AI lifecycle models need to be revised An exploratory study in Fintech

Tech-leading organizations are embracing the forthcoming artificial intelligence revolution. Intelligent systems are replacing and cooperating with traditional software components. Thus, the same development processes and standards in software engineering ought to be complied in artificial intellige...

Full description

Saved in:
Bibliographic Details
Published in:Empirical software engineering : an international journal Vol. 26; no. 5
Main Authors: Haakman, Mark, Cruz, Luís, Huijgens, Hennie, van Deursen, Arie
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2021
Subjects:
ISSN:1382-3256, 1573-7616
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tech-leading organizations are embracing the forthcoming artificial intelligence revolution. Intelligent systems are replacing and cooperating with traditional software components. Thus, the same development processes and standards in software engineering ought to be complied in artificial intelligence systems. This study aims to understand the processes by which artificial intelligence-based systems are developed and how state-of-the-art lifecycle models fit the current needs of the industry. We conducted an exploratory case study at ING, a global bank with a strong European base. We interviewed 17 people with different roles and from different departments within the organization. We have found that the following stages have been overlooked by previous lifecycle models: data collection , feasibility study , documentation , model monitoring , and model risk assessment . Our work shows that the real challenges of applying Machine Learning go much beyond sophisticated learning algorithms – more focus is needed on the entire lifecycle. In particular, regardless of the existing development tools for Machine Learning, we observe that they are still not meeting the particularities of this field.
AbstractList Tech-leading organizations are embracing the forthcoming artificial intelligence revolution. Intelligent systems are replacing and cooperating with traditional software components. Thus, the same development processes and standards in software engineering ought to be complied in artificial intelligence systems. This study aims to understand the processes by which artificial intelligence-based systems are developed and how state-of-the-art lifecycle models fit the current needs of the industry. We conducted an exploratory case study at ING, a global bank with a strong European base. We interviewed 17 people with different roles and from different departments within the organization. We have found that the following stages have been overlooked by previous lifecycle models: data collection , feasibility study , documentation , model monitoring , and model risk assessment . Our work shows that the real challenges of applying Machine Learning go much beyond sophisticated learning algorithms – more focus is needed on the entire lifecycle. In particular, regardless of the existing development tools for Machine Learning, we observe that they are still not meeting the particularities of this field.
ArticleNumber 95
Author Haakman, Mark
van Deursen, Arie
Cruz, Luís
Huijgens, Hennie
Author_xml – sequence: 1
  givenname: Mark
  surname: Haakman
  fullname: Haakman, Mark
  organization: AI For Fintech Research, ING
– sequence: 2
  givenname: Luís
  orcidid: 0000-0002-1615-355X
  surname: Cruz
  fullname: Cruz, Luís
  email: l.cruz@tudelft.nl
  organization: Delft University of Technology
– sequence: 3
  givenname: Hennie
  surname: Huijgens
  fullname: Huijgens, Hennie
  organization: AI For Fintech Research, ING
– sequence: 4
  givenname: Arie
  surname: van Deursen
  fullname: van Deursen, Arie
  organization: Delft University of Technology
BookMark eNp9zz1PwzAQgGELFYm28AeYMrEZzl9xPFYV0EqVWGC2_HFGqdIE2QGp_55AmRg63Q33nPQuyKwfeiTklsE9A9APhUFdSwqcUTDGCMouyJwpLaiuWT2bdtFwKriqr8iilD0AGC3VnNyttlXXJgzH0GF1GCJ2peoRYzUOlccq41dbMF6Ty-S6gjd_c0nenh5f1xu6e3nerlc7GrhhI00-Bs8h8iSk99qlKJWUOiloIkPJQUceagkGIUSnE3qlvNFMJ6l0Y5xYkub0N-ShlIzJhnZ0Yzv0Y3ZtZxnYn1576rVTr_3ttWyi_B_9yO3B5eN5JE6oTMf9O2a7Hz5zPyWeU9_Sl2kn
CitedBy_id crossref_primary_10_1007_s00415_025_12918_3
crossref_primary_10_1109_MC_2023_3254646
crossref_primary_10_1002_widm_1507
crossref_primary_10_3389_fdata_2024_1467222
crossref_primary_10_1145_3688841
crossref_primary_10_3233_NAI_240767
crossref_primary_10_1080_12460125_2023_2214306
crossref_primary_10_1016_j_sftr_2025_101279
crossref_primary_10_1590_0001_3765202520240924
crossref_primary_10_3390_technologies13090421
crossref_primary_10_1016_j_datak_2022_102013
crossref_primary_10_1016_j_eneco_2024_107561
crossref_primary_10_1080_12460125_2025_2537085
crossref_primary_10_1016_j_soncn_2023_151433
crossref_primary_10_1145_3625289
crossref_primary_10_3390_ai4040046
crossref_primary_10_1016_j_irfa_2023_102800
crossref_primary_10_1145_3702004
crossref_primary_10_1007_s12599_023_00842_7
crossref_primary_10_32517_0234_0453_2023_38_3_31_41
crossref_primary_10_1515_zwf_2022_1107
crossref_primary_10_1109_ACCESS_2025_3577970
crossref_primary_10_1007_s43621_025_01225_6
crossref_primary_10_1073_pnas_2204781120
crossref_primary_10_1016_j_procir_2024_10_279
crossref_primary_10_1145_3712007
crossref_primary_10_1186_s41120_025_00110_w
crossref_primary_10_1016_j_imu_2024_101472
crossref_primary_10_1016_j_infsof_2024_107520
crossref_primary_10_1080_17517575_2025_2481557
crossref_primary_10_1109_TAI_2023_3315272
crossref_primary_10_1051_shsconf_202420301005
crossref_primary_10_1007_s00146_024_01974_4
Cites_doi 10.1016/0147-1767(85)90062-8
10.1007/978-3-030-64148-1_12
10.14236/ewic/EASE2008.5
10.1007/978-3-030-00847-5_1
10.1109/VLHCC.2016.7739680
10.1145/2884781.2884833
10.1109/BigData.2017.8258038
10.1002/j.2334-5837.2017.00427.x
10.1007/978-3-030-58666-9_2
10.1007/978-1-4613-1639-8
10.1017/S0269888910000032
10.17763/haer.62.3.8323320856251826
10.1086/268415
10.4135/9781849209717
10.1109/SEAA.2018.00018
10.1145/3368089.3409711
10.1177/160940690600500107
10.1109/TSE.2017.2754374
10.1007/s10664-019-09682-0
10.1145/3292500.3330667
10.1109/ICSE-SEIP.2019.00042
10.1109/MS.2019.2954841
10.1006/jesp.1997.1333
10.1016/j.apnr.2005.06.001
10.1109/TSE.2019.2962027
10.1145/3287560.3287596
10.1109/HPCA.2019.00048
10.1145/3292500.3330744
10.2139/ssrn.3333515
10.1145/2481244.2481247
10.1145/3382494.3410681
10.1023/A:1025419826662
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10664-021-09993-1
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_021_09993_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-fbdcb20d2f34bb7afd45447f508d1e4207d2c6409e0cda7feb55b9717f45789a3
IEDL.DBID RSV
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691590700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Nov 18 22:24:57 EST 2025
Sat Nov 29 05:37:45 EST 2025
Fri Feb 21 02:48:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Case study
AI engineering
AI lifecycle
SE4AI
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fbdcb20d2f34bb7afd45447f508d1e4207d2c6409e0cda7feb55b9717f45789a3
ORCID 0000-0002-1615-355X
OpenAccessLink https://link.springer.com/10.1007/s10664-021-09993-1
ParticipantIDs crossref_citationtrail_10_1007_s10664_021_09993_1
crossref_primary_10_1007_s10664_021_09993_1
springer_journals_10_1007_s10664_021_09993_1
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2021
Publisher Springer US
Publisher_xml – name: Springer US
References Rollins J (2015) Foundational methodology for data science. Domino Data Lab, Inc. Whitepaper
Ryan M J, Wheatcraft L S (2017) On the use of the terms verification and validation. In: INCOSE International Symposium, vol 27, pp 1277–1290. https://doi.org/10.1002/j.2334-5837.2017.00427.x
YinRKCase study research and applications: Design and methods2017Thousand OaksSage publications
Ericson G, Rohm WA, Martens J, Sharkey K, Casey C, Harvey B, Schonning N (2017) Team data science process documentation. Retrieved September 2020 https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process
Martínez-Plumed F, Contreras-Ochando L, Ferri C, Flach P, Hernández-Orallo J, Kull M, Lachiche N, Ramírez-Quintana MJ (2017) Casp-dm: Context aware standard process for data mining. arXiv:1709.09003
MeadCIsmailMAnalog VLSI implementation of neural systems1989BerlinSpringer10.1007/978-1-4613-1639-8
Wu C J, Brooks D, Chen K, Chen D, Choudhury S, Dukhan M, Hazelwood K, Isaac E, Jia Y, Jia B et al (2019) Machine learning at facebook: Understanding inference at the edge, IEEE
Martínez-Plumed F, Contreras-Ochando L, Ferri C, Orallo J H, Kull M, Lachiche N, Quintana M J R, Flach PA (2019) CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE Trans Knowl Data Eng
Moyle S, Jorge A (2001) Ramsys-a methodology for supporting rapid remote collaborative data mining projects, vol 64
LinJRyaboyDScaling big data mining infrastructure: the Twitter experienceAcm SIGKDD Explorations Newsletter201314261910.1145/2481244.2481247
Breck E, Cai S, Nielsen E, Salib M, Sculley D (2017) The ml test score: A rubric for ml production readiness and technical debt reduction, IEEE
ShearerCThe CRISP-DM model: the new blueprint for data miningJ Data Warehous2000541322
WangYCognitive informatics: A new transdisciplinary research fieldBrain and Mind20034211512710.1023/A:1025419826662https://doi.org/10.1023/A:1025419826662
MariscalGMarbanOFernandezCA survey of data mining and knowledge discovery process models and methodologiesKnowl Eng Rev201025213716610.1017/S0269888910000032
WuXZhuXWuGQDingWData mining with big dataIEEE Trans Knowl Data Eng201326197107
Amershi S, Begel A, Bird C, DeLine R, Gall H, Kamar E, Nagappan N, Nushi B, Zimmermann T (2019) Software engineering for machine learning: a case study. In: Proceedings of the 41st International conference on software engineering, software engineering in practice. IEEE Press, pp 291–300
BrummerCYadavYFintech and the innovation trilemmaGeo LJ2018107235
Damiani E, Frati F (2018) Towards conceptual models for machine learning computations. In: International conference on conceptual modeling. Springer, pp 3–9
ING (2019) ING at a glance. https://www.ing.com/About-us/Profile/ING-at-a-glance.htm
FeredayJMuir-CochraneEDemonstrating rigor using thematic analysis: A hybrid approach of inductive and deductive coding and theme developmentInt J Qual Methods200651809210.1177/160940690600500107
Haakman M, Cruz L, Huijgens H, van Deursen A (2020) Machine learning behind the scenes: An exploratory study in fintech - case study protocol. https://1drv.ms/b/s!AuvX_CBP4YARcBBYdYAOG8qLGIk
MenziesTThe five laws of se for aiIEEE Softw.2019371818510.1109/MS.2019.2954841
Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, Hutchinson B, Spitzer E, Raji ID, Gebru T (2019) Model cards for model reporting. In: Proceedings of the conference on fairness, accountability, and transparency, pp 220–229
15288 I S O /I E C /I E E E (2015) Systems and software engineering – System life cycle processes. Institute of Electrical and Electronic Engineers (IEEE), New York
Van LooRMaking innovation more competitive: the case of fintechUCLA L Rev201865232
Lwakatare LE, Crnkovic I, Rånge E, Bosch J (2020) From a data science driven process to a continuous delivery process for machine learning systems. In: International conference on product-focused software process improvement. Springer, pp 185–201
Brereton P, Kitchenham B A, Budgen D, Li Z (2008) Using a protocol template for case study planning. In: EASE, Citeseer, vol 8, pp 41–48
Hill C, Bellamy R, Erickson T, Burnett M (2016) Trials and tribulations of developers of intelligent systems: A field study. In: 2016 IEEE symposium on visual languages and human-centric computing (VL/HCC). IEEE, pp 162–170
Kavuri AS, Milne A (2019) Fintech and the future of financial services: What are the research gaps CAMA Working Paper No 18/2019
MitchellTRThompsonLPetersonECronkRTemporal adjustments in the evaluation of events: The “rosy view”J Exper Soc Psychol199733442144810.1006/jesp.1997.1333
Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo JF, Dennison D (2015) Hidden technical debt in machine learning systems. In: Advances in neural information processing systems, pp 2503–2511
Akkiraju R, Sinha V, Xu A, Mahmud J, Gundecha P, Liu Z, Liu X, Schumacher J (2020) Characterizing machine learning processes: A maturity framework. In: International conference on business process management, Springer, pp 17–31
Cruz L, Abreu R (2019) Catalog of energy patterns for mobile applications. Empir Softw Eng. https://doi.org/10.1007/s10664-019-09682-0
StraussACorbinJBasics of qualitative research1990Thousand OaksSage publications
HalcombEJDavidsonPMIs verbatim transcription of interview data always necessary?Appl Nurs Res2006191384210.1016/j.apnr.2005.06.001
Arpteg A, Brinne B, Crnkovic-Friis L, Bosch J (2018) Software engineering challenges of deep learning, IEEE
Larios Vargas E, Aniche M, Treude C, Bruntink M, Gousios G (2020) Selecting third-party libraries: The practitioners’ perspective. In: Proceedings of the 28th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 245–256
Serban A, van der Blom K, Hoos H, Visser J (2020) Adoption and effects of software engineering best practices in machine learning. In: Empirical software engineering and measurement
MaxwellJUnderstanding and validity in qualitative researchHarvard Educ Rev199262327930110.17763/haer.62.3.8323320856251826
Ahmed Z, Amizadeh S, Bilenko M, Carr R, Chin WS, Dekel Y, Dupre X, Eksarevskiy V, Filipi S, Finley T et al (2019) Machine learning at Microsoft with ML. NET. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp 2448–2458
Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: a critical review and guidelines. In: Proceedings of the 38th International conference on software engineering, pp 120–131
KimMZimmermannTDeLineRBegelAData scientists in software teams: State of the art and challengesIEEE Trans. Softw. Eng.201744111024103810.1109/TSE.2017.2754374
Zhang J M, Harman M, Ma L (2020) Liu Y, Machine learning testing, Survey, landscapes and horizons. IEEE Trans Softw Eng
Bernardi L, Mavridis T, Estevez P (2019) 150 successful machine learning models: 6 lessons learned at Booking.com. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. ACM, pp 1743–1751
FasickFASome uses of untranscribed tape recordings in survey researchPublic Opinion Q197741454955210.1086/268415
LincolnYGubaENaturalistic inquiry1985Newbury ParkSAGE10.1016/0147-1767(85)90062-8
WengrafTQualitative research interviewing: Biographic narrative and semi-structured methods2001Newbury ParkSAGE10.4135/9781849209717
Nicolescu B, Ertas A (2008) Transdisciplinary theory and practice. USA, TheATLAS
9993_CR9
TR Mitchell (9993_CR32) 1997; 33
T Menzies (9993_CR30) 2019; 37
9993_CR5
9993_CR4
T Wengraf (9993_CR44) 2001
9993_CR7
C Mead (9993_CR29) 1989
Y Wang (9993_CR43) 2003; 4
9993_CR6
J Fereday (9993_CR13) 2006; 5
C Shearer (9993_CR39) 2000; 5
RK Yin (9993_CR47) 2017
Y Lincoln (9993_CR23) 1985
J Lin (9993_CR22) 2013; 14
9993_CR45
9993_CR24
9993_CR40
9993_CR21
9993_CR26
9993_CR48
9993_CR27
J Maxwell (9993_CR28) 1992; 62
G Mariscal (9993_CR25) 2010; 25
A Strauss (9993_CR41) 1990
R Van Loo (9993_CR42) 2018; 65
EJ Halcomb (9993_CR15) 2006; 19
9993_CR11
9993_CR33
9993_CR34
9993_CR35
9993_CR14
9993_CR36
X Wu (9993_CR46) 2013; 26
9993_CR31
9993_CR10
9993_CR1
FA Fasick (9993_CR12) 1977; 41
9993_CR19
9993_CR3
C Brummer (9993_CR8) 2018; 107
M Kim (9993_CR20) 2017; 44
9993_CR2
9993_CR37
9993_CR16
9993_CR38
9993_CR17
9993_CR18
References_xml – reference: Zhang J M, Harman M, Ma L (2020) Liu Y, Machine learning testing, Survey, landscapes and horizons. IEEE Trans Softw Eng
– reference: Arpteg A, Brinne B, Crnkovic-Friis L, Bosch J (2018) Software engineering challenges of deep learning, IEEE
– reference: Martínez-Plumed F, Contreras-Ochando L, Ferri C, Orallo J H, Kull M, Lachiche N, Quintana M J R, Flach PA (2019) CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE Trans Knowl Data Eng
– reference: Akkiraju R, Sinha V, Xu A, Mahmud J, Gundecha P, Liu Z, Liu X, Schumacher J (2020) Characterizing machine learning processes: A maturity framework. In: International conference on business process management, Springer, pp 17–31
– reference: Bernardi L, Mavridis T, Estevez P (2019) 150 successful machine learning models: 6 lessons learned at Booking.com. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. ACM, pp 1743–1751
– reference: LincolnYGubaENaturalistic inquiry1985Newbury ParkSAGE10.1016/0147-1767(85)90062-8
– reference: MeadCIsmailMAnalog VLSI implementation of neural systems1989BerlinSpringer10.1007/978-1-4613-1639-8
– reference: Kavuri AS, Milne A (2019) Fintech and the future of financial services: What are the research gaps CAMA Working Paper No 18/2019
– reference: Ericson G, Rohm WA, Martens J, Sharkey K, Casey C, Harvey B, Schonning N (2017) Team data science process documentation. Retrieved September 2020 https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/
– reference: ING (2019) ING at a glance. https://www.ing.com/About-us/Profile/ING-at-a-glance.htm
– reference: Lwakatare LE, Crnkovic I, Rånge E, Bosch J (2020) From a data science driven process to a continuous delivery process for machine learning systems. In: International conference on product-focused software process improvement. Springer, pp 185–201
– reference: Haakman M, Cruz L, Huijgens H, van Deursen A (2020) Machine learning behind the scenes: An exploratory study in fintech - case study protocol. https://1drv.ms/b/s!AuvX_CBP4YARcBBYdYAOG8qLGIk
– reference: YinRKCase study research and applications: Design and methods2017Thousand OaksSage publications
– reference: MariscalGMarbanOFernandezCA survey of data mining and knowledge discovery process models and methodologiesKnowl Eng Rev201025213716610.1017/S0269888910000032
– reference: Moyle S, Jorge A (2001) Ramsys-a methodology for supporting rapid remote collaborative data mining projects, vol 64
– reference: HalcombEJDavidsonPMIs verbatim transcription of interview data always necessary?Appl Nurs Res2006191384210.1016/j.apnr.2005.06.001
– reference: MaxwellJUnderstanding and validity in qualitative researchHarvard Educ Rev199262327930110.17763/haer.62.3.8323320856251826
– reference: Serban A, van der Blom K, Hoos H, Visser J (2020) Adoption and effects of software engineering best practices in machine learning. In: Empirical software engineering and measurement
– reference: Martínez-Plumed F, Contreras-Ochando L, Ferri C, Flach P, Hernández-Orallo J, Kull M, Lachiche N, Ramírez-Quintana MJ (2017) Casp-dm: Context aware standard process for data mining. arXiv:1709.09003
– reference: KimMZimmermannTDeLineRBegelAData scientists in software teams: State of the art and challengesIEEE Trans. Softw. Eng.201744111024103810.1109/TSE.2017.2754374
– reference: ShearerCThe CRISP-DM model: the new blueprint for data miningJ Data Warehous2000541322
– reference: FasickFASome uses of untranscribed tape recordings in survey researchPublic Opinion Q197741454955210.1086/268415
– reference: BrummerCYadavYFintech and the innovation trilemmaGeo LJ2018107235
– reference: LinJRyaboyDScaling big data mining infrastructure: the Twitter experienceAcm SIGKDD Explorations Newsletter201314261910.1145/2481244.2481247
– reference: Nicolescu B, Ertas A (2008) Transdisciplinary theory and practice. USA, TheATLAS
– reference: Wu C J, Brooks D, Chen K, Chen D, Choudhury S, Dukhan M, Hazelwood K, Isaac E, Jia Y, Jia B et al (2019) Machine learning at facebook: Understanding inference at the edge, IEEE
– reference: 15288 I S O /I E C /I E E E (2015) Systems and software engineering – System life cycle processes. Institute of Electrical and Electronic Engineers (IEEE), New York
– reference: Cruz L, Abreu R (2019) Catalog of energy patterns for mobile applications. Empir Softw Eng. https://doi.org/10.1007/s10664-019-09682-0
– reference: WuXZhuXWuGQDingWData mining with big dataIEEE Trans Knowl Data Eng201326197107
– reference: MitchellTRThompsonLPetersonECronkRTemporal adjustments in the evaluation of events: The “rosy view”J Exper Soc Psychol199733442144810.1006/jesp.1997.1333
– reference: Ahmed Z, Amizadeh S, Bilenko M, Carr R, Chin WS, Dekel Y, Dupre X, Eksarevskiy V, Filipi S, Finley T et al (2019) Machine learning at Microsoft with ML. NET. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp 2448–2458
– reference: Damiani E, Frati F (2018) Towards conceptual models for machine learning computations. In: International conference on conceptual modeling. Springer, pp 3–9
– reference: Larios Vargas E, Aniche M, Treude C, Bruntink M, Gousios G (2020) Selecting third-party libraries: The practitioners’ perspective. In: Proceedings of the 28th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 245–256
– reference: Rollins J (2015) Foundational methodology for data science. Domino Data Lab, Inc. Whitepaper
– reference: Amershi S, Begel A, Bird C, DeLine R, Gall H, Kamar E, Nagappan N, Nushi B, Zimmermann T (2019) Software engineering for machine learning: a case study. In: Proceedings of the 41st International conference on software engineering, software engineering in practice. IEEE Press, pp 291–300
– reference: Ryan M J, Wheatcraft L S (2017) On the use of the terms verification and validation. In: INCOSE International Symposium, vol 27, pp 1277–1290. https://doi.org/10.1002/j.2334-5837.2017.00427.x
– reference: WangYCognitive informatics: A new transdisciplinary research fieldBrain and Mind20034211512710.1023/A:1025419826662https://doi.org/10.1023/A:1025419826662
– reference: Hill C, Bellamy R, Erickson T, Burnett M (2016) Trials and tribulations of developers of intelligent systems: A field study. In: 2016 IEEE symposium on visual languages and human-centric computing (VL/HCC). IEEE, pp 162–170
– reference: MenziesTThe five laws of se for aiIEEE Softw.2019371818510.1109/MS.2019.2954841
– reference: WengrafTQualitative research interviewing: Biographic narrative and semi-structured methods2001Newbury ParkSAGE10.4135/9781849209717
– reference: Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: a critical review and guidelines. In: Proceedings of the 38th International conference on software engineering, pp 120–131
– reference: StraussACorbinJBasics of qualitative research1990Thousand OaksSage publications
– reference: Breck E, Cai S, Nielsen E, Salib M, Sculley D (2017) The ml test score: A rubric for ml production readiness and technical debt reduction, IEEE
– reference: Van LooRMaking innovation more competitive: the case of fintechUCLA L Rev201865232
– reference: Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo JF, Dennison D (2015) Hidden technical debt in machine learning systems. In: Advances in neural information processing systems, pp 2503–2511
– reference: FeredayJMuir-CochraneEDemonstrating rigor using thematic analysis: A hybrid approach of inductive and deductive coding and theme developmentInt J Qual Methods200651809210.1177/160940690600500107
– reference: Brereton P, Kitchenham B A, Budgen D, Li Z (2008) Using a protocol template for case study planning. In: EASE, Citeseer, vol 8, pp 41–48
– reference: Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, Hutchinson B, Spitzer E, Raji ID, Gebru T (2019) Model cards for model reporting. In: Proceedings of the conference on fairness, accountability, and transparency, pp 220–229
– volume-title: Naturalistic inquiry
  year: 1985
  ident: 9993_CR23
  doi: 10.1016/0147-1767(85)90062-8
– ident: 9993_CR24
  doi: 10.1007/978-3-030-64148-1_12
– ident: 9993_CR34
– ident: 9993_CR7
  doi: 10.14236/ewic/EASE2008.5
– ident: 9993_CR10
  doi: 10.1007/978-3-030-00847-5_1
– ident: 9993_CR16
  doi: 10.1109/VLHCC.2016.7739680
– ident: 9993_CR11
– ident: 9993_CR40
  doi: 10.1145/2884781.2884833
– volume: 5
  start-page: 13
  issue: 4
  year: 2000
  ident: 9993_CR39
  publication-title: J Data Warehous
– ident: 9993_CR6
  doi: 10.1109/BigData.2017.8258038
– ident: 9993_CR36
  doi: 10.1002/j.2334-5837.2017.00427.x
– ident: 9993_CR2
  doi: 10.1007/978-3-030-58666-9_2
– volume-title: Analog VLSI implementation of neural systems
  year: 1989
  ident: 9993_CR29
  doi: 10.1007/978-1-4613-1639-8
– volume: 65
  start-page: 232
  year: 2018
  ident: 9993_CR42
  publication-title: UCLA L Rev
– ident: 9993_CR26
– volume: 25
  start-page: 137
  issue: 2
  year: 2010
  ident: 9993_CR25
  publication-title: Knowl Eng Rev
  doi: 10.1017/S0269888910000032
– volume: 62
  start-page: 279
  issue: 3
  year: 1992
  ident: 9993_CR28
  publication-title: Harvard Educ Rev
  doi: 10.17763/haer.62.3.8323320856251826
– volume-title: Basics of qualitative research
  year: 1990
  ident: 9993_CR41
– ident: 9993_CR14
– ident: 9993_CR18
– ident: 9993_CR37
– volume: 41
  start-page: 549
  issue: 4
  year: 1977
  ident: 9993_CR12
  publication-title: Public Opinion Q
  doi: 10.1086/268415
– volume-title: Qualitative research interviewing: Biographic narrative and semi-structured methods
  year: 2001
  ident: 9993_CR44
  doi: 10.4135/9781849209717
– ident: 9993_CR4
  doi: 10.1109/SEAA.2018.00018
– ident: 9993_CR21
  doi: 10.1145/3368089.3409711
– ident: 9993_CR33
– ident: 9993_CR35
– volume: 5
  start-page: 80
  issue: 1
  year: 2006
  ident: 9993_CR13
  publication-title: Int J Qual Methods
  doi: 10.1177/160940690600500107
– volume: 44
  start-page: 1024
  issue: 11
  year: 2017
  ident: 9993_CR20
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2017.2754374
– volume: 107
  start-page: 235
  year: 2018
  ident: 9993_CR8
  publication-title: Geo LJ
– ident: 9993_CR9
  doi: 10.1007/s10664-019-09682-0
– ident: 9993_CR1
  doi: 10.1145/3292500.3330667
– volume: 26
  start-page: 97
  issue: 1
  year: 2013
  ident: 9993_CR46
  publication-title: IEEE Trans Knowl Data Eng
– ident: 9993_CR27
– ident: 9993_CR3
  doi: 10.1109/ICSE-SEIP.2019.00042
– volume: 37
  start-page: 81
  issue: 1
  year: 2019
  ident: 9993_CR30
  publication-title: IEEE Softw.
  doi: 10.1109/MS.2019.2954841
– volume: 33
  start-page: 421
  issue: 4
  year: 1997
  ident: 9993_CR32
  publication-title: J Exper Soc Psychol
  doi: 10.1006/jesp.1997.1333
– volume: 19
  start-page: 38
  issue: 1
  year: 2006
  ident: 9993_CR15
  publication-title: Appl Nurs Res
  doi: 10.1016/j.apnr.2005.06.001
– ident: 9993_CR48
  doi: 10.1109/TSE.2019.2962027
– volume-title: Case study research and applications: Design and methods
  year: 2017
  ident: 9993_CR47
– ident: 9993_CR31
  doi: 10.1145/3287560.3287596
– ident: 9993_CR45
  doi: 10.1109/HPCA.2019.00048
– ident: 9993_CR5
  doi: 10.1145/3292500.3330744
– ident: 9993_CR19
  doi: 10.2139/ssrn.3333515
– ident: 9993_CR17
– volume: 14
  start-page: 6
  issue: 2
  year: 2013
  ident: 9993_CR22
  publication-title: Acm SIGKDD Explorations Newsletter
  doi: 10.1145/2481244.2481247
– ident: 9993_CR38
  doi: 10.1145/3382494.3410681
– volume: 4
  start-page: 115
  issue: 2
  year: 2003
  ident: 9993_CR43
  publication-title: Brain and Mind
  doi: 10.1023/A:1025419826662
SSID ssj0009745
Score 2.5744197
Snippet Tech-leading organizations are embracing the forthcoming artificial intelligence revolution. Intelligent systems are replacing and cooperating with traditional...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Compilers
Computer Science
Interpreters
Programming Languages
Software Engineering/Programming and Operating Systems
Subtitle An exploratory study in Fintech
Title AI lifecycle models need to be revised
URI https://link.springer.com/article/10.1007/s10664-021-09993-1
Volume 26
WOSCitedRecordID wos000691590700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kevBifWJ9sQfxogvJ7mbTHEUseinii97CPqFQUmmi4L93km6sBSnofTaE2f32m2Fn5gM4z1hsFcbVNHNKUWERitqnhuokUYhLjrTgG7GJdDjsj0bZQ2gKK9tq9_ZJsrmpfzS7SSloXVJQRzWcYs6zjnTXr-H4-PS6GLWbNtLE9XA9ypHRQ6vM799YpqPlt9CGYgbd__3cNmyFkJJcz8_ADqy5Yhe6rVwDCejdg4vrezIZe2c-0Yw0EjglKZC9SDUl2pG64Ld0dh9eBrfPN3c0yCRQw7K4ol5bo1lkmedC61R5KxIhUo-hl42dYFFqmZGYx7nIWJV6h_ugM0zjvEC4ZoofQKeYFu4QCK7RklvpMYwTRvNMam5cxKxxiTRG9CBuvZWbMEO8lrKY5Ivpx7UjcnRE3jgij3tw-b3mbT5BY6X1VevgPKCpXGF-9DfzY9hk8z2iUXwCnWr27k5hw3xU43J21hyjL_crvyM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EBb1Yn1ifexAvupDsbjbmWMTSYi2iVXoL2RcUSipNFPz3TtLEWpCC3mdDmN1vvxl2Zj6Ai4j5JsG4mkY2SagwCEXlQk1VECSIS4604EqxibDfvxkOo8eqKSyrq93rJ8nypv7R7CaloEVJQRHVcIo5z5pAxioK-Z6eX-ejdsNSmrgYrkc5MnrVKvP7NxbpaPEttKSYduN_P7cNW1VISVqzM7ADKzbdhUYt10Aq9O7BZatLxiNn9SeakVICJyMpshfJJ0RZUhT8Ztbsw0v7bnDboZVMAtUs8nPqlNGKeYY5LpQKE2dEIEToMPQyvhXMCw3TEvM462mThM7iPqgI0zgnEK5Rwg9gNZ2k9hAIrlGSG-kwjBNa8Ugqrq3HjLaB1Fo0wa-9FetqhnghZTGO59OPC0fE6Ii4dETsN-Hqe83bbILGUuvr2sFxhaZsifnR38zPYaMzeOjFvW7__hg22Wy_qOefwGo-fbensK4_8lE2PSuP1Bf3bcIH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1ifOYgXDd1Nshv3WNRiUUrBB70tmxcUyrZ0V8F_72QftgUpiPdJCJN8zAyZ-T6ELiPq6wTyahKZJCFcAxSlFYrIIEgAlwzCgi3EJkS_fzscRoOFKf6i273-kixnGhxLU5q3p9q2FwbfwpAT117gMhxGoP5Z5040yNXrL-9z2l1RyBQ7oj3CILpXYzO_77Ecmpb_RYtw023-_6A7aLtKNXGnfBu7aM2ke6hZyzjgCtX76KrTw-ORNeoLzHAhjZPhFKIazidYGuwagTOjD9Bb9-H17pFU8glE0cjPiZVaSeppahmXUiRW84BzYSEl077h1BOaqhDqO-MpnQhr4H5kBOWd5QDjKGGHqJFOUnOEMKyRIdOhhfSOK8miUDJlPKqVCUKleAv5tediVXGLO4mLcTxnRXaOiMERceGI2G-h658105JZY6X1Te3suEJZtsL8-G_mF2hzcN-Nn3v9pxO0RcvrIp5_ihr57MOcoQ31mY-y2Xnxur4Bfz_K6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+lifecycle+models+need+to+be+revised&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Haakman%2C+Mark&rft.au=Cruz%2C+Lu%C3%ADs&rft.au=Huijgens%2C+Hennie&rft.au=van+Deursen%2C+Arie&rft.date=2021-09-01&rft.pub=Springer+US&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=26&rft.issue=5&rft_id=info:doi/10.1007%2Fs10664-021-09993-1&rft.externalDocID=10_1007_s10664_021_09993_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon