On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer Operators

This paper deals with bivariate Stancu-type generalization of Jakimovski–Leviatan–Durrmeyer (JLD) operators in the approximation theory. Korovkin-type approximation properties of modified operators are also examined. Rate of convergence of these operators are investigated by means of the full and pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:La matematica Ročník 3; číslo 1; s. 211 - 233
Hlavní autoři: Karateke, Seda, Zontul, Metin, Mishra, Vishnu Narayan, Gairola, Asha Ram
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2024
Témata:
ISSN:2730-9657, 2730-9657
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper deals with bivariate Stancu-type generalization of Jakimovski–Leviatan–Durrmeyer (JLD) operators in the approximation theory. Korovkin-type approximation properties of modified operators are also examined. Rate of convergence of these operators are investigated by means of the full and partial modulus of continuity. Further, weighted approximation properties of these operators are established. Some numerical applications will be also given to show the efficiency of this method.
ISSN:2730-9657
2730-9657
DOI:10.1007/s44007-023-00083-w