Identification of Slow-Rate Integrated Measurement Systems Using Expectation-Maximization Algorithm

Despite the fact that slow-rate integrated measurement (SRTM), a gradual accumulation of material during a period of time, is a well-known method of sampling in industrial systems, especially chemical processes, the problem of the identification of SRTM systems has not been addressed so far. In this...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 69; no. 12; pp. 9477 - 9484
Main Authors: Kheirandish, Amid, Fatehi, Alireza, Gheibi, Mir Sajjad
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite the fact that slow-rate integrated measurement (SRTM), a gradual accumulation of material during a period of time, is a well-known method of sampling in industrial systems, especially chemical processes, the problem of the identification of SRTM systems has not been addressed so far. In this regard, system identification of the processes having SRTM will be presented in this work. By selecting finite impulse response (FIR) and autoregressive exogenous (ARX) models for the systems, parameters of them will be accurately estimated in the framework of the expectation-maximization (EM) algorithm. For this purpose, the instantaneous values of the output at the fast-rate sampling time are assumed to be latent variables. Applying the EM algorithm leads to some high-dimensional integrals, for which Monte Carlo simulation is adopted. The effectiveness of the proposed method is illustrated by both a simulation study and implementation on a laboratory-scale pH neutralization pilot plant.
AbstractList Despite the fact that slow-rate integrated measurement (SRTM), a gradual accumulation of material during a period of time, is a well-known method of sampling in industrial systems, especially chemical processes, the problem of the identification of SRTM systems has not been addressed so far. In this regard, system identification of the processes having SRTM will be presented in this work. By selecting finite impulse response (FIR) and autoregressive exogenous (ARX) models for the systems, parameters of them will be accurately estimated in the framework of the expectation–maximization (EM) algorithm. For this purpose, the instantaneous values of the output at the fast-rate sampling time are assumed to be latent variables. Applying the EM algorithm leads to some high-dimensional integrals, for which Monte Carlo simulation is adopted. The effectiveness of the proposed method is illustrated by both a simulation study and implementation on a laboratory-scale pH neutralization pilot plant.
Author Fatehi, Alireza
Gheibi, Mir Sajjad
Kheirandish, Amid
Author_xml – sequence: 1
  givenname: Amid
  orcidid: 0000-0001-6713-0078
  surname: Kheirandish
  fullname: Kheirandish, Amid
  email: amid.kheirandish@yahoo.com
  organization: APAC Research Group, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Alireza
  orcidid: 0000-0001-8719-8459
  surname: Fatehi
  fullname: Fatehi, Alireza
  email: fatehi@kntu.ac.ir
  organization: APAC Research Group, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Mir Sajjad
  orcidid: 0000-0002-6344-4659
  surname: Gheibi
  fullname: Gheibi, Mir Sajjad
  email: sajjadgheibi@gmail.com
  organization: APAC Research Group, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
BookMark eNp9kM9PwjAUxxujiYDeTbws8Tzs2_pjPRKCSgIxETgvXddiCduwLRH86x2OePDg6b3D9_N9L58-uqybWiN0B3gIgMXjcjofJjjBwxRjxhi5QD2glMeCseQS9TCGLBaEsmvU936DMeaM8B5S01LXwRqrZLBNHTUmWmybz_hNBh1N66DXrt3KaK6l3ztdteFocfRBVz5aeVuvo8lhp1X4oeO5PNjKfnVVo-26cTa8Vzfoysit17fnOUCrp8ly_BLPXp-n49EsVomAEBtGEsNJURAwnGqRSZoqyiDBikrKC1IKCSKjRcqYJFwqgMKATkvOkxILkw7QQ9e7c83HXvuQb5q9q9uTeUIYBiqYgDbFupRyjfdOm1zZ7v3gpN3mgPOT0LwVmp-E5mehLYj_gDtnK-mO_yH3HWK11r9xAQTSLEu_ARNhg8Q
CODEN IEIMAO
CitedBy_id crossref_primary_10_3390_rs14092176
crossref_primary_10_1109_TIM_2024_3481574
crossref_primary_10_1016_j_jprocont_2025_103514
crossref_primary_10_1016_j_dsp_2025_105596
crossref_primary_10_1109_TIE_2021_3095807
crossref_primary_10_1109_TIM_2022_3200098
crossref_primary_10_1109_TIM_2022_3173636
crossref_primary_10_1109_LSP_2024_3519258
crossref_primary_10_1109_JSEN_2023_3244659
crossref_primary_10_1016_j_energy_2023_127499
crossref_primary_10_1080_00207721_2020_1808730
crossref_primary_10_3390_rs15071883
crossref_primary_10_1002_aic_17327
Cites_doi 10.1002/cjce.20113
10.1080/0094965031000147704
10.1016/S1474-6670(17)38724-4
10.1080/01621459.1990.10474930
10.1109/TCST.2014.2387216
10.1109/TIM.2018.2884604
10.1016/j.conengprac.2005.01.015
10.1016/j.automatica.2018.04.003
10.1007/978-981-10-3307-0
10.1007/s00034-013-9704-2
10.1016/j.automatica.2015.05.001
10.1016/j.jprocont.2018.12.010
10.1109/TIM.2017.2652739
10.1109/TIM.2017.2701143
10.1109/TIM.2015.2398971
10.1002/cjce.21670
10.1109/9.277253
10.1002/aic.14147
10.1007/s11071-014-1871-6
10.1111/j.2517-6161.1977.tb01600.x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2020.3006664
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 9484
ExternalDocumentID 10_1109_TIM_2020_3006664
9141388
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-f642f74bb41f75e98a53c56120c5a57b4d9a1985b366a47ac11bf1e3d772d09f3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589255800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:14:48 EDT 2025
Sat Nov 29 04:37:59 EST 2025
Tue Nov 18 22:17:42 EST 2025
Wed Aug 27 02:32:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f642f74bb41f75e98a53c56120c5a57b4d9a1985b366a47ac11bf1e3d772d09f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6344-4659
0000-0001-8719-8459
0000-0001-6713-0078
PQID 2460159691
PQPubID 85462
PageCount 8
ParticipantIDs ieee_primary_9141388
proquest_journals_2460159691
crossref_citationtrail_10_1109_TIM_2020_3006664
crossref_primary_10_1109_TIM_2020_3006664
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref9
ref4
ref3
ref6
ref5
dempster (ref7) 1977; 39
References_xml – ident: ref15
  doi: 10.1002/cjce.20113
– ident: ref20
  doi: 10.1080/0094965031000147704
– ident: ref19
  doi: 10.1016/S1474-6670(17)38724-4
– ident: ref10
  doi: 10.1080/01621459.1990.10474930
– ident: ref5
  doi: 10.1109/TCST.2014.2387216
– ident: ref3
  doi: 10.1109/TIM.2018.2884604
– ident: ref13
  doi: 10.1016/j.conengprac.2005.01.015
– ident: ref16
  doi: 10.1016/j.automatica.2018.04.003
– ident: ref17
  doi: 10.1007/978-981-10-3307-0
– ident: ref4
  doi: 10.1007/s00034-013-9704-2
– ident: ref1
  doi: 10.1016/j.automatica.2015.05.001
– ident: ref6
  doi: 10.1016/j.jprocont.2018.12.010
– ident: ref8
  doi: 10.1109/TIM.2017.2652739
– ident: ref2
  doi: 10.1109/TIM.2017.2701143
– ident: ref9
  doi: 10.1109/TIM.2015.2398971
– ident: ref18
  doi: 10.1002/cjce.21670
– ident: ref11
  doi: 10.1109/9.277253
– ident: ref12
  doi: 10.1002/aic.14147
– ident: ref14
  doi: 10.1007/s11071-014-1871-6
– volume: 39
  start-page: 1
  year: 1977
  ident: ref7
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1977.tb01600.x
SSID ssj0007647
Score 2.3749707
Snippet Despite the fact that slow-rate integrated measurement (SRTM), a gradual accumulation of material during a period of time, is a well-known method of sampling...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9477
SubjectTerms Algorithms
Autoregressive models
Autoregressive processes
Chemical reactions
Computer simulation
Expectation-maximization algorithms
Expectation–maximization (EM) algorithm
Impulse response
integrated autoregressive exogenous (IARX) model
integrated finite impulse response (IFIR) model
Kalman filters
Mathematical model
Maximization
Monte Carlo simulation
Optimization
Parameter estimation
Sampling
slow-rate integrated measurement (SRTM)
System identification
Title Identification of Slow-Rate Integrated Measurement Systems Using Expectation-Maximization Algorithm
URI https://ieeexplore.ieee.org/document/9141388
https://www.proquest.com/docview/2460159691
Volume 69
WOSCitedRecordID wos000589255800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qKOjBt1hf5OBFcO1mN9lsjiKKPbSIVvC2ZPPQQu1KWx8_3ySbVkURvOWQhGW_ZB6ZmW8AjpgS1qpPVCSICzPK2I4Sk0ZSZVLjXNtzUPpmE6zbze_v-XUDTma1MFprn3ymT93Qx_JVJV_cU1mLYyty83wO5hjL6lqtmdRlGan5MbG9wNYqmIYkY97qtTvWEUysf-oUbEa-qSDfU-WHIPba5XL1f9-1BivBikRnNezr0NDDDVj-wi24AYs-t1OON0HWxbgmvM6hyqDbQfUW3VgzE7WndBEKdT6fC1EgMkc-owA5PmRZx-yjjnjvP4XiTXQ2eKhG_cnj0xbcXV70zq-i0FshkgnHk8hYv8MwUpYEG0Y1zwVNpeuUGUsqKCuJ4gLznJZplgnChMS4NFinylrjKuYm3Yb5YTXUO4BKbhIRi1IY4TbUXCSKUkN5qkisYtaE1vR3FzIQj7v-F4PCOyAxLyxAhQOoCAA14Xi24rkm3fhj7qYDZDYvYNGE_SmiRbiV4yIh1v2kPON49_dVe7Dk9q7TVfZhfjJ60QewIF8n_fHo0B-4DzRG1JM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8aZQg4sNEO0a1jPuyCRKid2El8nNCqVbQVYkXaLXL8wSq1DeoH8OfPdtxu06ZJu_lgJ1F-9vvwe-_3AE4zJaxVH6tIUBdmlNiOYpNEUqVSk1zbfVD6ZhPZaJRfXfEfO_BlWwujtfbJZ_qrG_pYvqrk2l2VdTmxIjfPX8BLRmmM62qtrdzNUlozZBJ7hK1dsAlKYt4d94fWFYyth-pUbErvKSHfVeWBKPb6pbf3vC_bh3fBjkRnNfDvYUfPm_D2DrtgE1757E65bIGsy3FNuJ9DlUGX0-pf9NMamqi_IYxQaHh7YYgClTnyOQXIMSLLOmofDcX_ySyUb6Kz6e9qMVldzw7gV-98_O0iCt0VIhlzsoqM9TxMRsuSEpMxzXPBEul6ZWLJBMtKqrggPGdlkqaCZkISUhqiE2XtcYW5ST5AY17N9UdAJTexwKIURrgHai5ixZhhPFEUK5y1obv53YUM1OOuA8a08C4I5oUFqHAAFQGgNnzervhT0248MbflANnOC1i0obNBtAjnclnE1DqgjKecHD6-6gReX4yHg2LQH30_gjfuPXXySgcaq8VaH8Ou_LuaLBef_Oa7AWoC19o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Slow-Rate+Integrated+Measurement+Systems+Using+Expectation%E2%80%93Maximization+Algorithm&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kheirandish%2C+Amid&rft.au=Fatehi%2C+Alireza&rft.au=Gheibi%2C+Mir+Sajjad&rft.date=2020-12-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=69&rft.issue=12&rft.spage=9477&rft.epage=9484&rft_id=info:doi/10.1109%2FTIM.2020.3006664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2020_3006664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon