Cyber-Attack Detection Using Principal Component Analysis and Noisy Clustering Algorithms: A Collaborative Machine Learning-Based Framework
This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable behavior. Based on the proposed architecture, three different machine learning-based methods, i.e., visualization, classification, and clustering...
Saved in:
| Published in: | IEEE transactions on smart grid Vol. 13; no. 6; pp. 4848 - 4861 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1949-3053, 1949-3061 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable behavior. Based on the proposed architecture, three different machine learning-based methods, i.e., visualization, classification, and clustering, are employed and compared to find the best one in the FDIA detection process. To this end, pre-processing is employed in the first stage. In the second stage, the patterns of the state vectors are transferred into features. Hence, 24 statistical features, including measures of central tendency, variability, measures of shape, and position, are extracted to find various properties. Then, in the third stage, a supervised algorithm is employed to rank and find the most crucial features in FDIA. In the fourth stage, an unsupervised dimensionality reduction technique (PCA) is applied to reduce the feature space. In the fifth and last stage, visualization, classification, and clustering-based methods are developed to detect FDIA. To simulate an attack, it is assumed that an intruder decreases or increases the state vectors at different buses with various attack parameters (i.e., 0.90, 0.95, 0.96, 0.97, 0.98, 1, 1.02, 1.03, 1.04, 1.05, and 1.10). The proposed method effectiveness is assessed on the New York Independent System Operator (NYISO) data applied to the IEEE 14-bus system. The results presented in the paper from different scenarios (i.e., phase angle (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>), voltage magnitude (<inline-formula> <tex-math notation="LaTeX">V_{m} </tex-math></inline-formula>), measurements, and multiple attacks) on a real-world dataset demonstrate that the collaborative optimized PCA-Density-based machine learning technique can detect most of the attack samples with good performance scores (i.e., recall, precision, F1) and outperforms the other investigated methods. Moreover, it is general and adaptable enough to cover the situation where either the system characteristics or the attack behavior changes. |
|---|---|
| AbstractList | This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable behavior. Based on the proposed architecture, three different machine learning-based methods, i.e., visualization, classification, and clustering, are employed and compared to find the best one in the FDIA detection process. To this end, pre-processing is employed in the first stage. In the second stage, the patterns of the state vectors are transferred into features. Hence, 24 statistical features, including measures of central tendency, variability, measures of shape, and position, are extracted to find various properties. Then, in the third stage, a supervised algorithm is employed to rank and find the most crucial features in FDIA. In the fourth stage, an unsupervised dimensionality reduction technique (PCA) is applied to reduce the feature space. In the fifth and last stage, visualization, classification, and clustering-based methods are developed to detect FDIA. To simulate an attack, it is assumed that an intruder decreases or increases the state vectors at different buses with various attack parameters (i.e., 0.90, 0.95, 0.96, 0.97, 0.98, 1, 1.02, 1.03, 1.04, 1.05, and 1.10). The proposed method effectiveness is assessed on the New York Independent System Operator (NYISO) data applied to the IEEE 14-bus system. The results presented in the paper from different scenarios (i.e., phase angle (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>), voltage magnitude (<inline-formula> <tex-math notation="LaTeX">V_{m} </tex-math></inline-formula>), measurements, and