SHVC CU Processing Aided by a Feedforward Neural Network

The development of multimedia and hardware technologies has led to a great number of industrial video applications, such as virtual reality, high-definition video surveillance, and remote monitoring. As complex communication environments and heterogeneous networks are common in industrial applicatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 15; číslo 11; s. 5803 - 5815
Hlavní autori: Shen, Liquan, Feng, Guorui, An, Ping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The development of multimedia and hardware technologies has led to a great number of industrial video applications, such as virtual reality, high-definition video surveillance, and remote monitoring. As complex communication environments and heterogeneous networks are common in industrial applications, industrial videos are required to support a diverse range of display resolutions and transmission channel capacities. Scalable high-efficiency video coding (SHVC) standards provide the tools to meet this requirement. However, it is highly computationally expensive. Coding complexity has a great impact on SHVC performance in industrial applications. Many of these applications are sensitive to time delay and have limited power. Thus, improvements are required to ensure the practical usability of SHVC encoders. In SHVC encoders, intra/interprediction of variable coding unit (CU) sizes is independently performed for the base and enhancement layers (ELs). There are many interlayer similarities that can be exploited to speed up the procedure for EL coding. In this paper, we propose a feedforward neural network aided model for CU size and mode decisions for SHVC, which utilizes base layer coding information and the coding data of spatiotemporal neighboring CUs to decide which CU sizes or prediction modes can be bypassed for certain EL CUs. Two feedforward neural network based learning models are built for CU classification, which are introduced in the procedures for CU size and mode decisions, respectively. According to the analysis from a large number of video sequences, the representative features are directly extracted from the coding information of previously coded neighboring CUs to avoid computational overheads. After the training is finished, these two models are designed and integrated to build classifiers. Then, two online classification approaches are designed for the CU size and mode decision procedures to classify each CU's type. Finally, different candidate CU sizes and prediction modes are adaptively assigned for each type of CU. This approach outperforms the state-of-the-art fast SHVC/high-efficiency video coding (HEVC) algorithms with approximately 19-42% coding time savings or better compression efficiency, which will be beneficial for the realization of real-time scalable video coding.
AbstractList The development of multimedia and hardware technologies has led to a great number of industrial video applications, such as virtual reality, high-definition video surveillance, and remote monitoring. As complex communication environments and heterogeneous networks are common in industrial applications, industrial videos are required to support a diverse range of display resolutions and transmission channel capacities. Scalable high-efficiency video coding (SHVC) standards provide the tools to meet this requirement. However, it is highly computationally expensive. Coding complexity has a great impact on SHVC performance in industrial applications. Many of these applications are sensitive to time delay and have limited power. Thus, improvements are required to ensure the practical usability of SHVC encoders. In SHVC encoders, intra/interprediction of variable coding unit (CU) sizes is independently performed for the base and enhancement layers (ELs). There are many interlayer similarities that can be exploited to speed up the procedure for EL coding. In this paper, we propose a feedforward neural network aided model for CU size and mode decisions for SHVC, which utilizes base layer coding information and the coding data of spatiotemporal neighboring CUs to decide which CU sizes or prediction modes can be bypassed for certain EL CUs. Two feedforward neural network based learning models are built for CU classification, which are introduced in the procedures for CU size and mode decisions, respectively. According to the analysis from a large number of video sequences, the representative features are directly extracted from the coding information of previously coded neighboring CUs to avoid computational overheads. After the training is finished, these two models are designed and integrated to build classifiers. Then, two online classification approaches are designed for the CU size and mode decision procedures to classify each CU's type. Finally, different candidate CU sizes and prediction modes are adaptively assigned for each type of CU. This approach outperforms the state-of-the-art fast SHVC/high-efficiency video coding (HEVC) algorithms with approximately 19-42% coding time savings or better compression efficiency, which will be beneficial for the realization of real-time scalable video coding.
Author An, Ping
Feng, Guorui
Shen, Liquan
Author_xml – sequence: 1
  givenname: Liquan
  orcidid: 0000-0002-2148-6279
  surname: Shen
  fullname: Shen, Liquan
  email: jsslq@163.com
  organization: Shanghai Institute for Advanced Communication and Data Science and the Key Laboratory of Advanced Display and System Application, Shanghai University, Shanghai, China
– sequence: 2
  givenname: Guorui
  surname: Feng
  fullname: Feng, Guorui
  email: grfeng@shu.edu.cn
  organization: Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China
– sequence: 3
  givenname: Ping
  orcidid: 0000-0002-4995-728X
  surname: An
  fullname: An, Ping
  email: anping@shu.edu.cn
  organization: School of Communication and Information Engineering, Shanghai University, Shanghai, China
BookMark eNp9kMFLwzAUh4NMcJveBS8Fz50vTZsmx1GcGwwV3LyGtHmVztnMpGXsvzdjw4MHD-GXw-977_GNyKC1LRJyS2FCKciH1WIxSYDKSSIpzUFckCGVKY0BMhiEf5bRmCXArsjI-w0Ay4HJIRFv8_ciKtbRq7MVet-0H9G0MWii8hDpaIZoauv22pnoGXuntyG6vXWf1-Sy1luPN-cck_XscVXM4-XL06KYLuMqHNLFtURd61SaJKQQqA2mmteVZlCWKU0lZigNUKzzrBLUCJNKkdCcc11ixZGNyf1p7s7Z7x59pza2d21YqRJGGc8ZZDy0-KlVOeu9w1pVTae7xrad081WUVBHSypYUkdL6mwpgPAH3LnmS7vDf8jdCWkQ8bcuuGRZeD8EOnNL
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TII_2022_3204681
crossref_primary_10_1109_TBC_2021_3126277
crossref_primary_10_1109_TII_2021_3079231
crossref_primary_10_1007_s11042_024_19179_8
crossref_primary_10_1016_j_nanoen_2024_110186
crossref_primary_10_1109_TII_2022_3151746
crossref_primary_10_1007_s11554_021_01112_z
crossref_primary_10_1109_TBC_2022_3222997
Cites_doi 10.1109/TII.2015.2446769
10.1109/TCSVT.2009.2031520
10.1109/TII.2018.2844214
10.1109/TIP.2017.2740161
10.1109/TCYB.2014.2325594
10.1109/TCSVT.2009.2031387
10.1109/TMM.2015.2510332
10.1109/TCSVT.2014.2302557
10.1109/TII.2018.2801852
10.1109/ICCE.2014.6775968
10.1109/TCSVT.2012.2221191
10.1109/TMM.2016.2524995
10.1186/1687-5281-2013-4
10.1109/TIP.2011.2177849
10.1109/TIP.2016.2601264
10.1109/41.661301
10.1109/TCSVT.2011.2147250
10.1109/TMM.2012.2231060
10.1109/TCSVT.2010.2041825
10.1109/TCSVT.2006.877404
10.1109/WARTIA.2014.6976537
10.1109/ICCE.2014.6775967
10.1109/TII.2015.2491646
10.1109/TBC.2014.2321682
10.1109/TII.2013.2273308
10.1007/BF00994018
10.1109/TIP.2015.2462747
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2019.2911708
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 5815
ExternalDocumentID 10_1109_TII_2019_2911708
8693569
Genre orig-research
GrantInformation_xml – fundername: Shanghai Pjiang Program
  grantid: 15pjd015
– fundername: National Natural Science Foundation of China
  grantid: 61671282; 61422111
  funderid: 10.13039/501100001809
– fundername: Shanghai Shuguang Program
  grantid: 17SG37
– fundername: Shanghai Science and Technology Innovation Plan
  grantid: 18010500200
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-f9eafa49d2eaf88eade4a6fca30bb4149e5e9d01ef75c81d8d49821766abec6e3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498643600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:19:30 EDT 2025
Sat Nov 29 04:16:47 EST 2025
Tue Nov 18 21:39:51 EST 2025
Wed Aug 27 02:44:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f9eafa49d2eaf88eade4a6fca30bb4149e5e9d01ef75c81d8d49821766abec6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4995-728X
0000-0002-2148-6279
PQID 2313673056
PQPubID 85507
PageCount 13
ParticipantIDs ieee_primary_8693569
crossref_citationtrail_10_1109_TII_2019_2911708
proquest_journals_2313673056
crossref_primary_10_1109_TII_2019_2911708
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
seregin (ref31) 2014
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
bjontegaard (ref32) 2001
castillo (ref29) 2006; 7
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
choi (ref5) 2011
ref9
ref4
ref3
gweon (ref6) 2011
References_xml – ident: ref17
  doi: 10.1109/TII.2015.2446769
– ident: ref15
  doi: 10.1109/TCSVT.2009.2031520
– volume: 7
  start-page: 1159
  year: 2006
  ident: ref29
  article-title: A very fast learning method for neural networks based on sensitivity analysis
  publication-title: J Mach Learn Res
– ident: ref9
  doi: 10.1109/TII.2018.2844214
– ident: ref22
  doi: 10.1109/TIP.2017.2740161
– ident: ref30
  doi: 10.1109/TCYB.2014.2325594
– ident: ref13
  doi: 10.1109/TCSVT.2009.2031387
– ident: ref24
  doi: 10.1109/TMM.2015.2510332
– ident: ref16
  doi: 10.1109/TCSVT.2014.2302557
– year: 2014
  ident: ref31
  article-title: Common SHM test conditions and software reference configurations
– ident: ref1
  doi: 10.1109/TII.2018.2801852
– year: 2011
  ident: ref6
  article-title: Early termination of CU encoding to reduce HEVC complexity
– ident: ref21
  doi: 10.1109/ICCE.2014.6775968
– ident: ref3
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref7
  doi: 10.1109/TMM.2016.2524995
– ident: ref26
  doi: 10.1186/1687-5281-2013-4
– ident: ref19
  doi: 10.1109/TIP.2011.2177849
– ident: ref28
  doi: 10.1109/TIP.2016.2601264
– ident: ref2
  doi: 10.1109/41.661301
– ident: ref25
  doi: 10.1109/TCSVT.2011.2147250
– ident: ref8
  doi: 10.1109/TMM.2012.2231060
– ident: ref14
  doi: 10.1109/TCSVT.2010.2041825
– year: 2001
  ident: ref32
  article-title: Calculation of average PSNR difference between RD-curves
– ident: ref11
  doi: 10.1109/TCSVT.2006.877404
– year: 2011
  ident: ref5
  article-title: Coding tree pruning based CU early termination, document JCTVC-F092, JCT-VC
– ident: ref20
  doi: 10.1109/WARTIA.2014.6976537
– ident: ref23
  doi: 10.1109/ICCE.2014.6775967
– ident: ref10
  doi: 10.1109/TII.2015.2491646
– ident: ref4
  doi: 10.1109/TBC.2014.2321682
– ident: ref18
  doi: 10.1109/TII.2013.2273308
– ident: ref27
  doi: 10.1007/BF00994018
– ident: ref12
  doi: 10.1109/TIP.2015.2462747
SSID ssj0037039
Score 2.2966397
Snippet The development of multimedia and hardware technologies has led to a great number of industrial video applications, such as virtual reality, high-definition...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5803
SubjectTerms Algorithms
Artificial neural networks
Classification
Coders
Coding
Complexity
Complexity theory
Copper
Decision analysis
Efficiency
Encoding
Feature extraction
Feedforward neural network
High definition
Industrial applications
industrial video
Interlayers
low-complexity coding
mode decision
Multimedia
Neural networks
Remote monitoring
Scalability
scalable video coding
Sequences
Streaming media
Time compression
Time lag
Video coding
Video compression
Video transmission
Virtual reality
Title SHVC CU Processing Aided by a Feedforward Neural Network
URI https://ieeexplore.ieee.org/document/8693569
https://www.proquest.com/docview/2313673056
Volume 15
WOSCitedRecordID wos000498643600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridEoOXgS7dUnbJMcxHNtlCG6yW8knDGTKPgT_e5O0HYoieGopeaF9L01-L3nv9wBurbFY-NQtroWMEgdhIyEtjVKjnT9CqVSxDMUm6GTC5nP-WIP7XS6MMSYEn5mOvw1n-fpVbf1WWZdlnKQZr0Od0qzI1apmXeJGLg_cqGkvIjgm1ZFkzLvT8djHcPEO5r7OCvu2BIWaKj8m4rC6DI_-917HcFiiSNQvzH4CNbM8hYMv3IJNYE-j5wEazFCZCuAeov5CG43kBxJo6FYth1d9zCzyBB2ut0kREX4Gs-HDdDCKyjIJkXIftIksN8KKhGvsroz5COhEZFYJEkuZOA_IpIbruGcsTZWDp0wnnGFPDCmcATNDzqGxfF2aC0BcYeLwnLTKSRppuSUxFj0msRUypb0WdCvN5arkEPelLF7y4EvEPHe6zr2u81LXLbjbSbwV_Bl_tG163e7alWptQbsyTl7-YOvcwVKSUe__XP4udQX7vu8ibbANjc1qa65hT71vFuvVTRg7n9V5wXQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3sXp1Dz4ItgtTXpJHsdwbDiH4CZ7K0mawEA22UXw35v0MhRF8Kml5LTpd9LkO825ANwYbYhwoVs8FdILLIX1hDSxF-rU2iNxLBWWWbGJeDBg4zF_qsDdOhZGa505n-mGO8328tOZWrlfZU0WcRpGfAM2wyAgOI_WKuddascuz7Kjhr5HCablpiTmzWGv57y4eINwV2mFfVuEsqoqP6bibH3p7P-vZwewV_BI1MoVfwgVPT2C3S_ZBY-BPXdf2qg9QkUwgL2IWpNUp0h-IIE6dt2yjNV5zSKXosPebZD7hJ_AqHM_bHe9olCCp-wLLT3DtTAi4CmxR8acD3QgIqMExVIG1gbSoeYp9rWJQ2UJKksDzohLDSmsCiNNT6E6nU31GSCuCLWMThplJbU03FBMhM8kMUKGsV-DZolcooos4q6YxWuSWROYJxbrxGGdFFjX4HYt8ZZn0Pij7bHDdt2ugLUG9VI5SfGJLRJLTGkUOwvo_Hepa9juDh_7Sb83eLiAHfecPIiwDtXlfKUvYUu9LyeL-VU2jj4BEtjEuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SHVC+CU+Processing+Aided+by+a+Feedforward+Neural+Network&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Shen%2C+Liquan&rft.au=Feng%2C+Guorui&rft.au=An%2C+Ping&rft.date=2019-11-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=15&rft.issue=11&rft.spage=5803&rft.epage=5815&rft_id=info:doi/10.1109%2FTII.2019.2911708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2019_2911708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon