-GmXFPM-Cl7w5r54G6a58w969itQ4_4bSyl3Uxh8WG-FIRUj5_E3_ZaqAyfuA5AcfcgA5kgn0T5MVDnuaWngdKgv7pbV-e_fotfajJfviNcI5QlE8lZKPpPWSuPgTqzizMIH0Ga6sVbAXkb_BAN8Vd92JwdilrdgZp_FhNJCESqox1HSUKTdCOM3triZFqkQMXbRn-HCYR-fw9UBSSUUnqkRelJshMsCUWirLAbQEmTonSwEuozQKmk3KYhEnktyg0Hsc7O-KkUYp-rEA4tGqwTesF1XZBdb2gOyJ-qzo9cX8_qKIq0cE_ZI8aPWveavb-JCmwnI41R3qcfSkVqN3_GP9QLN-cd_X1Ve_nnlix7PW2tdEP98XCZDTFA7Fknib5ePTdGfILc7Dvkg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+search+for+new+efficient+inhibitors+of+SARS-COV-2+through+the+De+novo+drug+design+developed+by+artificial+intelligence&rft.jtitle=Journal+of+biomolecular+structure+%26+dynamics&rft.au=da+Fonseca%2C+Alu%C3%ADsio+Marques&rft.au=Cabongo%2C+Sadrack+Queque&rft.au=Caluaco%2C+Bernardino+Joaquim&rft.au=Colares%2C+Regilany+Paulo&rft.date=2023-11-24&rft.pub=Taylor+%26+Francis&rft.issn=0739-1102&rft.eissn=1538-0254&rft.volume=41&rft.issue=19&rft.spage=9890&rft.epage=9906&rft_id=info:doi/10.1080%2F07391102.2022.2148128&rft.externalDocID=2148128 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-1102&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-1102&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-1102&client=summon |