Convolutional Graph Thermography for Subsurface Defect Detection in Polymer Composites
Infrared thermography for quality assessment of polymer composites has gained increasing attention with the development of various thermographic data analysis methods. However, low-quality thermal images containing noise and inhomogeneous backgrounds restrict the defect detection performance of thes...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 71; S. 1 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Infrared thermography for quality assessment of polymer composites has gained increasing attention with the development of various thermographic data analysis methods. However, low-quality thermal images containing noise and inhomogeneous backgrounds restrict the defect detection performance of these methods. In this work, a convolutional graph thermography (CGT) method is proposed for subsurface defect detection in polymer composites. With a developed convolutional autoencoder thermogram enhancer, the noise and inhomogeneous background of the thermal image can be reduced. Subsequently, a graph-based dimensionality reduction method performs feature extraction on the enhanced thermograms. Consequently, the low-dimensional intrinsic manifolds of the high-dimensional thermographic data are characterized to highlight the defects visually. Two case studies on carbon fiber reinforced polymers demonstrated the performance of the proposed method. |
|---|---|
| AbstractList | Infrared thermography for quality assessment of polymer composites has gained increasing attention with the development of various thermographic data analysis methods. However, low-quality thermal images containing noise and inhomogeneous backgrounds restrict the defect detection performance of these methods. In this work, a convolutional graph thermography (CGT) method is proposed for subsurface defect detection in polymer composites. With a developed convolutional autoencoder thermogram enhancer, the noise and inhomogeneous background of the thermal image can be reduced. Subsequently, a graph-based dimensionality reduction method performs feature extraction on the enhanced thermograms. Consequently, the low-dimensional intrinsic manifolds of the high-dimensional thermographic data are characterized to highlight the defects visually. Two case studies on carbon fiber reinforced polymers demonstrated the performance of the proposed method. |
| Author | Yu, Qing Yang, Jianguo Liu, Kaixin Yao, Yuan Liu, Yi |
| Author_xml | – sequence: 1 givenname: Kaixin orcidid: 0000-0001-5573-1781 surname: Liu fullname: Liu, Kaixin organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, China – sequence: 2 givenname: Qing orcidid: 0000-0002-5125-6319 surname: Yu fullname: Yu, Qing organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, China – sequence: 3 givenname: Yi orcidid: 0000-0002-4066-689X surname: Liu fullname: Liu, Yi organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, China – sequence: 4 givenname: Jianguo orcidid: 0000-0001-5190-7815 surname: Yang fullname: Yang, Jianguo organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, China – sequence: 5 givenname: Yuan orcidid: 0000-0002-0025-6175 surname: Yao fullname: Yao, Yuan organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan |
| BookMark | eNp9kM1Lw0AQxRepYFu9C14WPKfuR7KbPUrVWqgoWL2GzWZiU5Js3N0I_e9NqHjw4OkNzPsNb94MTVrbAkKXlCwoJepmu35aMMLYgjOSKCJO0JQmiYyUEGyCpoTQNFJxIs7QzPs9IUSKWE7R-9K2X7buQ2VbXeOV090Ob3fgGvsxzgdcWodf-9z3rtQG8B2UYMIgYZABwlWLX2x9aMDhpW0666sA_hydlrr2cPGjc_T2cL9dPkab59V6ebuJDFM0RKXiVBZM5CTh0qjclGnMQVLIC5GnhkOap1LFRVIUXOQFk5ol49JQGmupCz5H18e7nbOfPfiQ7W3vhk98xiQd2Timg0scXcZZ7x2UmamCHtMHp6s6oyQbO8yGDrOxw-ynwwEkf8DOVY12h_-QqyNSAcCvXaVjlpR_A8WHf6w |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1080_08982112_2023_2177871 crossref_primary_10_1109_TII_2024_3397346 crossref_primary_10_1116_6_0002687 crossref_primary_10_1109_TIM_2023_3344145 crossref_primary_10_1364_AO_544023 crossref_primary_10_1109_JESTIE_2023_3322111 crossref_primary_10_1109_TIM_2025_3527517 crossref_primary_10_1109_TIM_2023_3267522 crossref_primary_10_1007_s13369_025_10223_9 crossref_primary_10_1109_TCSS_2023_3260833 |
| Cites_doi | 10.1109/TII.2019.2949358 10.3390/s18092809 10.1109/TIM.2021.3072109 10.1038/nature14539 10.1007/s10973-018-7644-6 10.1002/pc.23290 10.1080/17686733.2016.1200265 10.3390/polym13050825 10.1016/j.infrared.2019.01.008 10.1162/089976603321780317 10.2197/ipsjtcva.1.83 10.7551/mitpress/1120.003.0080 10.1088/1361-6501/ac17f9 10.1088/0143-0807/34/6/S91 10.1088/1361-6501/ac5280 10.1016/j.infrared.2018.04.016 10.1109/TIM.2020.2992873 10.1016/j.infrared.2017.07.012 10.1109/TII.2018.2866413 10.23915/distill.00003 10.1117/1.1566969 10.1177/1687814020913761 10.1126/science.290.5500.2319 10.1109/TIM.2019.2921135 10.1109/TPAMI.2015.2439281 10.1016/S0263-8223(02)00161-7 10.1126/science.1127647 10.1080/09349840802366617 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2022.3205906 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIM_2022_3205906 9887948 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62022073; 61873241 funderid: 10.13039/501100001809 – fundername: Ministry of Science and Technology, Taiwan grantid: 111-2622-8-007-011 funderid: 10.13039/501100004663 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD AARMG ABAZT L7M |
| ID | FETCH-LOGICAL-c291t-f9317d26b0537c9bcf843e71ebd6b8c3e8b8794d5dd36bd27a251ebdc114a7ad3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862966300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:17:47 EDT 2025 Tue Nov 18 22:21:56 EST 2025 Sat Nov 29 04:38:26 EST 2025 Tue Nov 25 14:44:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-f9317d26b0537c9bcf843e71ebd6b8c3e8b8794d5dd36bd27a251ebdc114a7ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4066-689X 0000-0002-0025-6175 0000-0001-5190-7815 0000-0002-5125-6319 0000-0001-5573-1781 |
| PQID | 2718794441 |
| PQPubID | 85462 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2718794441 ieee_primary_9887948 crossref_citationtrail_10_1109_TIM_2022_3205906 crossref_primary_10_1109_TIM_2022_3205906 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Tilak (ref21) 2020; 10 ref24 ref23 ref26 ref20 ref22 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Tan (ref25) |
| References_xml | – ident: ref14 doi: 10.1109/TII.2019.2949358 – ident: ref19 doi: 10.3390/s18092809 – ident: ref22 doi: 10.1109/TIM.2021.3072109 – start-page: 6105 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref25 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – ident: ref15 doi: 10.1038/nature14539 – ident: ref6 doi: 10.1007/s10973-018-7644-6 – ident: ref30 doi: 10.1002/pc.23290 – ident: ref2 doi: 10.1080/17686733.2016.1200265 – ident: ref29 doi: 10.3390/polym13050825 – ident: ref12 doi: 10.1016/j.infrared.2019.01.008 – ident: ref27 doi: 10.1162/089976603321780317 – ident: ref10 doi: 10.2197/ipsjtcva.1.83 – ident: ref26 doi: 10.7551/mitpress/1120.003.0080 – ident: ref8 doi: 10.1088/1361-6501/ac17f9 – ident: ref3 doi: 10.1088/0143-0807/34/6/S91 – ident: ref20 doi: 10.1088/1361-6501/ac5280 – ident: ref18 doi: 10.1016/j.infrared.2018.04.016 – ident: ref5 doi: 10.1109/TIM.2020.2992873 – ident: ref9 doi: 10.1016/j.infrared.2017.07.012 – ident: ref13 doi: 10.1109/TII.2018.2866413 – ident: ref24 doi: 10.23915/distill.00003 – ident: ref7 doi: 10.1117/1.1566969 – ident: ref1 doi: 10.1177/1687814020913761 – ident: ref11 doi: 10.1126/science.290.5500.2319 – ident: ref17 doi: 10.1109/TIM.2019.2921135 – ident: ref23 doi: 10.1109/TPAMI.2015.2439281 – ident: ref4 doi: 10.1016/S0263-8223(02)00161-7 – ident: ref16 doi: 10.1126/science.1127647 – volume: 10 start-page: 13107 issue: 12 year: 2020 ident: ref21 article-title: Deep autoencoder for automatic defect detection in thermal wave imaging publication-title: J. Green Eng. – ident: ref28 doi: 10.1080/09349840802366617 |
| SSID | ssj0007647 |
| Score | 2.488282 |
| Snippet | Infrared thermography for quality assessment of polymer composites has gained increasing attention with the development of various thermographic data analysis... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Background noise Carbon fiber reinforced plastics Convolution convolutional autoencoder Data analysis Decoding defect detection Defects Feature extraction Fiber reinforced polymers Image quality Infrared imaging infrared thermography manifold learning noise reduction Non-destructive testing Nonhomogeneous media Polymer matrix composites Polymers Quality assessment Temperature measurement Thermal imaging Thermography Training |
| Title | Convolutional Graph Thermography for Subsurface Defect Detection in Polymer Composites |
| URI | https://ieeexplore.ieee.org/document/9887948 https://www.proquest.com/docview/2718794441 |
| Volume | 71 |
| WOSCitedRecordID | wos000862966300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50UdCDb3F9kYMXwbrdJps0R1FXBRUPKt5Kk0xB0K50dwX_vZO0uyiK4KmFJqXNl5nMJDPfABz0UimFViaKTUEOCrcxiZTMI2Fzx1Eo62xIFL5Wt7fp05O-m4GjaS4MIobgMzz2t-Es3w3s2G-VdTRJhBbpLMwqpepcranWVVLU_JhdEmCyCiZHkrHu3F_dkCOYJMc88amW8tsSFGqq_FDEYXXpL__vu1ZgqbEi2UkN-yrMYLkGi1-4BddgPsR22uE6PJ4OyvdmhlGnC09RzWh6VK8NXTUjw5V5DTKuitwiO0Mf40GXUYjTKtlzye4GLx-vWDGvP3ycFw434KF_fn96GTXlFCKb6O4oKjTZCi6RxlO4WG1skQqOqovGSZNajqnxv-F6znFpXKJysn3ooSWXKVcE3Sa0ykGJW8DQ1zwqbBoL5EKSl1vYHs97RhTkEfEibUNnMsKZbbjGfcmLlyz4HLHOCJPMY5I1mLThcNrjrebZ-KPtusdg2q4Z_jbsTkDMGkEcZony5dQFGX3bv_fagQX_7npXZRdao2qMezBn30fPw2o_zLFPOwnQGw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED91wDT2AAyG1o0PP_AyaWnT2HHix6l8irbqQ0G8RbF9kZAgRWmLtP-es5NWIKZJe0qk2Erin-98Z9_9DuAkTqUUKtFBqAtyULgJSaRkHgiTW44iMdb4ROFBMhqld3dq3IJfq1wYRPTBZ9hxt_4s307Nwm2VdRVJhBLpB1iPhYh6dbbWSu8mUtQMmT0SYbILloeSoepOrobkCkZRh0cu2VK-WYR8VZV3qtivL-fb__dlO7DV2JHsdw38F2hhuQufX7EL7sJHH91pZntw25-Wz80co04XjqSa0QSpHhvCakamK3M6ZFEVuUF2ii7Kgy5zH6lVsvuSjacPfx6xYk6DuEgvnH2Fm_OzSf8yaAoqBCZSvXlQKLIWbCS1I3ExSpsiFRyTHmordWo4ptr9ho2t5VLbKMnJ-qGHhpymPCHw9mGtnJb4DRi6qkeFSUOBXEjycwsT8zzWoiCfiBdpG7rLEc5Mwzbuil48ZN7rCFVGmGQOk6zBpA0_Vz2eaqaNf7Tdcxis2jXD34aDJYhZI4qzLEpcQXVBZt_3v_c6hk-Xk-EgG1yNrn_ApntPvcdyAGvzaoGHsGGe5_ez6sjPtxc2TNNi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Graph+Thermography+for+Subsurface+Defect+Detection+in+Polymer+Composites&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Liu%2C+Kaixin&rft.au=Yu%2C+Qing&rft.au=Liu%2C+Yi&rft.au=Yang%2C+Jianguo&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2022.3205906&rft.externalDocID=9887948 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |