Convolutional Graph Thermography for Subsurface Defect Detection in Polymer Composites

Infrared thermography for quality assessment of polymer composites has gained increasing attention with the development of various thermographic data analysis methods. However, low-quality thermal images containing noise and inhomogeneous backgrounds restrict the defect detection performance of thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 71; S. 1
Hauptverfasser: Liu, Kaixin, Yu, Qing, Liu, Yi, Yang, Jianguo, Yao, Yuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Infrared thermography for quality assessment of polymer composites has gained increasing attention with the development of various thermographic data analysis methods. However, low-quality thermal images containing noise and inhomogeneous backgrounds restrict the defect detection performance of these methods. In this work, a convolutional graph thermography (CGT) method is proposed for subsurface defect detection in polymer composites. With a developed convolutional autoencoder thermogram enhancer, the noise and inhomogeneous background of the thermal image can be reduced. Subsequently, a graph-based dimensionality reduction method performs feature extraction on the enhanced thermograms. Consequently, the low-dimensional intrinsic manifolds of the high-dimensional thermographic data are characterized to highlight the defects visually. Two case studies on carbon fiber reinforced polymers demonstrated the performance of the proposed method.
AbstractList Infrared thermography for quality assessment of polymer composites has gained increasing attention with the development of various thermographic data analysis methods. However, low-quality thermal images containing noise and inhomogeneous backgrounds restrict the defect detection performance of these methods. In this work, a convolutional graph thermography (CGT) method is proposed for subsurface defect detection in polymer composites. With a developed convolutional autoencoder thermogram enhancer, the noise and inhomogeneous background of the thermal image can be reduced. Subsequently, a graph-based dimensionality reduction method performs feature extraction on the enhanced thermograms. Consequently, the low-dimensional intrinsic manifolds of the high-dimensional thermographic data are characterized to highlight the defects visually. Two case studies on carbon fiber reinforced polymers demonstrated the performance of the proposed method.
Author Yu, Qing
Yang, Jianguo
Liu, Kaixin
Yao, Yuan
Liu, Yi
Author_xml – sequence: 1
  givenname: Kaixin
  orcidid: 0000-0001-5573-1781
  surname: Liu
  fullname: Liu, Kaixin
  organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Qing
  orcidid: 0000-0002-5125-6319
  surname: Yu
  fullname: Yu, Qing
  organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-4066-689X
  surname: Liu
  fullname: Liu, Yi
  organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 4
  givenname: Jianguo
  orcidid: 0000-0001-5190-7815
  surname: Yang
  fullname: Yang, Jianguo
  organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 5
  givenname: Yuan
  orcidid: 0000-0002-0025-6175
  surname: Yao
  fullname: Yao, Yuan
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
BookMark eNp9kM1Lw0AQxRepYFu9C14WPKfuR7KbPUrVWqgoWL2GzWZiU5Js3N0I_e9NqHjw4OkNzPsNb94MTVrbAkKXlCwoJepmu35aMMLYgjOSKCJO0JQmiYyUEGyCpoTQNFJxIs7QzPs9IUSKWE7R-9K2X7buQ2VbXeOV090Ob3fgGvsxzgdcWodf-9z3rtQG8B2UYMIgYZABwlWLX2x9aMDhpW0666sA_hydlrr2cPGjc_T2cL9dPkab59V6ebuJDFM0RKXiVBZM5CTh0qjclGnMQVLIC5GnhkOap1LFRVIUXOQFk5ol49JQGmupCz5H18e7nbOfPfiQ7W3vhk98xiQd2Timg0scXcZZ7x2UmamCHtMHp6s6oyQbO8yGDrOxw-ynwwEkf8DOVY12h_-QqyNSAcCvXaVjlpR_A8WHf6w
CODEN IEIMAO
CitedBy_id crossref_primary_10_1080_08982112_2023_2177871
crossref_primary_10_1109_TII_2024_3397346
crossref_primary_10_1116_6_0002687
crossref_primary_10_1109_TIM_2023_3344145
crossref_primary_10_1364_AO_544023
crossref_primary_10_1109_JESTIE_2023_3322111
crossref_primary_10_1109_TIM_2025_3527517
crossref_primary_10_1109_TIM_2023_3267522
crossref_primary_10_1007_s13369_025_10223_9
crossref_primary_10_1109_TCSS_2023_3260833
Cites_doi 10.1109/TII.2019.2949358
10.3390/s18092809
10.1109/TIM.2021.3072109
10.1038/nature14539
10.1007/s10973-018-7644-6
10.1002/pc.23290
10.1080/17686733.2016.1200265
10.3390/polym13050825
10.1016/j.infrared.2019.01.008
10.1162/089976603321780317
10.2197/ipsjtcva.1.83
10.7551/mitpress/1120.003.0080
10.1088/1361-6501/ac17f9
10.1088/0143-0807/34/6/S91
10.1088/1361-6501/ac5280
10.1016/j.infrared.2018.04.016
10.1109/TIM.2020.2992873
10.1016/j.infrared.2017.07.012
10.1109/TII.2018.2866413
10.23915/distill.00003
10.1117/1.1566969
10.1177/1687814020913761
10.1126/science.290.5500.2319
10.1109/TIM.2019.2921135
10.1109/TPAMI.2015.2439281
10.1016/S0263-8223(02)00161-7
10.1126/science.1127647
10.1080/09349840802366617
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3205906
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2022_3205906
9887948
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62022073; 61873241
  funderid: 10.13039/501100001809
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 111-2622-8-007-011
  funderid: 10.13039/501100004663
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c291t-f9317d26b0537c9bcf843e71ebd6b8c3e8b8794d5dd36bd27a251ebdc114a7ad3
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862966300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:17:47 EDT 2025
Tue Nov 18 22:21:56 EST 2025
Sat Nov 29 04:38:26 EST 2025
Tue Nov 25 14:44:26 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f9317d26b0537c9bcf843e71ebd6b8c3e8b8794d5dd36bd27a251ebdc114a7ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4066-689X
0000-0002-0025-6175
0000-0001-5190-7815
0000-0002-5125-6319
0000-0001-5573-1781
PQID 2718794441
PQPubID 85462
PageCount 1
ParticipantIDs proquest_journals_2718794441
ieee_primary_9887948
crossref_citationtrail_10_1109_TIM_2022_3205906
crossref_primary_10_1109_TIM_2022_3205906
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Tilak (ref21) 2020; 10
ref24
ref23
ref26
ref20
ref22
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Tan (ref25)
References_xml – ident: ref14
  doi: 10.1109/TII.2019.2949358
– ident: ref19
  doi: 10.3390/s18092809
– ident: ref22
  doi: 10.1109/TIM.2021.3072109
– start-page: 6105
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref25
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref15
  doi: 10.1038/nature14539
– ident: ref6
  doi: 10.1007/s10973-018-7644-6
– ident: ref30
  doi: 10.1002/pc.23290
– ident: ref2
  doi: 10.1080/17686733.2016.1200265
– ident: ref29
  doi: 10.3390/polym13050825
– ident: ref12
  doi: 10.1016/j.infrared.2019.01.008
– ident: ref27
  doi: 10.1162/089976603321780317
– ident: ref10
  doi: 10.2197/ipsjtcva.1.83
– ident: ref26
  doi: 10.7551/mitpress/1120.003.0080
– ident: ref8
  doi: 10.1088/1361-6501/ac17f9
– ident: ref3
  doi: 10.1088/0143-0807/34/6/S91
– ident: ref20
  doi: 10.1088/1361-6501/ac5280
– ident: ref18
  doi: 10.1016/j.infrared.2018.04.016
– ident: ref5
  doi: 10.1109/TIM.2020.2992873
– ident: ref9
  doi: 10.1016/j.infrared.2017.07.012
– ident: ref13
  doi: 10.1109/TII.2018.2866413
– ident: ref24
  doi: 10.23915/distill.00003
– ident: ref7
  doi: 10.1117/1.1566969
– ident: ref1
  doi: 10.1177/1687814020913761
– ident: ref11
  doi: 10.1126/science.290.5500.2319
– ident: ref17
  doi: 10.1109/TIM.2019.2921135
– ident: ref23
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref4
  doi: 10.1016/S0263-8223(02)00161-7
– ident: ref16
  doi: 10.1126/science.1127647
– volume: 10
  start-page: 13107
  issue: 12
  year: 2020
  ident: ref21
  article-title: Deep autoencoder for automatic defect detection in thermal wave imaging
  publication-title: J. Green Eng.
– ident: ref28
  doi: 10.1080/09349840802366617
SSID ssj0007647
Score 2.488282
Snippet Infrared thermography for quality assessment of polymer composites has gained increasing attention with the development of various thermographic data analysis...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Background noise
Carbon fiber reinforced plastics
Convolution
convolutional autoencoder
Data analysis
Decoding
defect detection
Defects
Feature extraction
Fiber reinforced polymers
Image quality
Infrared imaging
infrared thermography
manifold learning
noise reduction
Non-destructive testing
Nonhomogeneous media
Polymer matrix composites
Polymers
Quality assessment
Temperature measurement
Thermal imaging
Thermography
Training
Title Convolutional Graph Thermography for Subsurface Defect Detection in Polymer Composites
URI https://ieeexplore.ieee.org/document/9887948
https://www.proquest.com/docview/2718794441
Volume 71
WOSCitedRecordID wos000862966300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50UdCDb3F9kYMXwbrdJps0R1FXBRUPKt5Kk0xB0K50dwX_vZO0uyiK4KmFJqXNl5nMJDPfABz0UimFViaKTUEOCrcxiZTMI2Fzx1Eo62xIFL5Wt7fp05O-m4GjaS4MIobgMzz2t-Es3w3s2G-VdTRJhBbpLMwqpepcranWVVLU_JhdEmCyCiZHkrHu3F_dkCOYJMc88amW8tsSFGqq_FDEYXXpL__vu1ZgqbEi2UkN-yrMYLkGi1-4BddgPsR22uE6PJ4OyvdmhlGnC09RzWh6VK8NXTUjw5V5DTKuitwiO0Mf40GXUYjTKtlzye4GLx-vWDGvP3ycFw434KF_fn96GTXlFCKb6O4oKjTZCi6RxlO4WG1skQqOqovGSZNajqnxv-F6znFpXKJysn3ooSWXKVcE3Sa0ykGJW8DQ1zwqbBoL5EKSl1vYHs97RhTkEfEibUNnMsKZbbjGfcmLlyz4HLHOCJPMY5I1mLThcNrjrebZ-KPtusdg2q4Z_jbsTkDMGkEcZony5dQFGX3bv_fagQX_7npXZRdao2qMezBn30fPw2o_zLFPOwnQGw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED91wDT2AAyG1o0PP_AyaWnT2HHix6l8irbqQ0G8RbF9kZAgRWmLtP-es5NWIKZJe0qk2Erin-98Z9_9DuAkTqUUKtFBqAtyULgJSaRkHgiTW44iMdb4ROFBMhqld3dq3IJfq1wYRPTBZ9hxt_4s307Nwm2VdRVJhBLpB1iPhYh6dbbWSu8mUtQMmT0SYbILloeSoepOrobkCkZRh0cu2VK-WYR8VZV3qtivL-fb__dlO7DV2JHsdw38F2hhuQufX7EL7sJHH91pZntw25-Wz80co04XjqSa0QSpHhvCakamK3M6ZFEVuUF2ii7Kgy5zH6lVsvuSjacPfx6xYk6DuEgvnH2Fm_OzSf8yaAoqBCZSvXlQKLIWbCS1I3ExSpsiFRyTHmordWo4ptr9ho2t5VLbKMnJ-qGHhpymPCHw9mGtnJb4DRi6qkeFSUOBXEjycwsT8zzWoiCfiBdpG7rLEc5Mwzbuil48ZN7rCFVGmGQOk6zBpA0_Vz2eaqaNf7Tdcxis2jXD34aDJYhZI4qzLEpcQXVBZt_3v_c6hk-Xk-EgG1yNrn_ApntPvcdyAGvzaoGHsGGe5_ez6sjPtxc2TNNi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Graph+Thermography+for+Subsurface+Defect+Detection+in+Polymer+Composites&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Liu%2C+Kaixin&rft.au=Yu%2C+Qing&rft.au=Liu%2C+Yi&rft.au=Yang%2C+Jianguo&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2022.3205906&rft.externalDocID=9887948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon