On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer Operators
This paper deals with bivariate Stancu-type generalization of Jakimovski–Leviatan–Durrmeyer (JLD) operators in the approximation theory. Korovkin-type approximation properties of modified operators are also examined. Rate of convergence of these operators are investigated by means of the full and pa...
Uloženo v:
| Vydáno v: | La matematica Ročník 3; číslo 1; s. 211 - 233 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2024
|
| Témata: | |
| ISSN: | 2730-9657, 2730-9657 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper deals with bivariate Stancu-type generalization of Jakimovski–Leviatan–Durrmeyer (JLD) operators in the approximation theory. Korovkin-type approximation properties of modified operators are also examined. Rate of convergence of these operators are investigated by means of the full and partial modulus of continuity. Further, weighted approximation properties of these operators are established. Some numerical applications will be also given to show the efficiency of this method. |
|---|---|
| ISSN: | 2730-9657 2730-9657 |
| DOI: | 10.1007/s44007-023-00083-w |