Semi-Supervised EEG Signals Classification System for Epileptic Seizure Detection

In the past few decades, measuring and recording the brain electrical activities using Electroencephalogram (EEG) has become a standout amongst the tools utilized for neurological disorders' diagnosis, especially seizure detection. In this letter, a novel epileptic seizure detection system base...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 26; číslo 12; s. 1922 - 1926
Hlavní autoři: Abdelhameed, Ahmed M., Bayoumi, Magdy
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the past few decades, measuring and recording the brain electrical activities using Electroencephalogram (EEG) has become a standout amongst the tools utilized for neurological disorders' diagnosis, especially seizure detection. In this letter, a novel epileptic seizure detection system based on classifying raw EEG signals' recordings, eliminating the overhead of engineered feature extraction, is proposed. The system employs a mixing of unsupervised and supervised deep learning utilizing a one-dimensional convolutional variational autoencoder. To ascertain the robustness of the system against classifying unseen data, the evaluation of the proposed system is done using k-fold cross-validation. The classification results between normal and ictal cases have achieved a 100% accuracy while the classification results between the normal, inter-ictal and ictal cases accomplished a 99% overall accuracy which makes our system one of the most efficient among other state-of-the-art systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2019.2953870