multiple attacks) on a real-world dataset demonstrate that the collaborative optimized PCA-Density-based machine learning technique can detect most of the attack samples with good performance scores (i.e., recall, precision, F1) and outperforms the other investigated methods. Moreover, it is general and adaptable enough to cover the situation where either the system characteristics or the attack behavior changes. This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable behavior. Based on the proposed architecture, three different machine learning-based methods, i.e., visualization, classification, and clustering, are employed and compared to find the best one in the FDIA detection process. To this end, pre-processing is employed in the first stage. In the second stage, the patterns of the state vectors are transferred into features. Hence, 24 statistical features, including measures of central tendency, variability, measures of shape, and position, are extracted to find various properties. Then, in the third stage, a supervised algorithm is employed to rank and find the most crucial features in FDIA. In the fourth stage, an unsupervised dimensionality reduction technique (PCA) is applied to reduce the feature space. In the fifth and last stage, visualization, classification, and clustering-based methods are developed to detect FDIA. To simulate an attack, it is assumed that an intruder decreases or increases the state vectors at different buses with various attack parameters (i.e., 0.90, 0.95, 0.96, 0.97, 0.98, 1, 1.02, 1.03, 1.04, 1.05, and 1.10). The proposed method effectiveness is assessed on the New York Independent System Operator (NYISO) data applied to the IEEE 14-bus system. The results presented in the paper from different scenarios (i.e., phase angle ([Formula Omitted]), voltage magnitude ([Formula Omitted]), measurements, and multiple attacks) on a real-world dataset demonstrate that the collaborative optimized PCA-Density-based machine learning technique can detect most of the attack samples with good performance scores (i.e., recall, precision, F1) and outperforms the other investigated methods. Moreover, it is general and adaptable enough to cover the situation where either the system characteristics or the attack behavior changes. |
| Author | Parizad, Ali Hatziadoniu, Constantine J. |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-3239-9605 surname: Parizad fullname: Parizad, Ali email: ali.parizad@ieee.org organization: Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL, USA – sequence: 2 givenname: Constantine J. orcidid: 0000-0003-4083-6067 surname: Hatziadoniu fullname: Hatziadoniu, Constantine J. email: hatz@siu.edu organization: Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL, USA |
| BookMark | eNp9kTlv3DAQRonAAeKrD5CGgGtteKxI0Z0iHwmwPgDbtTCSRjZtLbkmuQ72N-RPh4s1XKQIm2HxvRnMmwOy57xDQr5yNuOcme_3d5czwYSYSa6V5PwT2edmbgrJFN_7-JfyCzmO8ZnlJ6VUwuyTP82mw1DUKUH_Qs8wYZ-sd_QhWvdIb4N1vV3BRBu_XOWZLtHawbSJNlJwA732Nm5oM61jwrAl6unRB5uelvGU1pmaJuh8gGTfkF5B_2Qd0gVCcDlc_ICIA70IsMTfPrwckc8jTBGP3-shebg4v29-Fouby19NvSh6YXgqxpJ3QiswTCqlB6z6sTLVUBo2lxI7M5adGJQaBfIScRiBa9OBqqrKaDMfUR6Sk13fVfCva4ypffbrkNeKrdBCs3lZcpNTbJfqg48x4Niugl1C2LSctVvrbbbebq2379Yzov5Beptg6zMFsNP_wG870CLixxyjdSXypf4CXv-Shg |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1016_j_iotcps_2022_12_001 crossref_primary_10_1109_JSYST_2023_3265021 crossref_primary_10_1016_j_epsr_2024_111077 crossref_primary_10_1016_j_inffus_2025_103183 crossref_primary_10_1016_j_rser_2025_116100 crossref_primary_10_1109_TSG_2024_3510155 crossref_primary_10_1109_ACCESS_2023_3306023 crossref_primary_10_1016_j_fss_2024_108860 crossref_primary_10_1371_journal_pone_0327476 crossref_primary_10_3390_computers14070281 crossref_primary_10_1109_JIOT_2025_3578369 crossref_primary_10_1109_ACCESS_2025_3599318 crossref_primary_10_1016_j_scs_2025_106377 crossref_primary_10_1109_ACCESS_2023_3249666 crossref_primary_10_1109_ACCESS_2024_3477714 crossref_primary_10_1109_TSG_2022_3216625 crossref_primary_10_1109_ACCESS_2024_3515642 crossref_primary_10_1016_j_ress_2025_111444 crossref_primary_10_1016_j_epsr_2025_111448 crossref_primary_10_1016_j_eswa_2023_122291 crossref_primary_10_1016_j_apenergy_2025_125661 crossref_primary_10_1016_j_rser_2025_116299 crossref_primary_10_1109_JIOT_2024_3495046 crossref_primary_10_1186_s40537_024_00957_y crossref_primary_10_1007_s42835_024_01850_7 crossref_primary_10_1186_s40537_024_01048_8 crossref_primary_10_23919_PCMP_2024_000129 crossref_primary_10_3390_en15186799 crossref_primary_10_1109_JESTIE_2024_3434350 crossref_primary_10_1109_TSG_2024_3399396 |
| Cites_doi | 10.1109/TSG.2019.2892595 10.1109/TII.2017.2769106 10.1109/TSG.2018.2859339 10.1109/IJCNN.2016.7727361 10.1109/ISGT.2019.8791649 10.1109/TSG.2012.2195338 10.1109/CPSRSG.2016.7684102 10.1109/TSG.2017.2703842 10.1109/TSG.2017.2753738 10.1109/CAC.2018.8623514 10.1109/ACCESS.2019.2891315 10.1109/TSG.2015.2403329 10.1016/B978-0-12-816514-0.00014-X 10.1109/TSG.2016.2604120 10.1109/PECI51586.2021.9435204 10.1109/COMST.2019.2899354 10.1049/iet-gtd.2017.0455 10.1016/j.ijepes.2018.01.036 10.1109/TII.2019.2921106 10.1007/3-540-44596-X 10.1109/TPWRS.2005.846209 10.1109/TII.2018.2804669 10.1109/TIFS.2019.2902822 10.1109/TII.2016.2543145 10.1007/978-3-319-93677-2 10.1109/JSYST.2021.3130080 10.1017/CBO9780511973000 10.1109/TSG.2015.2425222 10.1016/j.jisa.2019.02.008 10.1016/j.apenergy.2019.01.076 10.1002/sys.21239 10.1109/TSG.2019.2896381 10.1109/JSAC.2013.130714 10.1016/j.ijepes.2017.03.011 10.1016/j.ijepes.2017.04.005 10.1109/TETCI.2019.2902845 10.1016/j.asoc.2022.108877 10.1109/TII.2015.2470218 10.1109/COMST.2019.2907650 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TSG.2022.3176311 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 4861 |
| ExternalDocumentID | 10_1109_TSG_2022_3176311 9778203 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: American Power Company (Ameren Corporation) grantid: TSG-01304-2021 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-f51b276a903667de8cf898d590433eb9f5b2d66f2e15eedfa179ba68889794fe3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871062300056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3053 |
| IngestDate | Mon Jun 30 09:48:54 EDT 2025 Sat Nov 29 03:46:00 EST 2025 Tue Nov 18 22:43:55 EST 2025 Wed Aug 27 02:18:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-f51b276a903667de8cf898d590433eb9f5b2d66f2e15eedfa179ba68889794fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3239-9605 0000-0003-4083-6067 |
| PQID | 2727045519 |
| PQPubID | 2040408 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TSG_2022_3176311 ieee_primary_9778203 crossref_citationtrail_10_1109_TSG_2022_3176311 proquest_journals_2727045519 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 Sukhbaatar (ref24) ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref23 ref26 Goodfellow (ref34) 2016; 1 ref25 ref20 ref42 ref41 ref22 ref21 ref43 (ref40) 2020 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Perner (ref36); 7988 |
| References_xml | – ident: ref9 doi: 10.1109/TSG.2019.2892595 – ident: ref15 doi: 10.1109/TII.2017.2769106 – ident: ref18 doi: 10.1109/TSG.2018.2859339 – ident: ref8 doi: 10.1109/IJCNN.2016.7727361 – ident: ref31 doi: 10.1109/ISGT.2019.8791649 – ident: ref38 doi: 10.1109/TSG.2012.2195338 – ident: ref25 doi: 10.1109/CPSRSG.2016.7684102 – ident: ref23 doi: 10.1109/TSG.2017.2703842 – ident: ref21 doi: 10.1109/TSG.2017.2753738 – start-page: 231 volume-title: Proc. Asian Conf. Mach. Learn. ident: ref24 article-title: Robust generation of dynamical patterns in human motion by a deep belief nets – ident: ref26 doi: 10.1109/CAC.2018.8623514 – ident: ref14 doi: 10.1109/ACCESS.2019.2891315 – ident: ref12 doi: 10.1109/TSG.2015.2403329 – ident: ref27 doi: 10.1016/B978-0-12-816514-0.00014-X – volume: 1 volume-title: Deep Learning year: 2016 ident: ref34 – ident: ref30 doi: 10.1109/TSG.2016.2604120 – ident: ref29 doi: 10.1109/PECI51586.2021.9435204 – ident: ref1 doi: 10.1109/COMST.2019.2899354 – ident: ref13 doi: 10.1049/iet-gtd.2017.0455 – ident: ref28 doi: 10.1016/j.ijepes.2018.01.036 – ident: ref20 doi: 10.1109/TII.2019.2921106 – ident: ref42 doi: 10.1007/3-540-44596-X – ident: ref41 doi: 10.1109/TPWRS.2005.846209 – ident: ref17 doi: 10.1109/TII.2018.2804669 – ident: ref22 doi: 10.1109/TIFS.2019.2902822 – ident: ref4 doi: 10.1109/TII.2016.2543145 – ident: ref43 doi: 10.1007/978-3-319-93677-2 – ident: ref32 doi: 10.1109/JSYST.2021.3130080 – ident: ref35 doi: 10.1017/CBO9780511973000 – ident: ref5 doi: 10.1109/TSG.2015.2425222 – ident: ref7 doi: 10.1016/j.jisa.2019.02.008 – ident: ref10 doi: 10.1016/j.apenergy.2019.01.076 – volume-title: New York Independent System Operator (NYISO) Load Data year: 2020 ident: ref40 – ident: ref37 doi: 10.1002/sys.21239 – ident: ref6 doi: 10.1109/TSG.2019.2896381 – ident: ref11 doi: 10.1109/JSAC.2013.130714 – volume: 7988 volume-title: Proc. 9th Int. Conf. MLDM ident: ref36 article-title: Machine learning and data mining in pattern recognition – ident: ref19 doi: 10.1016/j.ijepes.2017.03.011 – ident: ref3 doi: 10.1016/j.ijepes.2017.04.005 – ident: ref16 doi: 10.1109/TETCI.2019.2902845 – ident: ref33 doi: 10.1016/j.asoc.2022.108877 – ident: ref39 doi: 10.1109/TII.2015.2470218 – ident: ref2 doi: 10.1109/COMST.2019.2907650 |
| SSID | ssj0000333629 |
| Score | 2.5105798 |
| Snippet | This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4848 |
| SubjectTerms | adaptive semi-supervised learning detection method Algorithms Classification Clustering Clustering algorithms Collaboration Cybersecurity Dimensionality reduction False data injection attack (FDIA) Feature extraction Hidden Markov models hyper-parameter optimization Machine learning noisy clustering algorithm Position measurement Power systems Principal component analysis Principal components analysis State vectors Visualization |
| Title | Cyber-Attack Detection Using Principal Component Analysis and Noisy Clustering Algorithms: A Collaborative Machine Learning-Based Framework |
| URI | https://ieeexplore.ieee.org/document/9778203 https://www.proquest.com/docview/2727045519 |
| Volume | 13 |
| WOSCitedRecordID | wos000871062300056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5tKw5wgIWC6NJd-cAFidDGaeyYW-lu4QBVJQrqLYpf3YqSrNq0Un_D_ukdO0kBsULi5oNtWfo8L8_MZ4DXkUlUJmQYKE05BijDJEgsQ8GLB6FKpBXMZ_C_f-bTabJYiNkJvD32whhjfPGZeeeGPpevC7VzT2V99FXQYEUtaHHOq16t43vKIIpQFwufRB66dH4cNVnJgejPv37EWJBSDFFRoMLwDyvkv1X5Sxd7AzN58n9HO4XHtSNJRhXyT-HE5M_g0W_0gh24HR-k2QSjsszUD3JpSl92lRNfJkBm1TM77uF0QpHj_qShKCFZrsm0WG0PZLzeOS4Ft2K0XhabVXn9c_uejMj41w3aG_LFF2UaUvO1LoMPaB41mTS1X8_h2-RqPv4U1J8vBIqKsAxsHErKWSbQxDGuEVKbiETHwjGeGSlsLKlmzFITxmhnbYaSLTOGAbVAEbcmegHtHM_-EogUoUS9QAXTdqhRwxrLuTJaIF5MKtWFfgNGqmpmcvdBxjr1EcpApAhf6uBLa_i68Oa44qZi5fjH3I6D6zivRqoLvQbvtBbbbUrRm0MfF73as_tXvYKHbu-qGbEH7XKzM-fwQO3L1XZz4W_kHROT32A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8ChjR22AYMrRsDH3ZBImvtJE68W-lWmFYqJMrELYq_WLUundoUib9h__SenaSAmJC45WA7ln5-X37v_QzwMTSpyoWkgdIswQAlSoPUchS8uENVKq3gPoP_Y5AMh-nlpThbgcNlL4wxxhefmU_u0-fy9VQt3FVZG30VNFjhKjyLo4jRqltreaPSCUPUxsKnkSOX0I_DJi_ZEe3R-TFGg4xhkIoiRek9O-QfVnmgjb2J6b962uZew8valSTdCvtNWDHFFry4QzC4DX97N9LMgm5Z5uoX-WJKX3hVEF8oQM6qi3Zcw2mFaYHrk4akhOSFJsPpeH5DepOFY1NwM7qTq-lsXP78Pf9MuqR3e4auDTn1ZZmG1IytV8ERGkhN-k311xu46H8d9U6C-vmFQDFBy8DGVLKE5wKNHE80gmpTkepYOM4zI4WNJdOcW2ZojJbW5ijbMucYUgsUcmvCHVgrcO9vgUhBJWoGJri2kUYda2ySKKMF4sWlUi1oN2BkquYmd09kTDIfo3REhvBlDr6shq8FB8sZfypejkfGbju4luNqpFqw2-Cd1YI7zxj6c-jlol_77v-z9uH5yeh0kA2-Db-_hw33n6o1cRfWytnCfIB1dV2O57M9fzr_AdWW4qc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyber-Attack+Detection+Using+Principal+Component+Analysis+and+Noisy+Clustering+Algorithms%3A+A+Collaborative+Machine+Learning-Based+Framework&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Parizad%2C+Ali&rft.au=Hatziadoniu%2C+Constantine+J.&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=13&rft.issue=6&rft.spage=4848&rft.epage=4861&rft_id=info:doi/10.1109%2FTSG.2022.3176311&rft.externalDocID=9778203 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |