Efficient Encoding/Decoding of GC-Balanced Codes Correcting Tandem Duplications

Tandem duplication is the process of inserting a copy of a segment of DNA adjacent to the original position. Motivated by applications that store data in living organisms, Jain et al. (2017) proposed the study of codes that correct tandem duplications. All code constructions are based on irreducible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 66; H. 8; S. 4892 - 4903
Hauptverfasser: Chee, Yeow Meng, Chrisnata, Johan, Kiah, Han Mao, Nguyen, Tuan Thanh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Tandem duplication is the process of inserting a copy of a segment of DNA adjacent to the original position. Motivated by applications that store data in living organisms, Jain et al. (2017) proposed the study of codes that correct tandem duplications. All code constructions are based on irreducible words . Such code constructions are almost optimal to combat tandem duplications of length at most <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">k\leq 3 </tex-math></inline-formula>. However, the problem of designing efficient encoder/decoder for such codes has not been investigated. In addition, the method cannot be extended to deal with the case of arbitrary <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">k\geq 4 </tex-math></inline-formula>. In this work, we study efficient encoding/decoding methods for irreducible words over general <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>-ary alphabet. Our methods provide the first known efficient encoder/decoder for <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>-ary codes correcting tandem duplications of length at most <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">k\leq 3 </tex-math></inline-formula>. In particular, we describe an <inline-formula> <tex-math notation="LaTeX">(\ell,m) </tex-math></inline-formula>-finite state encoder and show that when <inline-formula> <tex-math notation="LaTeX">m=\Theta (1/\epsilon) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\ell =\Theta (1/\epsilon) </tex-math></inline-formula>, the encoder achieves rate that is <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> away from the optimal rate. We also provide ranking/unranking algorithms for irreducible words and modify the algorithms to reduce the space requirements for the finite state encoder. Over the DNA alphabet (or quaternary alphabet), we also impose weight constraint on the codewords. In particular, a quaternary word is <inline-formula> <tex-math notation="LaTeX">{\tt GC} </tex-math></inline-formula>-balanced if exactly half of the symbols of are either <inline-formula> <tex-math notation="LaTeX">{\tt C} </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">{\tt G} </tex-math></inline-formula>. Via a modification of Knuth's balancing technique, we provide an efficient method that translates quaternary messages into <inline-formula> <tex-math notation="LaTeX">{\tt GC} </tex-math></inline-formula>-balanced codewords and the resulting codebook is able to correct tandem duplications of length at most <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">k\leq 3 </tex-math></inline-formula>. In addition, we provide the first known construction of codes to combat tandem duplications of length at most <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">k \geq 4 </tex-math></inline-formula>. Such codes can correct duplication errors in linear-time and they are almost optimal in terms of rate.
AbstractList Tandem duplication is the process of inserting a copy of a segment of DNA adjacent to the original position. Motivated by applications that store data in living organisms, Jain et al. (2017) proposed the study of codes that correct tandem duplications. All code constructions are based on irreducible words . Such code constructions are almost optimal to combat tandem duplications of length at most <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">k\leq 3 </tex-math></inline-formula>. However, the problem of designing efficient encoder/decoder for such codes has not been investigated. In addition, the method cannot be extended to deal with the case of arbitrary <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">k\geq 4 </tex-math></inline-formula>. In this work, we study efficient encoding/decoding methods for irreducible words over general <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>-ary alphabet. Our methods provide the first known efficient encoder/decoder for <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>-ary codes correcting tandem duplications of length at most <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">k\leq 3 </tex-math></inline-formula>. In particular, we describe an <inline-formula> <tex-math notation="LaTeX">(\ell,m) </tex-math></inline-formula>-finite state encoder and show that when <inline-formula> <tex-math notation="LaTeX">m=\Theta (1/\epsilon) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\ell =\Theta (1/\epsilon) </tex-math></inline-formula>, the encoder achieves rate that is <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> away from the optimal rate. We also provide ranking/unranking algorithms for irreducible words and modify the algorithms to reduce the space requirements for the finite state encoder. Over the DNA alphabet (or quaternary alphabet), we also impose weight constraint on the codewords. In particular, a quaternary word is <inline-formula> <tex-math notation="LaTeX">{\tt GC} </tex-math></inline-formula>-balanced if exactly half of the symbols of are either <inline-formula> <tex-math notation="LaTeX">{\tt C} </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">{\tt G} </tex-math></inline-formula>. Via a modification of Knuth's balancing technique, we provide an efficient method that translates quaternary messages into <inline-formula> <tex-math notation="LaTeX">{\tt GC} </tex-math></inline-formula>-balanced codewords and the resulting codebook is able to correct tandem duplications of length at most <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">k\leq 3 </tex-math></inline-formula>. In addition, we provide the first known construction of codes to combat tandem duplications of length at most <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">k \geq 4 </tex-math></inline-formula>. Such codes can correct duplication errors in linear-time and they are almost optimal in terms of rate.
Tandem duplication is the process of inserting a copy of a segment of DNA adjacent to the original position. Motivated by applications that store data in living organisms, Jain et al. (2017) proposed the study of codes that correct tandem duplications. All code constructions are based on irreducible words . Such code constructions are almost optimal to combat tandem duplications of length at most [Formula Omitted] where [Formula Omitted]. However, the problem of designing efficient encoder/decoder for such codes has not been investigated. In addition, the method cannot be extended to deal with the case of arbitrary [Formula Omitted], where [Formula Omitted]. In this work, we study efficient encoding/decoding methods for irreducible words over general [Formula Omitted]-ary alphabet. Our methods provide the first known efficient encoder/decoder for [Formula Omitted]-ary codes correcting tandem duplications of length at most [Formula Omitted], where [Formula Omitted]. In particular, we describe an [Formula Omitted]-finite state encoder and show that when [Formula Omitted] and [Formula Omitted], the encoder achieves rate that is [Formula Omitted] away from the optimal rate. We also provide ranking/unranking algorithms for irreducible words and modify the algorithms to reduce the space requirements for the finite state encoder. Over the DNA alphabet (or quaternary alphabet), we also impose weight constraint on the codewords. In particular, a quaternary word is [Formula Omitted]-balanced if exactly half of the symbols of are either [Formula Omitted] or [Formula Omitted]. Via a modification of Knuth’s balancing technique, we provide an efficient method that translates quaternary messages into [Formula Omitted]-balanced codewords and the resulting codebook is able to correct tandem duplications of length at most [Formula Omitted], where [Formula Omitted]. In addition, we provide the first known construction of codes to combat tandem duplications of length at most [Formula Omitted], where [Formula Omitted]. Such codes can correct duplication errors in linear-time and they are almost optimal in terms of rate.
Author Chee, Yeow Meng
Chrisnata, Johan
Kiah, Han Mao
Nguyen, Tuan Thanh
Author_xml – sequence: 1
  givenname: Yeow Meng
  orcidid: 0000-0001-7823-8068
  surname: Chee
  fullname: Chee, Yeow Meng
  email: pvocym@nus.edu.sg
  organization: Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore
– sequence: 2
  givenname: Johan
  orcidid: 0000-0003-1705-9597
  surname: Chrisnata
  fullname: Chrisnata, Johan
  email: johanchr001@ntu.edu.sg
  organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Han Mao
  orcidid: 0000-0001-5611-0848
  surname: Kiah
  fullname: Kiah, Han Mao
  email: hmkiah@ntu.edu.sg
  organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Tuan Thanh
  orcidid: 0000-0002-3179-9471
  surname: Nguyen
  fullname: Nguyen, Tuan Thanh
  email: tuanthanh_nguyen@sutd.edu.sg
  organization: Singapore University of Technology and Design, Singapore
BookMark eNp9UD1PwzAQtRBItIUdiSUSc1rbsZN4hLSUSpW6hNlynTNyldrFTgf-PQmpGBhY7kP33r27N0XXzjtA6IHgOSFYLOpNPaeY4jkVJcG5uEITwnmRipyzazTBmJSpYKy8RdMYD33LOKETtFsZY7UF1yUrp31j3cdiCWOReJOsq_RFtcppaJLKNxD7GALobpjXyjVwTJbnU2u16qx38Q7dGNVGuL_kGXp_XdXVW7rdrTfV8zbVVJAuNYoRgwuTFaIp-lIzhQVRKoN8LzImWEMIw8NjBRiuiaGUKwylzhkYsYdshp7GvafgP88QO3nw5-B6SUkZZZzxssx6VD6idPAxBjBS2-7n0C4o20qC5aAhe_PkYJ68mNcT8R_iKdijCl__UR5HigWAX7jAWUGLLPsGY-B7AA
CODEN IETTAW
CitedBy_id crossref_primary_10_1007_s11760_024_03587_2
crossref_primary_10_1109_TIT_2022_3233733
crossref_primary_10_1109_TMBMC_2024_3396404
crossref_primary_10_1134_S0032946022020028
crossref_primary_10_1109_TIT_2021_3125724
crossref_primary_10_1093_bib_bbac484
crossref_primary_10_1109_MBITS_2023_3318516
crossref_primary_10_1007_s41965_025_00194_z
Cites_doi 10.1093/nar/gkj454
10.1109/TIT.1986.1057136
10.1038/35057062
10.1109/ISIT.2018.8437789
10.1186/gb-2013-14-5-r51
10.1109/TIT.2017.2688361
10.1109/TMBMC.2016.2537305
10.1109/ISIT.2017.8007104
10.1145/3338514
10.1109/LCOMM.2018.2868666
10.1038/s41598-017-05188-1
10.1038/nbt.4079
10.1109/TIT.1973.1054929
10.1007/s00239-004-2619-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2020.2981069
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 4903
ExternalDocumentID 10_1109_TIT_2020_2981069
9037273
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education, Singapore
  grantid: MOE2015-T2-2-086
  funderid: 10.13039/501100001459
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-fa41f07f379d741fc4a091aa3e6b93494d114011097ef5c1f225a0e8c64ef9be3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549418000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Jun 29 16:23:43 EDT 2025
Sat Nov 29 03:31:43 EST 2025
Tue Nov 18 21:57:15 EST 2025
Wed Aug 27 02:35:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fa41f07f379d741fc4a091aa3e6b93494d114011097ef5c1f225a0e8c64ef9be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5611-0848
0000-0002-3179-9471
0000-0003-1705-9597
0000-0001-7823-8068
PQID 2424545883
PQPubID 36024
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TIT_2020_2981069
crossref_primary_10_1109_TIT_2020_2981069
proquest_journals_2424545883
ieee_primary_9037273
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref20
marcus (ref17) 2001
ref22
nijenhuis (ref14) 2014
ref21
sipser (ref18) 2013
lenz (ref12) 2018
ref2
ref1
kova?evi? (ref9) 2019
ref16
ref8
lander (ref11) 2001; 409
ref7
ref4
ref3
immink (ref6) 2018
kova?evi? (ref10) 2019
ref5
weisstein (ref19) 2020
References_xml – year: 2020
  ident: ref19
  publication-title: Lucas Sequence From MathWorld-A Wolfram Web Resource
– ident: ref20
  doi: 10.1093/nar/gkj454
– year: 2013
  ident: ref18
  publication-title: Introduction to the Theory of Computation
– ident: ref7
  doi: 10.1109/TIT.1986.1057136
– volume: 409
  start-page: 860
  year: 2001
  ident: ref11
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– ident: ref2
  doi: 10.1109/ISIT.2018.8437789
– ident: ref16
  doi: 10.1186/gb-2013-14-5-r51
– ident: ref4
  doi: 10.1109/TIT.2017.2688361
– year: 2019
  ident: ref9
  article-title: Zero-error capacity of duplication channels
  publication-title: arXiv 1902 06275
– year: 2014
  ident: ref14
  publication-title: Combinatorial Algorithms for Computers and Calculators
– year: 2001
  ident: ref17
  article-title: An introduction to coding for constrained system
– year: 2018
  ident: ref12
  article-title: Bounds and constructions for multi-symbol duplication error correcting codes
  publication-title: arXiv 1807 02874
– ident: ref22
  doi: 10.1109/TMBMC.2016.2537305
– ident: ref5
  doi: 10.1109/ISIT.2017.8007104
– ident: ref1
  doi: 10.1145/3338514
– ident: ref8
  doi: 10.1109/LCOMM.2018.2868666
– ident: ref21
  doi: 10.1038/s41598-017-05188-1
– ident: ref15
  doi: 10.1038/nbt.4079
– ident: ref3
  doi: 10.1109/TIT.1973.1054929
– year: 2019
  ident: ref10
  article-title: Codes correcting all patterns of tandem-duplication errors of maximum length 3
  publication-title: arXiv 1911 06561
– year: 2018
  ident: ref6
  article-title: Properties and constructions of constrained codes for DNA-based data storage
  publication-title: arXiv 1812 06798
– ident: ref13
  doi: 10.1007/s00239-004-2619-6
SSID ssj0014512
Score 2.4057736
Snippet Tandem duplication is the process of inserting a copy of a segment of DNA adjacent to the original position. Motivated by applications that store data in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4892
SubjectTerms 3G mobile communication
Algorithms
Alphabets
Biological information theory
Coders
Codes
DNA
DNA storage
Encoders-Decoders
Encoding
Encoding-Decoding
Error-correction codes
GC-balanced codes
In vivo
Organisms
Reproduction (copying)
Sequential analysis
tandem duplication
Words (language)
Title Efficient Encoding/Decoding of GC-Balanced Codes Correcting Tandem Duplications
URI https://ieeexplore.ieee.org/document/9037273
https://www.proquest.com/docview/2424545883
Volume 66
WOSCitedRecordID wos000549418000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEfnG6K0yl98EWwWz_StXnUfagg04cqeyttcgFBV9mHf7-XtJ2KIvhSAk1C6S-Xu1_ucgdwxgSyTEpOCHBhMyS6Q3ayY0dS0mqRni9NbM7TXTiZRNMpf6jBxfouDCKa4DPs6qbx5ctcrPRRWY87vla3G7ARhv3irtbaY8ACt8gM7pIAE-eoXJIO78W3MRFBz-l6PCIGxL-pIFNT5cdGbLTLuPG_79qFndKKtC4L2PeghrMmNKoKDVYpsE3Y_pJusAX3I5MvguayRjORa63VG2LRsHJlXQ_sKx3pKFBag1zigp5zsyPS-1ifNr9aw9Wnw3sfHsejeHBjlwUVbOFxd2mrlLnKCZUfckmWhBIsJXMhTX3sZ1znqZGu5lvaKY0qEK4iYU8djESfoeIZ-gdQn-UzPASLcRFkJM-Sk35TZGXKEEM3dbKI-JNkQRt61T9ORJltXBe9eEkM63B4QqgkGpWkRKUN5-sRb0WmjT_6tjQK634lAG3oVDAmpSguEn3_RXsHI__o91HHsKXnLqL6OlBfzld4Apviffm8mJ-aVfYBWDrNdg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCBN2I8e-CCRFnapmtzhLExxBgcCuJWtYkjIcGK9uD346TdAIGQuFSRmrRVvzj2Fzs2wDGXyHOlBCEgpMuR6A7ZycyNlaLZovxA2dicx27U68VPT-J-Bk6nZ2EQ0Qaf4ZlpWl--KuTYbJXVBQuMup2F-ZBzn5WntaY-Ax56ZW5wj0SYWMfEKclEPblOiAr67MwXMXEg8U0J2aoqP5Ziq1_aq__7sjVYqexI57wEfh1msL8Bq5MaDU4lshuw_CXh4CbctWzGCHqW0-rLwuit-iWWDafQzlXTvTCxjhKV0ywUDuk6sGsi3U_MfvOrczn-dHlvwUO7lTQ7blVSwZW-8EauzrinWaSDSCiyJbTkGRkMWRZgIxcmU43yDOMybmnUofQ0iXvGMJYNjlrkGGzDXL_o4w44XMgwJ4lWgjScJjtTRRh5GctjYlCKhzWoT_5xKqt846bsxUtqeQcTKaGSGlTSCpUanExHvJW5Nv7ou2lQmParAKjB_gTGtBLGYWpOwBj_YBzs_j7qCBY7yW037V73bvZgybynjPHbh7nRYIwHsCDfR8_DwaGdcR8zZdC9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Encoding%2FDecoding+of+GC-Balanced+Codes+Correcting+Tandem+Duplications&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Yeow+Meng+Chee&rft.au=Chrisnata%2C+Johan&rft.au=Han+Mao+Kiah&rft.au=Tuan+Thanh+Nguyen&rft.date=2020-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=66&rft.issue=8&rft.spage=4892&rft_id=info:doi/10.1109%2FTIT.2020.2981069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon