Multi-Robot Pickup and Delivery via Distributed Resource Allocation

In this article, we consider a large-scale instance of the classical pickup-and-delivery vehicle routing problem that must be solved by a network of mobile cooperating robots. Robots must self-coordinate and self-allocate a set of pickup/delivery tasks while minimizing a given cost figure. This resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics Jg. 39; H. 2; S. 1 - 13
Hauptverfasser: Camisa, Andrea, Testa, Andrea, Notarstefano, Giuseppe
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1552-3098, 1941-0468
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we consider a large-scale instance of the classical pickup-and-delivery vehicle routing problem that must be solved by a network of mobile cooperating robots. Robots must self-coordinate and self-allocate a set of pickup/delivery tasks while minimizing a given cost figure. This results in a large, challenging mixed-integer linear problem that must be cooperatively solved without a central coordinator. We propose a distributed algorithm based on a primal decomposition approach that provides a feasible solution to the problem in finite time. An interesting feature of the proposed scheme is that each robot computes only its own block of solution, thereby preserving privacy of sensible information. The algorithm also exhibits attractive scalability properties that guarantee solvability of the problem even in large networks. To the best of our knowledge, this is the first attempt to provide a scalable distributed solution to the problem. The algorithm is first tested through Gazebo simulations on a ROS 2 platform, highlighting the effectiveness of the proposed solution. Finally, experiments on a real testbed with a team of ground and aerial robots are provided.
AbstractList In this article, we consider a large-scale instance of the classical pickup-and-delivery vehicle routing problem that must be solved by a network of mobile cooperating robots. Robots must self-coordinate and self-allocate a set of pickup/delivery tasks while minimizing a given cost figure. This results in a large, challenging mixed-integer linear problem that must be cooperatively solved without a central coordinator. We propose a distributed algorithm based on a primal decomposition approach that provides a feasible solution to the problem in finite time. An interesting feature of the proposed scheme is that each robot computes only its own block of solution, thereby preserving privacy of sensible information. The algorithm also exhibits attractive scalability properties that guarantee solvability of the problem even in large networks. To the best of our knowledge, this is the first attempt to provide a scalable distributed solution to the problem. The algorithm is first tested through Gazebo simulations on a ROS 2 platform, highlighting the effectiveness of the proposed solution. Finally, experiments on a real testbed with a team of ground and aerial robots are provided.
In this article, we consider a large-scale instance of the classical pickup-and-delivery vehicle routing problem that must be solved by a network of mobile cooperating robots. Robots must self-coordinate and self-allocate a set of pickup/delivery tasks while minimizing a given cost figure. This results in a large, challenging mixed-integer linear problem that must be cooperatively solved without a central coordinator. We propose a distributed algorithm based on a primal decomposition approach that provides a feasible solution to the problem in finite time. An interesting feature of the proposed scheme is that each robot computes only its own block of solution, thereby preserving privacy of sensible information. The algorithm also exhibits attractive scalability properties that guarantee solvability of the problem even in large networks. To the best of our knowledge, this is the first attempt to provide a scalable distributed solution to the problem. The algorithm is first tested through Gazebo simulations on a ROS 2 platform, highlighting the effectiveness of the proposed solution. Finally, experiments on a real testbed with a team of ground and aerial robots are provided.
Author Notarstefano, Giuseppe
Camisa, Andrea
Testa, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0001-8524-2540
  surname: Camisa
  fullname: Camisa, Andrea
  organization: Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0002-8118-5320
  surname: Testa
  fullname: Testa, Andrea
  organization: Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 3
  givenname: Giuseppe
  orcidid: 0000-0002-0906-7848
  surname: Notarstefano
  fullname: Notarstefano, Giuseppe
  organization: Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
BookMark eNp9kE1LAzEQhoNUsK3eBS8LnrdOskl2cyytX6BUSj2HbJpA6rqpSbbQf-_WFg8ePM0c3mfm5RmhQetbg9A1hgnGIO5Wy8WEACGTgmBeAT5DQywozoHyatDvjJG8AFFdoFGMGwBCBRRDNHvtmuTypa99yt6c_ui2mWrX2dw0bmfCPts5lc1dTMHVXTLrbGmi74I22bRpvFbJ-fYSnVvVRHN1mmP0_nC_mj3lL4vH59n0JddE4JTbkoPGmAFwxUssrLDU1kDWhmFOqzWzitS0FiWANUqXlS2wqQyj3BLCFSnG6PZ4dxv8V2dikpu-Stu_lKQUrALGMOtT_JjSwccYjJXapZ-eKSjXSAzyIEz2wuRBmDwJ60H4A26D-1Rh_x9yc0ScMeY3LgSjAhfFN1CTdw8
CODEN ITREAE
CitedBy_id crossref_primary_10_1016_j_robot_2025_105138
crossref_primary_10_3390_s25113269
crossref_primary_10_1109_LRA_2025_3581126
crossref_primary_10_1109_LRA_2025_3604726
crossref_primary_10_1109_TRO_2024_3359530
crossref_primary_10_1109_ACCESS_2024_3505947
crossref_primary_10_1109_TRO_2024_3475209
crossref_primary_10_1007_s10514_025_10207_6
crossref_primary_10_1109_TIV_2024_3419183
crossref_primary_10_1109_TIE_2024_3393110
crossref_primary_10_1109_LCSYS_2025_3578933
crossref_primary_10_3390_app15158637
crossref_primary_10_1109_TEVC_2024_3364493
crossref_primary_10_1109_LRA_2023_3286814
crossref_primary_10_1109_LRA_2024_3487077
crossref_primary_10_1002_aisy_202400572
crossref_primary_10_1016_j_jii_2025_100821
crossref_primary_10_1109_LRA_2025_3592146
crossref_primary_10_1109_TASE_2023_3336076
crossref_primary_10_1016_j_automatica_2025_112198
crossref_primary_10_1109_JPROC_2025_3557698
crossref_primary_10_1016_j_automatica_2025_112580
Cites_doi 10.1109/TRO.2018.2795034
10.1137/1.9780898718515
10.1016/j.ifacol.2020.12.382
10.1109/TRO.2017.2693377
10.1007/s11301-008-0036-4
10.1016/j.automatica.2012.06.040
10.1109/TASE.2019.2914113
10.1109/IROS.2004.1389727
10.1109/TAC.2009.2028954
10.1109/TASE.2015.2438032
10.1007/s11036-008-0101-1
10.1287/opre.1060.0283
10.1002/tee.21868
10.1109/TASE.2017.2767379
10.1109/CDC.2013.6760447
10.1561/2600000020
10.1007/978-3-642-40776-5_10
10.1109/ICRA.2014.6907709
10.1287/opre.20.1.58
10.1016/S0005-1098(98)00178-2
10.1109/TASE.2019.2952523
10.1109/LRA.2021.3061366
10.1109/ICAL.2011.6024686
10.1109/TAC.2019.2920812
10.1109/MCS.2019.2949973
10.2514/6.2019-0915
10.1109/TASE.2018.2879875
10.1109/TRO.2021.3120046
10.1109/TAC.2010.2092850
10.1109/JPROC.2011.2158181
10.1080/00207543.2015.1043403
10.1109/LCSYS.2018.2844353
10.1109/LRA.2019.2926966
10.1109/TAC.2021.3057061
10.1016/j.ejor.2012.08.015
10.1145/2245276.2245419
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2022.3216801
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 13
ExternalDocumentID 10_1109_TRO_2022_3216801
9954913
Genre orig-research
GrantInformation_xml – fundername: European Union's Horizon 2020 research and innovation programme
  grantid: 638992-OPT4SMART
– fundername: European Research Council
  funderid: 10.13039/501100000781
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-f760c115006a6719f9f4fb02de51648d5fa2b4b9700feac78f31e8e546f226a23
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890838700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Mon Jun 30 05:36:54 EDT 2025
Sat Nov 29 01:47:30 EST 2025
Tue Nov 18 21:24:09 EST 2025
Wed Aug 27 02:29:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f760c115006a6719f9f4fb02de51648d5fa2b4b9700feac78f31e8e546f226a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8118-5320
0000-0002-0906-7848
0000-0001-8524-2540
PQID 2795805515
PQPubID 27625
PageCount 13
ParticipantIDs ieee_primary_9954913
crossref_citationtrail_10_1109_TRO_2022_3216801
proquest_journals_2795805515
crossref_primary_10_1109_TRO_2022_3216801
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
liu (ref10) 0
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
bertsekas (ref31) 1982
ref9
ref4
ref3
ref6
ref5
farinelli (ref26) 0
References_xml – ident: ref3
  doi: 10.1109/TRO.2018.2795034
– ident: ref5
  doi: 10.1137/1.9780898718515
– year: 1982
  ident: ref31
  publication-title: Constrained Optimization and Lagrange Multiplier Methods
– ident: ref34
  doi: 10.1016/j.ifacol.2020.12.382
– ident: ref15
  doi: 10.1109/TRO.2017.2693377
– ident: ref6
  doi: 10.1007/s11301-008-0036-4
– ident: ref17
  doi: 10.1016/j.automatica.2012.06.040
– ident: ref4
  doi: 10.1109/TASE.2019.2914113
– ident: ref33
  doi: 10.1109/IROS.2004.1389727
– ident: ref13
  doi: 10.1109/TAC.2009.2028954
– ident: ref19
  doi: 10.1109/TASE.2015.2438032
– ident: ref23
  doi: 10.1007/s11036-008-0101-1
– ident: ref36
  doi: 10.1287/opre.1060.0283
– ident: ref11
  doi: 10.1002/tee.21868
– ident: ref1
  doi: 10.1109/TASE.2017.2767379
– ident: ref16
  doi: 10.1109/CDC.2013.6760447
– ident: ref38
  doi: 10.1561/2600000020
– ident: ref12
  doi: 10.1007/978-3-642-40776-5_10
– ident: ref9
  doi: 10.1109/ICRA.2014.6907709
– ident: ref39
  doi: 10.1287/opre.20.1.58
– start-page: 1152
  year: 0
  ident: ref10
  article-title: Task and path planning for multi-agent pickup and delivery
  publication-title: Proc Int Joint Conf Auton Agents Multiagent Syst
– ident: ref37
  doi: 10.1016/S0005-1098(98)00178-2
– ident: ref2
  doi: 10.1109/TASE.2019.2952523
– start-page: 1843
  year: 0
  ident: ref26
  article-title: Decentralized task assignment for multi-item pickup and delivery in logistic scenarios
  publication-title: Proc 19th Int Conf Auton Agents MultiAgent Syst
– ident: ref32
  doi: 10.1109/LRA.2021.3061366
– ident: ref14
  doi: 10.1109/ICAL.2011.6024686
– ident: ref20
  doi: 10.1109/TAC.2019.2920812
– ident: ref35
  doi: 10.1109/MCS.2019.2949973
– ident: ref22
  doi: 10.2514/6.2019-0915
– ident: ref27
  doi: 10.1109/TASE.2018.2879875
– ident: ref18
  doi: 10.1109/TRO.2021.3120046
– ident: ref24
  doi: 10.1109/TAC.2010.2092850
– ident: ref25
  doi: 10.1109/JPROC.2011.2158181
– ident: ref8
  doi: 10.1080/00207543.2015.1043403
– ident: ref29
  doi: 10.1109/LCSYS.2018.2844353
– ident: ref21
  doi: 10.1109/LRA.2019.2926966
– ident: ref30
  doi: 10.1109/TAC.2021.3057061
– ident: ref7
  doi: 10.1016/j.ejor.2012.08.015
– ident: ref28
  doi: 10.1145/2245276.2245419
SSID ssj0024903
Score 2.5665157
Snippet In this article, we consider a large-scale instance of the classical pickup-and-delivery vehicle routing problem that must be solved by a network of mobile...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Cooperating robots
Costs
distributed optimization
distributed robot systems
Heuristic algorithms
Mixed integer
Multiple robots
Optimization
planning
Resource allocation
Robot kinematics
Robots
Route planning
scheduling and coordination
Task analysis
Vehicle dynamics
Vehicle routing
Title Multi-Robot Pickup and Delivery via Distributed Resource Allocation
URI https://ieeexplore.ieee.org/document/9954913
https://www.proquest.com/docview/2795805515
Volume 39
WOSCitedRecordID wos000890838700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5zeNCDX1OcTsnBi2C3NG3zcRybw9McY8JupUkTGI52bN3Af2-StlNQBG89JFCet30_kvd9HgAejGPEHCWBl9KIeGHCQ49ZNXfBJDEOk0QUp05sgo7HbD7nkwZ42s_CKKVc85nq2kd3l5_mcmuPynqWu4xbidoDSmk5q_XFq8edCrJlFPMCxFl9JYl4bzZ9NYUgxt0A-4RV8i91CHKaKj8csYsuo9P_vdcZOKmySNgvzX4OGiq7AMffuAVbYOBGa71pLvICThbyfbuCSZbCoVraVowPuFskcGhpc63ilUphfZAP-0sb4KzBLsHb6Hk2ePEqxQRPYu4XnqYESZvjIZIQ6nPNdagFwqmKTFnE0kgnWISCU4S08biU6cBXTEUh0SYNS3BwBZpZnqlrAKUpHQWlnOpQOPojXxIqtA4EYjLCSRv0ahBjWdGJW1WLZezKCsRjA3tsYY8r2Nvgcb9jVVJp_LG2ZWHer6sQboNObae4-tc2MaY8YshkftHN77tuwZEViS_7bTqgWay36g4cyl2x2Kzv3Wf0CU9Fwr0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD4MFdQH7-K85sEXwbo0bW6PQx0TdYpM8K00aQLDsYm7gP_eJGunoAi-9SGB8p32XJJzvg_g1DlGInGeRAWnLEpzmUbCq7kroZlzmIxyUgSxCd7piJcX-ViD8_ksjDEmNJ-ZC_8Y7vKLoZ74o7KG5y6TXqJ2kaYpiWfTWl_MejLoIHtOsSjBUlSXklg2uk8PrhQk5CIhMROlAEwVhIKqyg9XHOJLa_1_b7YBa2UeiZozw29CzQy2YPUbu-A2XIbh2uhpqIZj9NjTr5M3lA8KdGX6vhnjA017ObryxLle88oUqDrKR82-D3HeZDvw3LruXrajUjMh0kTG48hyhrXP8jDLGY-llTa1CpPCUFcYiYLanKhUSY6xdT6XC5vERhiaMusSsZwku7AwGA7MHiDtikfFueQ2VYEAKdaMK2sThYWmJK9DowIx0yWhuNe16GehsMAyc7BnHvashL0OZ_MdbzMyjT_WbnuY5-tKhOtwWNkpK_-2UUa4pAK73I_u_77rBJbb3fu77O6mc3sAK14yftZ9cwgL4_eJOYIlPR33Ru_H4ZP6BJywxgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Robot+Pickup+and+Delivery+via+Distributed+Resource+Allocation&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Camisa%2C+Andrea&rft.au=Testa%2C+Andrea&rft.au=Notarstefano%2C+Giuseppe&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=1552-3098&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTRO.2022.3216801&rft.externalDocID=9954913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon