Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach

For prognostics and health management of mechanical systems, a core task is to predict the machine remaining useful life (RUL). Currently, deep structures with automatic feature learning, such as long short-term memory (LSTM), have achieved great performances for the RUL prediction. However, the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) Jg. 68; H. 3; S. 2521 - 2531
Hauptverfasser: Chen, Zhenghua, Wu, Min, Zhao, Rui, Guretno, Feri, Yan, Ruqiang, Li, Xiaoli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0046, 1557-9948
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For prognostics and health management of mechanical systems, a core task is to predict the machine remaining useful life (RUL). Currently, deep structures with automatic feature learning, such as long short-term memory (LSTM), have achieved great performances for the RUL prediction. However, the conventional LSTM network only uses the learned features at last time step for regression or classification, which is not efficient. Besides, some handcrafted features with domain knowledge may convey additional information for the prediction of RUL. It is thus highly motivated to integrate both those handcrafted features and automatically learned features for the RUL prediction. In this article, we propose an attention-based deep learning framework for machine's RUL prediction. The LSTM network is employed to learn sequential features from raw sensory data. Meanwhile, the proposed attention mechanism is able to learn the importance of features and time steps, and assign larger weights to more important ones. Moreover, a feature fusion framework is developed to combine the handcrafted features with automatically learned features to boost the performance of the RUL prediction. Extensive experiments have been conducted on two real datasets and experimental results demonstrate that our proposed approach outperforms the state-of-the-arts.
AbstractList For prognostics and health management of mechanical systems, a core task is to predict the machine remaining useful life (RUL). Currently, deep structures with automatic feature learning, such as long short-term memory (LSTM), have achieved great performances for the RUL prediction. However, the conventional LSTM network only uses the learned features at last time step for regression or classification, which is not efficient. Besides, some handcrafted features with domain knowledge may convey additional information for the prediction of RUL. It is thus highly motivated to integrate both those handcrafted features and automatically learned features for the RUL prediction. In this article, we propose an attention-based deep learning framework for machine's RUL prediction. The LSTM network is employed to learn sequential features from raw sensory data. Meanwhile, the proposed attention mechanism is able to learn the importance of features and time steps, and assign larger weights to more important ones. Moreover, a feature fusion framework is developed to combine the handcrafted features with automatically learned features to boost the performance of the RUL prediction. Extensive experiments have been conducted on two real datasets and experimental results demonstrate that our proposed approach outperforms the state-of-the-arts.
Author Wu, Min
Yan, Ruqiang
Zhao, Rui
Chen, Zhenghua
Guretno, Feri
Li, Xiaoli
Author_xml – sequence: 1
  givenname: Zhenghua
  orcidid: 0000-0002-1719-0328
  surname: Chen
  fullname: Chen, Zhenghua
  email: chen0832@e.ntu.edu.sg
  organization: Institute for Infocomm Research, ASTAR, Sinagpore, Singapore
– sequence: 2
  givenname: Min
  orcidid: 0000-0003-0977-3600
  surname: Wu
  fullname: Wu, Min
  email: wumin@i2r.a-star.edu.sg
  organization: Institute for Infocomm Research, ASTAR, Sinagpore, Singapore
– sequence: 3
  givenname: Rui
  orcidid: 0000-0002-9699-9984
  surname: Zhao
  fullname: Zhao, Rui
  email: rzhao001@e.ntu.edu.sg
  organization: Harveston Asset Management Company, Singapore, Singapore
– sequence: 4
  givenname: Feri
  surname: Guretno
  fullname: Guretno, Feri
  email: guretnof@i2r.a-star.edu.sg
  organization: Institute for Infocomm Research, ASTAR, Sinagpore, Singapore
– sequence: 5
  givenname: Ruqiang
  orcidid: 0000-0002-1250-4084
  surname: Yan
  fullname: Yan, Ruqiang
  email: yanruqiang@xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 6
  givenname: Xiaoli
  orcidid: 0000-0002-0762-6562
  surname: Li
  fullname: Li, Xiaoli
  email: xlli@i2r.a-star.edu.sg
  organization: Institute for Infocomm Research, ASTAR, Sinagpore, Singapore
BookMark eNp9kE1Lw0AQhhepYFu9C14WPKfuZ5I91lq1UFGk9Ro2m1nd0m7ibir4702sePDgaWCY532ZZ4QGvvaA0DklE0qJulot5hNGGJkwlTEh-BEaUimzRCmRD9CQsCxPCBHpCRrFuCGECknlEL08aPPmPOBn2GnnnX_F6wh2v8VLZwE_BaicaV3t8YfTWHs8bVvw_SK51hEqfAPQ4CXo8M1OmybUXeIpOrZ6G-HsZ47R-na-mt0ny8e7xWy6TAxTtE2sZCXLMi5zkVZKlUIRY6ygXGtVAlTEVKq0lsvSWF4aTXJumahKLUVlcpLyMbo85Ha173uIbbGp98F3lQUTqRQ8Yx0zRunhyoQ6xgC2MK7V_RNt0G5bUFL0DovOYdE7LH4cdiD5AzbB7XT4_A-5OCAOAH7Pc6VymSr-BTHyfo0
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_compositesa_2024_108429
crossref_primary_10_3390_a17080321
crossref_primary_10_1016_j_procs_2022_12_241
crossref_primary_10_1109_TII_2024_3452181
crossref_primary_10_1007_s11760_024_03442_4
crossref_primary_10_1016_j_ress_2023_109405
crossref_primary_10_1016_j_ymssp_2023_110688
crossref_primary_10_1088_1361_6501_ad7e39
crossref_primary_10_1109_TPEL_2025_3577241
crossref_primary_10_3390_machines12050342
crossref_primary_10_1016_j_ymssp_2025_112987
crossref_primary_10_1109_ACCESS_2025_3547863
crossref_primary_10_1109_TIE_2022_3156039
crossref_primary_10_1016_j_rineng_2025_106152
crossref_primary_10_1016_j_asoc_2022_108507
crossref_primary_10_1016_j_ifacol_2022_09_199
crossref_primary_10_3390_electronics12071744
crossref_primary_10_1109_JSEN_2023_3246595
crossref_primary_10_1109_JAS_2022_105746
crossref_primary_10_1002_qre_3740
crossref_primary_10_1016_j_ress_2024_110012
crossref_primary_10_3389_fnins_2024_1450416
crossref_primary_10_1007_s10994_023_06305_0
crossref_primary_10_1016_j_ress_2025_111289
crossref_primary_10_1109_JIOT_2024_3376715
crossref_primary_10_1016_j_conengprac_2023_105840
crossref_primary_10_1002_oca_70001
crossref_primary_10_1016_j_engappai_2024_108813
crossref_primary_10_1007_s10489_024_06145_y
crossref_primary_10_1088_2631_8695_ad5f04
crossref_primary_10_1016_j_ijepes_2024_110195
crossref_primary_10_1016_j_rser_2021_111903
crossref_primary_10_1108_AA_08_2021_0113
crossref_primary_10_1016_j_eswa_2023_119767
crossref_primary_10_1109_TIM_2021_3086906
crossref_primary_10_1016_j_ins_2023_01_100
crossref_primary_10_1016_j_compbiomed_2023_107295
crossref_primary_10_1109_TIM_2025_3527602
crossref_primary_10_1016_j_microrel_2025_115662
crossref_primary_10_1016_j_ress_2023_109096
crossref_primary_10_1177_14759217241243111
crossref_primary_10_3390_app122111280
crossref_primary_10_1016_j_ress_2024_110580
crossref_primary_10_1016_j_scs_2023_104679
crossref_primary_10_3390_s25185682
crossref_primary_10_1007_s00170_023_12259_3
crossref_primary_10_1016_j_jocs_2021_101508
crossref_primary_10_1109_TIM_2022_3160561
crossref_primary_10_3390_en15124247
crossref_primary_10_1088_1361_6501_adfcfb
crossref_primary_10_1109_JIOT_2024_3376706
crossref_primary_10_3390_app15179813
crossref_primary_10_1016_j_ymssp_2022_109166
crossref_primary_10_1109_JSEN_2021_3119553
crossref_primary_10_3390_machines10090725
crossref_primary_10_1016_j_aei_2024_103038
crossref_primary_10_1088_1361_6501_aced5f
crossref_primary_10_1109_ACCESS_2020_3023335
crossref_primary_10_3390_technologies13080321
crossref_primary_10_1016_j_ress_2021_107927
crossref_primary_10_1016_j_aei_2022_101682
crossref_primary_10_1109_TNSE_2022_3163473
crossref_primary_10_1109_TNNLS_2023_3310482
crossref_primary_10_1016_j_cie_2025_110892
crossref_primary_10_1016_j_ress_2023_109741
crossref_primary_10_1109_TIE_2023_3301551
crossref_primary_10_3390_s25134164
crossref_primary_10_1109_TASE_2023_3267860
crossref_primary_10_1109_TIM_2023_3309381
crossref_primary_10_1016_j_eswa_2025_127277
crossref_primary_10_1109_TIM_2023_3334339
crossref_primary_10_3390_a15030098
crossref_primary_10_1016_j_ress_2025_111064
crossref_primary_10_1109_TIM_2024_3375984
crossref_primary_10_1088_1361_6501_acbed0
crossref_primary_10_1109_ACCESS_2024_3406262
crossref_primary_10_1016_j_psep_2024_06_008
crossref_primary_10_1016_j_isatra_2021_10_024
crossref_primary_10_1007_s10489_023_04777_0
crossref_primary_10_1016_j_est_2024_113556
crossref_primary_10_1038_s41598_025_13387_4
crossref_primary_10_1109_TIM_2025_3550613
crossref_primary_10_1016_j_cirpj_2022_01_002
crossref_primary_10_1007_s11704_023_3277_4
crossref_primary_10_1109_TIM_2022_3212525
crossref_primary_10_1016_j_ress_2023_109511
crossref_primary_10_1088_1361_6501_ac22ee
crossref_primary_10_1016_j_aei_2021_101396
crossref_primary_10_1016_j_ress_2023_109514
crossref_primary_10_37394_23207_2025_22_156
crossref_primary_10_1109_TIM_2023_3291733
crossref_primary_10_1109_TIM_2023_3309395
crossref_primary_10_1109_JIOT_2023_3285206
crossref_primary_10_1016_j_ress_2024_110161
crossref_primary_10_1109_TIM_2022_3167778
crossref_primary_10_1109_TITS_2025_3558085
crossref_primary_10_3390_rs17010077
crossref_primary_10_1088_1361_6501_ad7622
crossref_primary_10_1016_j_ress_2024_110047
crossref_primary_10_1109_TIM_2022_3204089
crossref_primary_10_1088_1361_6501_ad6892
crossref_primary_10_1016_j_knosys_2022_109340
crossref_primary_10_1088_1361_6501_ad9bd6
crossref_primary_10_1007_s00202_025_03126_3
crossref_primary_10_1016_j_engappai_2023_107538
crossref_primary_10_1016_j_jare_2025_02_029
crossref_primary_10_1016_j_ress_2022_108636
crossref_primary_10_1088_1361_6501_ad38d4
crossref_primary_10_1016_j_jnca_2021_103213
crossref_primary_10_1109_ACCESS_2022_3150830
crossref_primary_10_1016_j_eswa_2022_117415
crossref_primary_10_1109_TNNLS_2023_3347227
crossref_primary_10_1109_TETCI_2024_3502418
crossref_primary_10_1109_TR_2024_3427797
crossref_primary_10_1109_TPEL_2025_3586684
crossref_primary_10_1016_j_ress_2022_109041
crossref_primary_10_1109_TIE_2021_3057030
crossref_primary_10_3390_app132111893
crossref_primary_10_1016_j_engappai_2025_110700
crossref_primary_10_1049_gtd2_12590
crossref_primary_10_1088_1361_6501_acf401
crossref_primary_10_1109_JSEN_2024_3447717
crossref_primary_10_3390_info16070542
crossref_primary_10_1109_TR_2024_3462441
crossref_primary_10_1109_TR_2022_3190639
crossref_primary_10_1016_j_aei_2023_101973
crossref_primary_10_3390_s23136163
crossref_primary_10_1109_TIM_2025_3554879
crossref_primary_10_1186_s10033_021_00587_y
crossref_primary_10_3390_en14113156
crossref_primary_10_1016_j_ress_2023_109456
crossref_primary_10_1109_TIM_2025_3551011
crossref_primary_10_1016_j_ress_2023_109337
crossref_primary_10_1109_TNNLS_2021_3136768
crossref_primary_10_1109_TCPMT_2023_3282616
crossref_primary_10_1177_14727978251363371
crossref_primary_10_3390_su141912094
crossref_primary_10_1109_TR_2023_3349201
crossref_primary_10_1109_TCYB_2022_3164683
crossref_primary_10_1016_j_jii_2023_100444
crossref_primary_10_1109_TIE_2023_3292865
crossref_primary_10_1088_1361_6501_acb83e
crossref_primary_10_1109_JIOT_2024_3520235
crossref_primary_10_1038_s41598_025_09155_z
crossref_primary_10_1007_s13369_024_08854_5
crossref_primary_10_1109_TIM_2025_3588985
crossref_primary_10_7717_peerj_cs_690
crossref_primary_10_1109_TIM_2021_3055788
crossref_primary_10_1016_j_aei_2025_103234
crossref_primary_10_1109_TIM_2022_3167793
crossref_primary_10_1109_TIM_2024_3398070
crossref_primary_10_1007_s10462_023_10468_6
crossref_primary_10_1088_1742_6596_3001_1_012018
crossref_primary_10_1016_j_imavis_2024_105410
crossref_primary_10_1016_j_isatra_2025_05_010
crossref_primary_10_1016_j_ress_2022_108976
crossref_primary_10_1088_1361_6501_ac727f
crossref_primary_10_1016_j_eswa_2025_127195
crossref_primary_10_1109_TII_2021_3092361
crossref_primary_10_1109_TMECH_2023_3244282
crossref_primary_10_1016_j_ress_2022_108610
crossref_primary_10_1016_j_ymssp_2025_112449
crossref_primary_10_3390_app13127186
crossref_primary_10_1016_j_eswa_2025_127870
crossref_primary_10_1016_j_ress_2023_109662
crossref_primary_10_1177_09596518241269642
crossref_primary_10_1109_ACCESS_2023_3322733
crossref_primary_10_1016_j_ress_2025_110902
crossref_primary_10_1109_TII_2022_3166790
crossref_primary_10_1109_TIM_2022_3159010
crossref_primary_10_1016_j_ymssp_2023_110221
crossref_primary_10_1109_TIM_2025_3562242
crossref_primary_10_1177_10775463241259619
crossref_primary_10_1177_09544100251376153
crossref_primary_10_1016_j_knosys_2024_112749
crossref_primary_10_1109_TR_2023_3252605
crossref_primary_10_1038_s41598_024_52151_y
crossref_primary_10_1109_JSEN_2024_3479079
crossref_primary_10_3390_electronics10202453
crossref_primary_10_1007_s10489_021_03034_6
crossref_primary_10_1007_s10845_024_02338_x
crossref_primary_10_3390_pr13082366
crossref_primary_10_1109_JIOT_2024_3421365
crossref_primary_10_1002_qre_3494
crossref_primary_10_1016_j_ymssp_2023_110472
crossref_primary_10_1155_2024_6465566
crossref_primary_10_1002_acs_3908
crossref_primary_10_1016_j_ress_2023_109793
crossref_primary_10_1080_10589759_2025_2466078
crossref_primary_10_1016_j_jobe_2023_107128
crossref_primary_10_1016_j_knosys_2024_111783
crossref_primary_10_3390_act14050238
crossref_primary_10_1109_TPAMI_2024_3444904
crossref_primary_10_1016_j_engfailanal_2024_108455
crossref_primary_10_1016_j_measurement_2022_111594
crossref_primary_10_1088_1361_6501_ac7f7f
crossref_primary_10_1109_TIM_2020_3033471
crossref_primary_10_1088_2631_8695_adece8
crossref_primary_10_1007_s10845_021_01814_y
crossref_primary_10_1109_TIM_2022_3184352
crossref_primary_10_1109_TIM_2025_3529072
crossref_primary_10_1109_TVT_2023_3319377
crossref_primary_10_1109_TIM_2025_3577829
crossref_primary_10_1016_j_ress_2025_110928
crossref_primary_10_1109_TII_2020_3046036
crossref_primary_10_1088_1361_6501_acfbef
crossref_primary_10_1016_j_rcim_2022_102368
crossref_primary_10_1007_s40430_025_05400_8
crossref_primary_10_1016_j_ress_2023_109247
crossref_primary_10_1016_j_ijepes_2023_109764
crossref_primary_10_1016_j_iswa_2021_200049
crossref_primary_10_1016_j_mfglet_2023_08_037
crossref_primary_10_1007_s13042_023_01807_8
crossref_primary_10_1016_j_energy_2025_137253
crossref_primary_10_1016_j_ress_2025_110924
crossref_primary_10_1088_1361_6501_aca8c2
crossref_primary_10_1109_ACCESS_2022_3188681
crossref_primary_10_1088_1742_6596_2171_1_012072
crossref_primary_10_1109_ACCESS_2025_3607733
crossref_primary_10_1109_JSEN_2025_3545660
crossref_primary_10_3390_s24113551
crossref_primary_10_1016_j_ins_2023_120007
crossref_primary_10_3390_app13169438
crossref_primary_10_1109_TIM_2022_3227956
crossref_primary_10_1109_TII_2021_3121326
crossref_primary_10_1109_TIM_2025_3569898
crossref_primary_10_1109_JSEN_2024_3404072
crossref_primary_10_3390_e27010079
crossref_primary_10_1007_s10845_022_02015_x
crossref_primary_10_1016_j_engappai_2023_107620
crossref_primary_10_1016_j_eswa_2024_124538
crossref_primary_10_1109_TII_2022_3217758
crossref_primary_10_1142_S0218539325500111
crossref_primary_10_3390_electronics13050976
crossref_primary_10_1016_j_aei_2023_101898
crossref_primary_10_1109_JSEN_2024_3514168
crossref_primary_10_3233_IDA_227099
crossref_primary_10_3390_app12115747
crossref_primary_10_1016_j_knosys_2025_114214
crossref_primary_10_1088_1361_6501_ad128a
crossref_primary_10_1109_TII_2023_3288225
crossref_primary_10_1016_j_neucom_2025_131536
crossref_primary_10_3390_aerospace10050474
crossref_primary_10_1109_JIOT_2024_3459968
crossref_primary_10_1109_ACCESS_2021_3079286
crossref_primary_10_1109_TIM_2024_3457971
crossref_primary_10_1016_j_eswa_2025_127315
crossref_primary_10_1109_TR_2022_3194107
crossref_primary_10_1016_j_cie_2022_108211
crossref_primary_10_1109_TMECH_2021_3079729
crossref_primary_10_1109_TNNLS_2023_3330487
crossref_primary_10_1109_TIE_2021_3114724
crossref_primary_10_1016_j_measurement_2024_116345
crossref_primary_10_1155_2021_6221545
crossref_primary_10_1016_j_compind_2023_103888
crossref_primary_10_1016_j_ress_2022_108898
crossref_primary_10_3390_machines10100927
crossref_primary_10_1016_j_measurement_2022_110968
crossref_primary_10_1109_TIE_2022_3227274
crossref_primary_10_1016_j_ress_2022_108531
crossref_primary_10_3390_machines11030341
crossref_primary_10_1109_TIM_2025_3545540
crossref_primary_10_1016_j_measurement_2023_113163
crossref_primary_10_1016_j_ymssp_2024_111551
crossref_primary_10_1109_TAI_2023_3241896
crossref_primary_10_1109_TIM_2021_3084310
crossref_primary_10_1088_1361_6501_ad3b2c
crossref_primary_10_1109_TII_2022_3224969
crossref_primary_10_1016_j_cie_2024_110342
crossref_primary_10_1016_j_cie_2024_110581
crossref_primary_10_1016_j_measurement_2021_109685
crossref_primary_10_1016_j_engappai_2024_108557
crossref_primary_10_1016_j_ultras_2025_107707
crossref_primary_10_1109_TIM_2024_3470018
crossref_primary_10_1016_j_ress_2022_108528
crossref_primary_10_3390_s25144481
crossref_primary_10_1016_j_measurement_2022_111803
crossref_primary_10_3390_app12136766
crossref_primary_10_1016_j_scs_2025_106383
crossref_primary_10_1016_j_ymssp_2022_109788
crossref_primary_10_1109_JIOT_2021_3109955
crossref_primary_10_1109_TIM_2025_3576953
crossref_primary_10_1016_j_ress_2022_108886
crossref_primary_10_1109_TIM_2024_3428643
crossref_primary_10_1007_s12206_021_1109_8
crossref_primary_10_1016_j_mssp_2024_108514
crossref_primary_10_1109_TIM_2022_3221142
crossref_primary_10_1016_j_rcim_2025_103010
crossref_primary_10_3390_lubricants10020021
crossref_primary_10_1002_cjce_25041
crossref_primary_10_1007_s11760_023_02800_y
crossref_primary_10_1016_j_ress_2024_110685
crossref_primary_10_1109_TIM_2021_3126006
crossref_primary_10_3389_fphy_2022_1080972
crossref_primary_10_1109_TAES_2025_3530899
crossref_primary_10_1109_TII_2022_3210250
crossref_primary_10_1109_JIOT_2025_3581906
crossref_primary_10_1016_j_cie_2022_108559
crossref_primary_10_1109_JSEN_2023_3342884
crossref_primary_10_1016_j_ress_2025_111492
crossref_primary_10_1109_JSEN_2022_3143705
crossref_primary_10_1016_j_dsp_2023_104368
crossref_primary_10_1016_j_ress_2022_108916
crossref_primary_10_1088_1361_6501_ac22f0
crossref_primary_10_1109_TII_2024_3359455
crossref_primary_10_1016_j_ymssp_2024_111699
crossref_primary_10_1088_1361_6501_acda52
crossref_primary_10_3390_s24082537
crossref_primary_10_1109_TII_2023_3240599
crossref_primary_10_1016_j_ress_2023_109163
crossref_primary_10_1016_j_ress_2022_108590
crossref_primary_10_1109_TII_2022_3202979
crossref_primary_10_1007_s10846_023_01990_4
crossref_primary_10_1109_JSEN_2023_3296670
crossref_primary_10_1109_TSM_2023_3324057
crossref_primary_10_3390_sym13101861
crossref_primary_10_1016_j_ress_2024_110210
crossref_primary_10_1109_TASE_2023_3274648
crossref_primary_10_1109_ACCESS_2022_3187702
crossref_primary_10_1016_j_engappai_2023_107389
crossref_primary_10_1016_j_isatra_2024_06_022
crossref_primary_10_1109_TIM_2025_3573776
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_1016_j_psep_2022_01_062
crossref_primary_10_1109_JSEN_2024_3494020
crossref_primary_10_1109_TIM_2021_3054025
crossref_primary_10_1016_j_neucom_2025_131611
crossref_primary_10_1080_24725854_2025_2561566
crossref_primary_10_3390_su13158548
crossref_primary_10_1016_j_ress_2023_109390
crossref_primary_10_1109_TIE_2021_3112987
crossref_primary_10_1109_TII_2023_3333933
crossref_primary_10_1016_j_ress_2024_110540
crossref_primary_10_1109_TAI_2023_3341854
crossref_primary_10_1108_RIA_03_2024_0061
crossref_primary_10_3390_aerospace12030259
crossref_primary_10_3390_app11198967
crossref_primary_10_1109_TMECH_2022_3201010
crossref_primary_10_1088_1361_6501_acdf0d
crossref_primary_10_1007_s42405_024_00828_z
crossref_primary_10_1109_TCYB_2022_3178116
crossref_primary_10_3390_electronics14071265
crossref_primary_10_1109_TIM_2023_3284956
crossref_primary_10_1109_ACCESS_2024_3498895
crossref_primary_10_1016_j_ress_2022_108699
crossref_primary_10_1016_j_ress_2023_109821
crossref_primary_10_3390_s24113454
crossref_primary_10_1109_TIM_2023_3347782
crossref_primary_10_1016_j_asoc_2023_110419
crossref_primary_10_1016_j_ymssp_2025_113015
crossref_primary_10_1109_JSEN_2025_3546498
crossref_primary_10_3390_electronics14153030
crossref_primary_10_1088_1755_1315_1189_1_012007
crossref_primary_10_1016_j_ymssp_2023_110187
crossref_primary_10_1016_j_jmsy_2022_05_014
crossref_primary_10_1016_j_ress_2024_110790
crossref_primary_10_1109_TII_2020_3032690
crossref_primary_10_1016_j_measurement_2024_116411
crossref_primary_10_3390_aerospace11040293
crossref_primary_10_1007_s12206_025_0204_7
crossref_primary_10_1007_s40747_025_01886_w
crossref_primary_10_1016_j_engappai_2024_109846
crossref_primary_10_1016_j_engappai_2023_106956
crossref_primary_10_3389_fmech_2024_1418137
crossref_primary_10_1016_j_ress_2023_109716
crossref_primary_10_1016_j_eswa_2022_118435
crossref_primary_10_1109_TIM_2021_3072131
crossref_primary_10_1016_j_ress_2022_108444
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1109_TMM_2024_3443627
crossref_primary_10_3390_biology12101298
crossref_primary_10_1016_j_knosys_2021_107902
crossref_primary_10_1109_JIOT_2025_3569131
crossref_primary_10_1016_j_cie_2025_110964
crossref_primary_10_1109_JAS_2023_123369
crossref_primary_10_1016_j_ress_2021_108263
crossref_primary_10_1177_10775463221129930
Cites_doi 10.1109/JSEN.2019.2949057
10.1109/TIE.2016.2515054
10.1109/TII.2017.2684821
10.1016/j.ymssp.2017.11.016
10.1109/TIE.2017.2733438
10.1016/j.jmsy.2018.05.011
10.1109/TKDE.2009.191
10.1109/TASLP.2016.2520371
10.1109/TCYB.2014.2378056
10.1016/j.ress.2015.02.001
10.1109/TIE.2013.2270212
10.1109/PHM.2008.4711414
10.1109/TII.2018.2866549
10.1007/978-3-319-46478-7_47
10.1109/TSMC.2017.2697842
10.1109/TIP.2017.2778563
10.1016/j.engappai.2013.02.006
10.1115/1.4036350
10.1016/j.ymssp.2016.06.031
10.1016/j.trc.2018.03.001
10.1109/TNNLS.2016.2582798
10.1109/TIE.2016.2586442
10.1109/TIE.2017.2711530
10.1016/j.ejor.2010.11.018
10.1111/j.2517-6161.1972.tb00899.x
10.1109/TIE.2018.2844856
10.1109/TIE.2016.2623260
10.1007/s10845-009-0356-9
10.1016/j.ymssp.2012.02.015
10.1109/ICPHM.2017.7998311
10.1109/TR.2013.2285318
10.1162/neco.1997.9.8.1735
10.1115/1.4001580
10.1109/TIE.2004.824875
10.1016/j.ymssp.2018.05.050
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2020.2972443
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 2531
ExternalDocumentID 10_1109_TIE_2020_2972443
8998569
Genre orig-research
GrantInformation_xml – fundername: A*STAR Industrial Internet of Things Research Program
  grantid: A1788a0023
– fundername: National Natural Science Foundation of China
  grantid: 51835009
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-f52b27735846d99b490ccf413aa9beed0cd9bff35bcf3bca083f24dba54dc8063
IEDL.DBID RIE
ISICitedReferencesCount 440
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594408000065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:23:35 EDT 2025
Sat Nov 29 01:31:46 EST 2025
Tue Nov 18 22:17:42 EST 2025
Wed Aug 27 02:27:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f52b27735846d99b490ccf413aa9beed0cd9bff35bcf3bca083f24dba54dc8063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0977-3600
0000-0002-9699-9984
0000-0002-0762-6562
0000-0002-1719-0328
0000-0002-1250-4084
PQID 2465437208
PQPubID 85464
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIE_2020_2972443
proquest_journals_2465437208
ieee_primary_8998569
crossref_primary_10_1109_TIE_2020_2972443
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
pham (ref6) 2012; 32
ref32
ref10
ref2
babu (ref23) 0
ref1
ref17
ref16
ref19
ref18
saxena (ref41) 2008
liao (ref7) 0
bahdanau (ref36) 2014
ref24
lim (ref42) 0
ref26
ref25
ref20
ref22
ref44
ref21
ref43
bullinaria (ref27) 2013; 12
ref28
kingma (ref38) 2014
ref29
ref8
xu (ref34) 0
ref9
ref4
david (ref5) 1972; 34
ref3
hinton (ref39) 2012
ref40
References_xml – ident: ref43
  doi: 10.1109/JSEN.2019.2949057
– ident: ref17
  doi: 10.1109/TIE.2016.2515054
– ident: ref3
  doi: 10.1109/TII.2017.2684821
– ident: ref4
  doi: 10.1016/j.ymssp.2017.11.016
– ident: ref28
  doi: 10.1109/TIE.2017.2733438
– ident: ref22
  doi: 10.1016/j.jmsy.2018.05.011
– ident: ref44
  doi: 10.1109/TKDE.2009.191
– ident: ref32
  doi: 10.1109/TASLP.2016.2520371
– start-page: 2
  year: 0
  ident: ref42
  article-title: Estimation of remaining useful life based on switching Kalman filter neural network ensemble
  publication-title: Proc IEEE Int Conf Prognostics and Health Management
– ident: ref14
  doi: 10.1109/TCYB.2014.2378056
– ident: ref15
  doi: 10.1016/j.ress.2015.02.001
– ident: ref1
  doi: 10.1109/TIE.2013.2270212
– ident: ref40
  doi: 10.1109/PHM.2008.4711414
– ident: ref33
  doi: 10.1109/TII.2018.2866549
– year: 2014
  ident: ref38
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref31
  doi: 10.1007/978-3-319-46478-7_47
– ident: ref25
  doi: 10.1109/TSMC.2017.2697842
– ident: ref35
  doi: 10.1109/TIP.2017.2778563
– start-page: 2048
  year: 0
  ident: ref34
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proc Int Conf Mach Learn
– ident: ref11
  doi: 10.1016/j.engappai.2013.02.006
– ident: ref18
  doi: 10.1115/1.4036350
– ident: ref2
  doi: 10.1016/j.ymssp.2016.06.031
– ident: ref37
  doi: 10.1016/j.trc.2018.03.001
– ident: ref26
  doi: 10.1109/TNNLS.2016.2582798
– volume: 12
  year: 2013
  ident: ref27
  article-title: Recurrent neural networks
  publication-title: Lecture on Neural Computation
– ident: ref19
  doi: 10.1109/TIE.2016.2586442
– ident: ref30
  doi: 10.1109/TIE.2017.2711530
– ident: ref9
  doi: 10.1016/j.ejor.2010.11.018
– volume: 34
  start-page: 187
  year: 1972
  ident: ref5
  article-title: Regression models and life tables (with discussion)
  publication-title: J Roy Statistical Soc
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: ref24
  doi: 10.1109/TIE.2018.2844856
– start-page: 127
  year: 0
  ident: ref7
  article-title: Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model
  publication-title: Proc Annu Rel Maintainability Symp
– year: 2008
  ident: ref41
  article-title: PHM08 challenge data set
– year: 2014
  ident: ref36
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: arXiv 1409 0473
– ident: ref16
  doi: 10.1109/TIE.2016.2623260
– ident: ref13
  doi: 10.1007/s10845-009-0356-9
– volume: 32
  start-page: 320
  year: 2012
  ident: ref6
  article-title: Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2012.02.015
– ident: ref21
  doi: 10.1109/ICPHM.2017.7998311
– ident: ref10
  doi: 10.1109/TR.2013.2285318
– ident: ref29
  doi: 10.1162/neco.1997.9.8.1735
– year: 2012
  ident: ref39
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: arXiv 1207 0580
– ident: ref8
  doi: 10.1115/1.4001580
– ident: ref12
  doi: 10.1109/TIE.2004.824875
– ident: ref20
  doi: 10.1016/j.ymssp.2018.05.050
– start-page: 214
  year: 0
  ident: ref23
  article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life
  publication-title: Proc Int Conf Database Syst Adv Appl
SSID ssj0014515
Score 2.7233539
Snippet For prognostics and health management of mechanical systems, a core task is to predict the machine remaining useful life (RUL). Currently, deep structures with...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2521
SubjectTerms Attention mechanism
Deep learning
Feature extraction
feature fusion
handcrafted features
Life prediction
long short-term memory (LSTM)
Machine learning
machine remaining useful life (RUL) prediction
Mechanical systems
Prediction algorithms
Predictive models
Prognostics and health management
prognostics and health management (PHM)
Time series analysis
Useful life
Title Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach
URI https://ieeexplore.ieee.org/document/8998569
https://www.proquest.com/docview/2465437208
Volume 68
WOSCitedRecordID wos000594408000065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBVxXrixy8CG67zSZmc6wvFFRErPS25DGRglZpt_5-k-y2KIrgbQ8JLPPt7jezM_k-gEOHuWYiVwnPU50wZTCRGeOJ6mTaMk4NKhbNJsTdXd7vy_s5OJ6dhUHEOHyGrXAZe_n2zUzCr7J2qA34iZyHeSFOqrNas44B45VbAQ2Ksb7om7YkU9l-vL7whSBNW1QKz2bZNwqKnio_PsSRXS5X_3dfa7BSZ5GkW8G-DnM43IDlL9qCDXi6jWOSSB7wtXKBIL0xuskLuRk4JPej0KEJqJCPgSJqSLplWY0-Jqee2Sw5R3wntfzqM-nW2uOb0Lu8eDy7SmoThcRQ2SkTx6mmQmQh0bBSaiZTY5ynLqWk9gSZGiu1cxnXxmXaKJ-SOcqsVpxZk_sEZgsWhm9D3AYisCNsarnF0BGmTHcYBnlmwVELh6IJ7WlcC1MrjAeji5ciVhqpLDwSRUCiqJFowtFsx3ulrvHH2kaI_GxdHfQm7E2hK-rXb1zQoBIX_Hfynd937cISDcMpcZhsDxbK0QT3YdF8lIPx6CA-WZ_NEMwY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0BrQQcWlpAhNLiQy9IXbLx2nh9DBQEaogQChW3lT_GKFIIKNnw-7G9TlQEqsRtD7a0mre7M7Pz_B7AT4elZqJUGS9znTFlMJMF45nqFNoyTg0qFs0mRL9f3t7KqyX4tTgLg4iRfIaH4TLO8u2DmYVfZe3QG_AjuQwfgnNWOq21mBkw3vgV0KAZ69u--VAyl-3BxalvBWl-SKXw-ax4kYSiq8qrT3HML2ef33dnG_Ap1ZGk2wD_BZZw_BXW_1EX3IS_l5EoieQa7xsfCHIzRTcbkd7QIbmahBlNwIU8DRVRY9Kt64b8mB373GbJb8RHkgRY70g3qY9vwc3Z6eDkPEs2CpmhslNnjlNNhShCqWGl1EzmxjgfP6Wk9ikyN1Zq5wqujSu0Ub4oc5RZrTizpvQlzDasjB_GuANEYEfY3HKLYSZMme4wDALNgqMWDkUL2vO4ViZpjAeri1EVe41cVh6JKiBRJSRacLDY8djoa_xn7WaI_GJdCnoL9ubQVekFnFY06MQFB55y9-1d-7B6PrjsVb2L_p9vsEYDVSVSy_ZgpZ7M8Dt8NE_1cDr5EZ-yZ5m0z2E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Remaining+Useful+Life+Prediction+via+an+Attention-Based+Deep+Learning+Approach&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Chen%2C+Zhenghua&rft.au=Wu%2C+Min&rft.au=Zhao%2C+Rui&rft.au=Guretno%2C+Feri&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=68&rft.issue=3&rft.spage=2521&rft.epage=2531&rft_id=info:doi/10.1109%2FTIE.2020.2972443&rft.externalDocID=8998569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon