Chebyshev Functional Expansion Based Artificial Neural Network Controller for Shunt Compensation

Three-phase four-wire (TPFW) distribution systems are prone to various power quality (PQ) issues, such as voltage fluctuations, poor power factor, unbalanced load conditions, and the presence of harmonics in current. Mitigation of these PQ problems using appropriate shunt compensator requires advanc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics Vol. 14; no. 9; pp. 3792 - 3800
Main Authors: Chittora, Prakash, Singh, Alka, Singh, Madhusudan
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1551-3203, 1941-0050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Three-phase four-wire (TPFW) distribution systems are prone to various power quality (PQ) issues, such as voltage fluctuations, poor power factor, unbalanced load conditions, and the presence of harmonics in current. Mitigation of these PQ problems using appropriate shunt compensator requires advanced control algorithms for control of three-phase voltage source converters (VSC) in a distribution system. In this paper, Chebyshev functional expansion based artificial neural network ( ChANN ) algorithm for shunt compensation using distribution static compensator (DSTATCOM) is proposed. The parameters of ChANN are trained in real time. Implementation results with linear and nonlinear loads are demonstrated on a prototype hardware designed and developed using dSPACE 1104, current and voltage sensors for the realization of DSTATCOM for TPFW system. A zigzag transformer is used along with conventional three-phase, three-wire (TPTW) DSTATCOM to reduce its overall rating. Suitable comparisons with conventional control techniques are also mentioned.
AbstractList Three-phase four-wire (TPFW) distribution systems are prone to various power quality (PQ) issues, such as voltage fluctuations, poor power factor, unbalanced load conditions, and the presence of harmonics in current. Mitigation of these PQ problems using appropriate shunt compensator requires advanced control algorithms for control of three-phase voltage source converters (VSC) in a distribution system. In this paper, Chebyshev functional expansion based artificial neural network ( ChANN ) algorithm for shunt compensation using distribution static compensator (DSTATCOM) is proposed. The parameters of ChANN are trained in real time. Implementation results with linear and nonlinear loads are demonstrated on a prototype hardware designed and developed using dSPACE 1104, current and voltage sensors for the realization of DSTATCOM for TPFW system. A zigzag transformer is used along with conventional three-phase, three-wire (TPTW) DSTATCOM to reduce its overall rating. Suitable comparisons with conventional control techniques are also mentioned.
Author Singh, Madhusudan
Chittora, Prakash
Singh, Alka
Author_xml – sequence: 1
  givenname: Prakash
  orcidid: 0000-0003-2979-6885
  surname: Chittora
  fullname: Chittora, Prakash
  email: prakashchittora@gmail.com
  organization: Department of Electrical Engineering, Delhi Technological University, Delhi, India
– sequence: 2
  givenname: Alka
  orcidid: 0000-0001-5527-1869
  surname: Singh
  fullname: Singh, Alka
  email: alkasingh.dr@gmail.com
  organization: Department of Electrical Engineering, Delhi Technological University, Delhi, India
– sequence: 3
  givenname: Madhusudan
  orcidid: 0000-0002-4534-3109
  surname: Singh
  fullname: Singh, Madhusudan
  email: madhusudan@dce.ac.in
  organization: Department of Electrical Engineering, Delhi Technological University, Delhi, India
BookMark eNp9UD1PwzAUtFCRaAs7Eksk5pRnO07isVQtVKpgoMzBdZ_VlDQutgP035N-iIGB6Z3eu7unux7p1LZGQq4pDCgFeTefTgcMaD5gmeQ8yc5Il8qExgACOi0WgsacAb8gPe_XADwDLrvkbbTCxc6v8DOaNLUOpa1VFY2_t6r2LY7ulcdlNHShNKUu29MTNu4wwpd179HI1sHZqkIXGeuil1VTh3a52WLt1d7tkpwbVXm8Os0-eZ2M56PHePb8MB0NZ7FmkobYYMrRcE51InLJtQCWp4s0wYxmWlBEkyzyNFFMK0zyBJc5GrFkZgEp41wueZ_cHn23zn406EOxto1rw_iCUQBIKRe8ZcGRpZ313qEptq7cKLcrKBT7Hou2x2LfY3HqsZWkfyS6DIdowamy-k94cxSWiPj7J2dCAkj-A9hygp0
CODEN ITIICH
CitedBy_id crossref_primary_10_1007_s00500_023_09207_4
crossref_primary_10_1007_s00202_024_02719_8
crossref_primary_10_1007_s00202_022_01706_1
crossref_primary_10_1109_TII_2024_3417300
crossref_primary_10_1109_TII_2025_3528525
crossref_primary_10_1007_s00521_019_04366_8
crossref_primary_10_1109_TNNLS_2023_3347767
crossref_primary_10_1002_cta_3486
crossref_primary_10_1002_cta_3463
crossref_primary_10_1007_s00202_025_03068_w
crossref_primary_10_1109_TII_2019_2920831
crossref_primary_10_1109_TIA_2021_3109100
crossref_primary_10_1002_2050_7038_12688
crossref_primary_10_1007_s40031_021_00685_4
crossref_primary_10_1007_s00202_021_01388_1
crossref_primary_10_1109_TIE_2018_2885727
crossref_primary_10_1109_TIE_2019_2905835
crossref_primary_10_1007_s00202_022_01571_y
crossref_primary_10_1002_cta_3578
crossref_primary_10_1109_TPEL_2021_3075068
crossref_primary_10_1109_TSTE_2018_2890600
crossref_primary_10_1016_j_ijhydene_2019_12_224
crossref_primary_10_1109_TCE_2024_3412096
crossref_primary_10_1109_TII_2020_3024071
crossref_primary_10_3390_math11143231
crossref_primary_10_1109_TII_2019_2923553
crossref_primary_10_1109_ACCESS_2021_3072865
crossref_primary_10_1109_JESTPE_2020_2964005
Cites_doi 10.1109/LPT.2016.2528168
10.1109/TII.2014.2308437
10.1109/TIE.2010.2070770
10.1109/TII.2013.2264290
10.1049/iet-pel.2014.0486
10.1109/TIE.2007.894790
10.1615/AtoZ.c.chebyshev_polynomials
10.1109/TII.2016.2516823
10.1049/iet-pel.2008.0126
10.1109/78.165652
10.1109/TIE.2009.2014367
10.1109/TSP.2012.2226173
10.1109/TII.2014.2307196
10.1109/ICPEICES.2016.7853382
10.1109/CJECE.2015.2464109
10.1109/TIE.2016.2515558
10.1109/TIA.2015.2451093
10.1109/TAC.2015.2449151
10.1109/TIA.2016.2600644
10.1016/0022-247X(81)90180-3
10.1109/TIE.2014.2308163
10.1109/TII.2016.2544248
10.1109/RAICS.2015.7488453
10.1109/LGRS.2011.2178812
10.1109/TIA.2014.2356639
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2018.2793347
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 3800
ExternalDocumentID 10_1109_TII_2018_2793347
8259009
Genre orig-research
GrantInformation_xml – fundername: Department of Science and Technology, Ministry of Science and Technology, India; Department of Science and Technology, Government of India
  grantid: EMR/2016/001874
  funderid: 10.13039/501100001409
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-fe63ef331c45893c50286b64e717c51eef4b864a2cae484ed8ef5d2fb062339d3
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443994500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:16:23 EDT 2025
Tue Nov 18 22:05:35 EST 2025
Sat Nov 29 04:40:23 EST 2025
Wed Aug 27 02:17:12 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fe63ef331c45893c50286b64e717c51eef4b864a2cae484ed8ef5d2fb062339d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5527-1869
0000-0003-2979-6885
0000-0002-4534-3109
PQID 2100061353
PQPubID 85507
PageCount 9
ParticipantIDs crossref_primary_10_1109_TII_2018_2793347
ieee_primary_8259009
crossref_citationtrail_10_1109_TII_2018_2793347
proquest_journals_2100061353
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
jayaprakash (ref7) 0
ref19
ref18
(ref31) 2014
haykin (ref17) 2014
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
yang (ref16) 0
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
acha (ref2) 2002
ghosh (ref1) 2009
References_xml – ident: ref25
  doi: 10.1109/LPT.2016.2528168
– ident: ref6
  doi: 10.1109/TII.2014.2308437
– ident: ref20
  doi: 10.1109/TIE.2010.2070770
– ident: ref18
  doi: 10.1109/TII.2013.2264290
– ident: ref11
  doi: 10.1049/iet-pel.2014.0486
– ident: ref9
  doi: 10.1109/TIE.2007.894790
– ident: ref23
  doi: 10.1615/AtoZ.c.chebyshev_polynomials
– ident: ref13
  doi: 10.1109/TII.2016.2516823
– ident: ref15
  doi: 10.1049/iet-pel.2008.0126
– ident: ref30
  doi: 10.1109/78.165652
– ident: ref19
  doi: 10.1109/TIE.2009.2014367
– ident: ref27
  doi: 10.1109/TSP.2012.2226173
– ident: ref4
  doi: 10.1109/TII.2014.2307196
– ident: ref12
  doi: 10.1109/ICPEICES.2016.7853382
– ident: ref21
  doi: 10.1109/CJECE.2015.2464109
– start-page: 1
  year: 0
  ident: ref7
  article-title: Icos? algorithm based control of zig-zag transformer connected three phase four wire DSTATCOM
  publication-title: Proc IEEE Int Conf Power Electron Drives Energy Syst
– year: 2009
  ident: ref1
  publication-title: Power Quality Enhancement using Custom Power Devices
– ident: ref14
  doi: 10.1109/TIE.2016.2515558
– ident: ref22
  doi: 10.1109/TIA.2015.2451093
– ident: ref26
  doi: 10.1109/TAC.2015.2449151
– year: 2002
  ident: ref2
  publication-title: Power Electronics Control in Electrical System
– ident: ref8
  doi: 10.1109/TIA.2016.2600644
– ident: ref29
  doi: 10.1016/0022-247X(81)90180-3
– ident: ref24
  doi: 10.1109/TIE.2014.2308163
– ident: ref5
  doi: 10.1109/TII.2016.2544248
– ident: ref10
  doi: 10.1109/RAICS.2015.7488453
– start-page: 2061
  year: 0
  ident: ref16
  article-title: Three-phase four-wire DSTATCOM based on a three-dimensional PWM algorithm
  publication-title: Proc Int Conf Elect Utility Deregulation Restructuring Power Technol
– ident: ref28
  doi: 10.1109/LGRS.2011.2178812
– year: 2014
  ident: ref17
  publication-title: Neural Networks and Learning Machines
– start-page: 1
  year: 2014
  ident: ref31
  publication-title: IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems
– ident: ref3
  doi: 10.1109/TIA.2014.2356639
SSID ssj0037039
Score 2.3577964
Snippet Three-phase four-wire (TPFW) distribution systems are prone to various power quality (PQ) issues, such as voltage fluctuations, poor power factor, unbalanced...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3792
SubjectTerms Adaptive control
Algorithm design and analysis
Algorithms
Approximation algorithms
Artificial neural networks
Chebyshev approximation
Chebyshev polynomial (<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ChP </tex-math> </inline-formula> </named-content>)
Compensation
Control algorithms
Converters
Electric potential
Informatics
Neural networks
nonlinear systems
Power factor
Power quality
power quality (PQ)
Reactive power
shunt compensation
Variations
Wire
Title Chebyshev Functional Expansion Based Artificial Neural Network Controller for Shunt Compensation
URI https://ieeexplore.ieee.org/document/8259009
https://www.proquest.com/docview/2100061353
Volume 14
WOSCitedRecordID wos000443994500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4nZKDF8FubdJfOerYcJchOGG32qQvTBidbN3wz_clbcdAETy1hySUfsl730tevkfIneQMLW_sOl6QaccXWerE2tOOjmQmkW7EkchssYloPI6nU_HSIA_buzAAYJPPoGte7Vl-tlBrs1XWw2hG2Nt6e1EUlne1aqvLceYKq40aeA5nLq-PJF3Rm4xGJocr7jKcjNwUUtlxQbamyg9DbL3L8Ph_33VCjioWSR9L2E9JA_IzcrijLdgi7_0ZmL1n2NAh-q5yy48OvnD1mw0y-oTuK7MjlBoS1Mh02IfNC6f9Mod9DkuKvJa-ztZ5QY31wLjXonlO3oaDSf_ZqcopOIoJr3A0hBw0557yA2QpKkBqEcrQB4zoVOABaF_GoZ8ylYIf-4gg6CBjWrpIkbjI-AVp5oscLgn10jSWDJQ0enORZlJGLFRGnSwIke-kbdKr_3CiKq1xU_JintiYwxUJYpIYTJIKkza53_b4LHU2_mjbMhhs21W_v006NYhJtRBXCfMsS-MBv_q91zU5MGOXaWMd0iyWa7gh-2pTfKyWt3aOfQM7QM_l
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5EBfXgq4r1mYMXwW13k33lqKXFohbBCr2tm-wEBWmlD_HnO8lui6AInnYPm90lXzLzZTL5BuBcCU6WN_W9ICqMF8oi91ITGM8kqlBEN9JEFq7YRNLrpYOBfFiCy8VZGER0yWfYsLduL78Y6ZkNlTVpNSPdab0VWzlLlqe15nZX0NiVTh01CjzBfTHflPRls9_t2iyutMFpOApbSuWbE3JVVX6YYudfOlv_-7Nt2Kx4JLsqgd-BJRzuwsY3dcEaPLde0Eaf8YN1yHuVQT_W_qT5b0Nk7JocWOHeUKpIMCvU4S4uM5y1yiz2NxwzYrbs8WU2nDJrP2jl6_Dcg6dOu9-68aqCCp7mMph6BmOBRohAhxHxFB0RuYhVHCKt6XQUIJpQpXGYc51jmIaEIZqo4Eb5RJKELMQ-LA9HQzwAFuR5qjhqZRXnEsOVSnisrT5ZFBPjyevQnPdwpiu1cVv04i1zqw5fZoRJZjHJKkzqcLFo8V4qbfzxbM1isHiu6v46HM9BzKqpOMl44HiaiMTh763OYO2mf3-X3XV7t0ewbr9TJpEdw_J0PMMTWNUf09fJ-NSNty9H2tM0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chebyshev+Functional+Expansion+Based+Artificial+Neural+Network+Controller+for+Shunt+Compensation&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Chittora%2C+Prakash&rft.au=Singh%2C+Alka&rft.au=Singh%2C+Madhusudan&rft.date=2018-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=14&rft.issue=9&rft.spage=3792&rft_id=info:doi/10.1109%2FTII.2018.2793347&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon