Identification of Slow-Rate Integrated Measurement Systems Using Expectation-Maximization Algorithm
Despite the fact that slow-rate integrated measurement (SRTM), a gradual accumulation of material during a period of time, is a well-known method of sampling in industrial systems, especially chemical processes, the problem of the identification of SRTM systems has not been addressed so far. In this...
Saved in:
| Published in: | IEEE transactions on instrumentation and measurement Vol. 69; no. 12; pp. 9477 - 9484 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Despite the fact that slow-rate integrated measurement (SRTM), a gradual accumulation of material during a period of time, is a well-known method of sampling in industrial systems, especially chemical processes, the problem of the identification of SRTM systems has not been addressed so far. In this regard, system identification of the processes having SRTM will be presented in this work. By selecting finite impulse response (FIR) and autoregressive exogenous (ARX) models for the systems, parameters of them will be accurately estimated in the framework of the expectation-maximization (EM) algorithm. For this purpose, the instantaneous values of the output at the fast-rate sampling time are assumed to be latent variables. Applying the EM algorithm leads to some high-dimensional integrals, for which Monte Carlo simulation is adopted. The effectiveness of the proposed method is illustrated by both a simulation study and implementation on a laboratory-scale pH neutralization pilot plant. |
|---|---|
| AbstractList | Despite the fact that slow-rate integrated measurement (SRTM), a gradual accumulation of material during a period of time, is a well-known method of sampling in industrial systems, especially chemical processes, the problem of the identification of SRTM systems has not been addressed so far. In this regard, system identification of the processes having SRTM will be presented in this work. By selecting finite impulse response (FIR) and autoregressive exogenous (ARX) models for the systems, parameters of them will be accurately estimated in the framework of the expectation–maximization (EM) algorithm. For this purpose, the instantaneous values of the output at the fast-rate sampling time are assumed to be latent variables. Applying the EM algorithm leads to some high-dimensional integrals, for which Monte Carlo simulation is adopted. The effectiveness of the proposed method is illustrated by both a simulation study and implementation on a laboratory-scale pH neutralization pilot plant. |
| Author | Fatehi, Alireza Gheibi, Mir Sajjad Kheirandish, Amid |
| Author_xml | – sequence: 1 givenname: Amid orcidid: 0000-0001-6713-0078 surname: Kheirandish fullname: Kheirandish, Amid email: amid.kheirandish@yahoo.com organization: APAC Research Group, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran – sequence: 2 givenname: Alireza orcidid: 0000-0001-8719-8459 surname: Fatehi fullname: Fatehi, Alireza email: fatehi@kntu.ac.ir organization: APAC Research Group, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Mir Sajjad orcidid: 0000-0002-6344-4659 surname: Gheibi fullname: Gheibi, Mir Sajjad email: sajjadgheibi@gmail.com organization: APAC Research Group, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran |
| BookMark | eNp9kM9PwjAUxxujiYDeTbws8Tzs2_pjPRKCSgIxETgvXddiCduwLRH86x2OePDg6b3D9_N9L58-uqybWiN0B3gIgMXjcjofJjjBwxRjxhi5QD2glMeCseQS9TCGLBaEsmvU936DMeaM8B5S01LXwRqrZLBNHTUmWmybz_hNBh1N66DXrt3KaK6l3ztdteFocfRBVz5aeVuvo8lhp1X4oeO5PNjKfnVVo-26cTa8Vzfoysit17fnOUCrp8ly_BLPXp-n49EsVomAEBtGEsNJURAwnGqRSZoqyiDBikrKC1IKCSKjRcqYJFwqgMKATkvOkxILkw7QQ9e7c83HXvuQb5q9q9uTeUIYBiqYgDbFupRyjfdOm1zZ7v3gpN3mgPOT0LwVmp-E5mehLYj_gDtnK-mO_yH3HWK11r9xAQTSLEu_ARNhg8Q |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_3390_rs14092176 crossref_primary_10_1109_TIM_2024_3481574 crossref_primary_10_1016_j_jprocont_2025_103514 crossref_primary_10_1016_j_dsp_2025_105596 crossref_primary_10_1109_TIE_2021_3095807 crossref_primary_10_1109_TIM_2022_3200098 crossref_primary_10_1109_TIM_2022_3173636 crossref_primary_10_1109_LSP_2024_3519258 crossref_primary_10_1109_JSEN_2023_3244659 crossref_primary_10_1016_j_energy_2023_127499 crossref_primary_10_1080_00207721_2020_1808730 crossref_primary_10_3390_rs15071883 crossref_primary_10_1002_aic_17327 |
| Cites_doi | 10.1002/cjce.20113 10.1080/0094965031000147704 10.1016/S1474-6670(17)38724-4 10.1080/01621459.1990.10474930 10.1109/TCST.2014.2387216 10.1109/TIM.2018.2884604 10.1016/j.conengprac.2005.01.015 10.1016/j.automatica.2018.04.003 10.1007/978-981-10-3307-0 10.1007/s00034-013-9704-2 10.1016/j.automatica.2015.05.001 10.1016/j.jprocont.2018.12.010 10.1109/TIM.2017.2652739 10.1109/TIM.2017.2701143 10.1109/TIM.2015.2398971 10.1002/cjce.21670 10.1109/9.277253 10.1002/aic.14147 10.1007/s11071-014-1871-6 10.1111/j.2517-6161.1977.tb01600.x |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2020.3006664 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 9484 |
| ExternalDocumentID | 10_1109_TIM_2020_3006664 9141388 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-f642f74bb41f75e98a53c56120c5a57b4d9a1985b366a47ac11bf1e3d772d09f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589255800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:14:48 EDT 2025 Sat Nov 29 04:37:59 EST 2025 Tue Nov 18 22:17:42 EST 2025 Wed Aug 27 02:32:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-f642f74bb41f75e98a53c56120c5a57b4d9a1985b366a47ac11bf1e3d772d09f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6344-4659 0000-0001-8719-8459 0000-0001-6713-0078 |
| PQID | 2460159691 |
| PQPubID | 85462 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9141388 proquest_journals_2460159691 crossref_citationtrail_10_1109_TIM_2020_3006664 crossref_primary_10_1109_TIM_2020_3006664 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref9 ref4 ref3 ref6 ref5 dempster (ref7) 1977; 39 |
| References_xml | – ident: ref15 doi: 10.1002/cjce.20113 – ident: ref20 doi: 10.1080/0094965031000147704 – ident: ref19 doi: 10.1016/S1474-6670(17)38724-4 – ident: ref10 doi: 10.1080/01621459.1990.10474930 – ident: ref5 doi: 10.1109/TCST.2014.2387216 – ident: ref3 doi: 10.1109/TIM.2018.2884604 – ident: ref13 doi: 10.1016/j.conengprac.2005.01.015 – ident: ref16 doi: 10.1016/j.automatica.2018.04.003 – ident: ref17 doi: 10.1007/978-981-10-3307-0 – ident: ref4 doi: 10.1007/s00034-013-9704-2 – ident: ref1 doi: 10.1016/j.automatica.2015.05.001 – ident: ref6 doi: 10.1016/j.jprocont.2018.12.010 – ident: ref8 doi: 10.1109/TIM.2017.2652739 – ident: ref2 doi: 10.1109/TIM.2017.2701143 – ident: ref9 doi: 10.1109/TIM.2015.2398971 – ident: ref18 doi: 10.1002/cjce.21670 – ident: ref11 doi: 10.1109/9.277253 – ident: ref12 doi: 10.1002/aic.14147 – ident: ref14 doi: 10.1007/s11071-014-1871-6 – volume: 39 start-page: 1 year: 1977 ident: ref7 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Statist Soc Series B (Methodol ) doi: 10.1111/j.2517-6161.1977.tb01600.x |
| SSID | ssj0007647 |
| Score | 2.3749707 |
| Snippet | Despite the fact that slow-rate integrated measurement (SRTM), a gradual accumulation of material during a period of time, is a well-known method of sampling... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9477 |
| SubjectTerms | Algorithms Autoregressive models Autoregressive processes Chemical reactions Computer simulation Expectation-maximization algorithms Expectation–maximization (EM) algorithm Impulse response integrated autoregressive exogenous (IARX) model integrated finite impulse response (IFIR) model Kalman filters Mathematical model Maximization Monte Carlo simulation Optimization Parameter estimation Sampling slow-rate integrated measurement (SRTM) System identification |
| Title | Identification of Slow-Rate Integrated Measurement Systems Using Expectation-Maximization Algorithm |
| URI | https://ieeexplore.ieee.org/document/9141388 https://www.proquest.com/docview/2460159691 |
| Volume | 69 |
| WOSCitedRecordID | wos000589255800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qKOjBt1hf5OBFcO1mN9lsjiKKPbSIVvC2ZPPQQu1KWx8_3ySbVkURvOWQhGW_ZB6ZmW8AjpgS1qpPVCSICzPK2I4Sk0ZSZVLjXNtzUPpmE6zbze_v-XUDTma1MFprn3ymT93Qx_JVJV_cU1mLYyty83wO5hjL6lqtmdRlGan5MbG9wNYqmIYkY97qtTvWEUysf-oUbEa-qSDfU-WHIPba5XL1f9-1BivBikRnNezr0NDDDVj-wi24AYs-t1OON0HWxbgmvM6hyqDbQfUW3VgzE7WndBEKdT6fC1EgMkc-owA5PmRZx-yjjnjvP4XiTXQ2eKhG_cnj0xbcXV70zq-i0FshkgnHk8hYv8MwUpYEG0Y1zwVNpeuUGUsqKCuJ4gLznJZplgnChMS4NFinylrjKuYm3Yb5YTXUO4BKbhIRi1IY4TbUXCSKUkN5qkisYtaE1vR3FzIQj7v-F4PCOyAxLyxAhQOoCAA14Xi24rkm3fhj7qYDZDYvYNGE_SmiRbiV4yIh1v2kPON49_dVe7Dk9q7TVfZhfjJ60QewIF8n_fHo0B-4DzRG1JM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8aZQg4sNEO0a1jPuyCRKid2El8nNCqVbQVYkXaLXL8wSq1DeoH8OfPdtxu06ZJu_lgJ1F-9vvwe-_3AE4zJaxVH6tIUBdmlNiOYpNEUqVSk1zbfVD6ZhPZaJRfXfEfO_BlWwujtfbJZ_qrG_pYvqrk2l2VdTmxIjfPX8BLRmmM62qtrdzNUlozZBJ7hK1dsAlKYt4d94fWFYyth-pUbErvKSHfVeWBKPb6pbf3vC_bh3fBjkRnNfDvYUfPm_D2DrtgE1757E65bIGsy3FNuJ9DlUGX0-pf9NMamqi_IYxQaHh7YYgClTnyOQXIMSLLOmofDcX_ySyUb6Kz6e9qMVldzw7gV-98_O0iCt0VIhlzsoqM9TxMRsuSEpMxzXPBEul6ZWLJBMtKqrggPGdlkqaCZkISUhqiE2XtcYW5ST5AY17N9UdAJTexwKIURrgHai5ixZhhPFEUK5y1obv53YUM1OOuA8a08C4I5oUFqHAAFQGgNnzervhT0248MbflANnOC1i0obNBtAjnclnE1DqgjKecHD6-6gReX4yHg2LQH30_gjfuPXXySgcaq8VaH8Ou_LuaLBef_Oa7AWoC19o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Slow-Rate+Integrated+Measurement+Systems+Using+Expectation%E2%80%93Maximization+Algorithm&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kheirandish%2C+Amid&rft.au=Fatehi%2C+Alireza&rft.au=Gheibi%2C+Mir+Sajjad&rft.date=2020-12-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=69&rft.issue=12&rft.spage=9477&rft.epage=9484&rft_id=info:doi/10.1109%2FTIM.2020.3006664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2020_3006664 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |