Cyber-Attack Detection Using Principal Component Analysis and Noisy Clustering Algorithms: A Collaborative Machine Learning-Based Framework

This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable behavior. Based on the proposed architecture, three different machine learning-based methods, i.e., visualization, classification, and clustering...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid Vol. 13; no. 6; pp. 4848 - 4861
Main Authors: Parizad, Ali, Hatziadoniu, Constantine J.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1949-3053, 1949-3061
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable behavior. Based on the proposed architecture, three different machine learning-based methods, i.e., visualization, classification, and clustering, are employed and compared to find the best one in the FDIA detection process. To this end, pre-processing is employed in the first stage. In the second stage, the patterns of the state vectors are transferred into features. Hence, 24 statistical features, including measures of central tendency, variability, measures of shape, and position, are extracted to find various properties. Then, in the third stage, a supervised algorithm is employed to rank and find the most crucial features in FDIA. In the fourth stage, an unsupervised dimensionality reduction technique (PCA) is applied to reduce the feature space. In the fifth and last stage, visualization, classification, and clustering-based methods are developed to detect FDIA. To simulate an attack, it is assumed that an intruder decreases or increases the state vectors at different buses with various attack parameters (i.e., 0.90, 0.95, 0.96, 0.97, 0.98, 1, 1.02, 1.03, 1.04, 1.05, and 1.10). The proposed method effectiveness is assessed on the New York Independent System Operator (NYISO) data applied to the IEEE 14-bus system. The results presented in the paper from different scenarios (i.e., phase angle (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>), voltage magnitude (<inline-formula> <tex-math notation="LaTeX">V_{m} </tex-math></inline-formula>), measurements, and multiple attacks) on a real-world dataset demonstrate that the collaborative optimized PCA-Density-based machine learning technique can detect most of the attack samples with good performance scores (i.e., recall, precision, F1) and outperforms the other investigated methods. Moreover, it is general and adaptable enough to cover the situation where either the system characteristics or the attack behavior changes.
AbstractList This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable behavior. Based on the proposed architecture, three different machine learning-based methods, i.e., visualization, classification, and clustering, are employed and compared to find the best one in the FDIA detection process. To this end, pre-processing is employed in the first stage. In the second stage, the patterns of the state vectors are transferred into features. Hence, 24 statistical features, including measures of central tendency, variability, measures of shape, and position, are extracted to find various properties. Then, in the third stage, a supervised algorithm is employed to rank and find the most crucial features in FDIA. In the fourth stage, an unsupervised dimensionality reduction technique (PCA) is applied to reduce the feature space. In the fifth and last stage, visualization, classification, and clustering-based methods are developed to detect FDIA. To simulate an attack, it is assumed that an intruder decreases or increases the state vectors at different buses with various attack parameters (i.e., 0.90, 0.95, 0.96, 0.97, 0.98, 1, 1.02, 1.03, 1.04, 1.05, and 1.10). The proposed method effectiveness is assessed on the New York Independent System Operator (NYISO) data applied to the IEEE 14-bus system. The results presented in the paper from different scenarios (i.e., phase angle (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>), voltage magnitude (<inline-formula> <tex-math notation="LaTeX">V_{m} </tex-math></inline-formula>), measurements, and multiple attacks) on a real-world dataset demonstrate that the collaborative optimized PCA-Density-based machine learning technique can detect most of the attack samples with good performance scores (i.e., recall, precision, F1) and outperforms the other investigated methods. Moreover, it is general and adaptable enough to cover the situation where either the system characteristics or the attack behavior changes.
This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable behavior. Based on the proposed architecture, three different machine learning-based methods, i.e., visualization, classification, and clustering, are employed and compared to find the best one in the FDIA detection process. To this end, pre-processing is employed in the first stage. In the second stage, the patterns of the state vectors are transferred into features. Hence, 24 statistical features, including measures of central tendency, variability, measures of shape, and position, are extracted to find various properties. Then, in the third stage, a supervised algorithm is employed to rank and find the most crucial features in FDIA. In the fourth stage, an unsupervised dimensionality reduction technique (PCA) is applied to reduce the feature space. In the fifth and last stage, visualization, classification, and clustering-based methods are developed to detect FDIA. To simulate an attack, it is assumed that an intruder decreases or increases the state vectors at different buses with various attack parameters (i.e., 0.90, 0.95, 0.96, 0.97, 0.98, 1, 1.02, 1.03, 1.04, 1.05, and 1.10). The proposed method effectiveness is assessed on the New York Independent System Operator (NYISO) data applied to the IEEE 14-bus system. The results presented in the paper from different scenarios (i.e., phase angle ([Formula Omitted]), voltage magnitude ([Formula Omitted]), measurements, and multiple attacks) on a real-world dataset demonstrate that the collaborative optimized PCA-Density-based machine learning technique can detect most of the attack samples with good performance scores (i.e., recall, precision, F1) and outperforms the other investigated methods. Moreover, it is general and adaptable enough to cover the situation where either the system characteristics or the attack behavior changes.
Author Parizad, Ali
Hatziadoniu, Constantine J.
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-3239-9605
  surname: Parizad
  fullname: Parizad, Ali
  email: ali.parizad@ieee.org
  organization: Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL, USA
– sequence: 2
  givenname: Constantine J.
  orcidid: 0000-0003-4083-6067
  surname: Hatziadoniu
  fullname: Hatziadoniu, Constantine J.
  email: hatz@siu.edu
  organization: Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL, USA
BookMark eNp9kTlv3DAQRonAAeKrD5CGgGtteKxI0Z0iHwmwPgDbtTCSRjZtLbkmuQ72N-RPh4s1XKQIm2HxvRnMmwOy57xDQr5yNuOcme_3d5czwYSYSa6V5PwT2edmbgrJFN_7-JfyCzmO8ZnlJ6VUwuyTP82mw1DUKUH_Qs8wYZ-sd_QhWvdIb4N1vV3BRBu_XOWZLtHawbSJNlJwA732Nm5oM61jwrAl6unRB5uelvGU1pmaJuh8gGTfkF5B_2Qd0gVCcDlc_ICIA70IsMTfPrwckc8jTBGP3-shebg4v29-Fouby19NvSh6YXgqxpJ3QiswTCqlB6z6sTLVUBo2lxI7M5adGJQaBfIScRiBa9OBqqrKaDMfUR6Sk13fVfCva4ypffbrkNeKrdBCs3lZcpNTbJfqg48x4Niugl1C2LSctVvrbbbebq2379Yzov5Beptg6zMFsNP_wG870CLixxyjdSXypf4CXv-Shg
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1016_j_iotcps_2022_12_001
crossref_primary_10_1109_JSYST_2023_3265021
crossref_primary_10_1016_j_epsr_2024_111077
crossref_primary_10_1016_j_inffus_2025_103183
crossref_primary_10_1016_j_rser_2025_116100
crossref_primary_10_1109_TSG_2024_3510155
crossref_primary_10_1109_ACCESS_2023_3306023
crossref_primary_10_1016_j_fss_2024_108860
crossref_primary_10_1371_journal_pone_0327476
crossref_primary_10_3390_computers14070281
crossref_primary_10_1109_JIOT_2025_3578369
crossref_primary_10_1109_ACCESS_2025_3599318
crossref_primary_10_1016_j_scs_2025_106377
crossref_primary_10_1109_ACCESS_2023_3249666
crossref_primary_10_1109_ACCESS_2024_3477714
crossref_primary_10_1109_TSG_2022_3216625
crossref_primary_10_1109_ACCESS_2024_3515642
crossref_primary_10_1016_j_ress_2025_111444
crossref_primary_10_1016_j_epsr_2025_111448
crossref_primary_10_1016_j_eswa_2023_122291
crossref_primary_10_1016_j_apenergy_2025_125661
crossref_primary_10_1016_j_rser_2025_116299
crossref_primary_10_1109_JIOT_2024_3495046
crossref_primary_10_1186_s40537_024_00957_y
crossref_primary_10_1007_s42835_024_01850_7
crossref_primary_10_1186_s40537_024_01048_8
crossref_primary_10_23919_PCMP_2024_000129
crossref_primary_10_3390_en15186799
crossref_primary_10_1109_JESTIE_2024_3434350
crossref_primary_10_1109_TSG_2024_3399396
Cites_doi 10.1109/TSG.2019.2892595
10.1109/TII.2017.2769106
10.1109/TSG.2018.2859339
10.1109/IJCNN.2016.7727361
10.1109/ISGT.2019.8791649
10.1109/TSG.2012.2195338
10.1109/CPSRSG.2016.7684102
10.1109/TSG.2017.2703842
10.1109/TSG.2017.2753738
10.1109/CAC.2018.8623514
10.1109/ACCESS.2019.2891315
10.1109/TSG.2015.2403329
10.1016/B978-0-12-816514-0.00014-X
10.1109/TSG.2016.2604120
10.1109/PECI51586.2021.9435204
10.1109/COMST.2019.2899354
10.1049/iet-gtd.2017.0455
10.1016/j.ijepes.2018.01.036
10.1109/TII.2019.2921106
10.1007/3-540-44596-X
10.1109/TPWRS.2005.846209
10.1109/TII.2018.2804669
10.1109/TIFS.2019.2902822
10.1109/TII.2016.2543145
10.1007/978-3-319-93677-2
10.1109/JSYST.2021.3130080
10.1017/CBO9780511973000
10.1109/TSG.2015.2425222
10.1016/j.jisa.2019.02.008
10.1016/j.apenergy.2019.01.076
10.1002/sys.21239
10.1109/TSG.2019.2896381
10.1109/JSAC.2013.130714
10.1016/j.ijepes.2017.03.011
10.1016/j.ijepes.2017.04.005
10.1109/TETCI.2019.2902845
10.1016/j.asoc.2022.108877
10.1109/TII.2015.2470218
10.1109/COMST.2019.2907650
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2022.3176311
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 4861
ExternalDocumentID 10_1109_TSG_2022_3176311
9778203
Genre orig-research
GrantInformation_xml – fundername: American Power Company (Ameren Corporation)
  grantid: TSG-01304-2021
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-f51b276a903667de8cf898d590433eb9f5b2d66f2e15eedfa179ba68889794fe3
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871062300056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Mon Jun 30 09:48:54 EDT 2025
Sat Nov 29 03:46:00 EST 2025
Tue Nov 18 22:43:55 EST 2025
Wed Aug 27 02:18:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f51b276a903667de8cf898d590433eb9f5b2d66f2e15eedfa179ba68889794fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3239-9605
0000-0003-4083-6067
PQID 2727045519
PQPubID 2040408
PageCount 14
ParticipantIDs crossref_primary_10_1109_TSG_2022_3176311
ieee_primary_9778203
crossref_citationtrail_10_1109_TSG_2022_3176311
proquest_journals_2727045519
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
Sukhbaatar (ref24)
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref23
ref26
Goodfellow (ref34) 2016; 1
ref25
ref20
ref42
ref41
ref22
ref21
ref43
(ref40) 2020
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Perner (ref36); 7988
References_xml – ident: ref9
  doi: 10.1109/TSG.2019.2892595
– ident: ref15
  doi: 10.1109/TII.2017.2769106
– ident: ref18
  doi: 10.1109/TSG.2018.2859339
– ident: ref8
  doi: 10.1109/IJCNN.2016.7727361
– ident: ref31
  doi: 10.1109/ISGT.2019.8791649
– ident: ref38
  doi: 10.1109/TSG.2012.2195338
– ident: ref25
  doi: 10.1109/CPSRSG.2016.7684102
– ident: ref23
  doi: 10.1109/TSG.2017.2703842
– ident: ref21
  doi: 10.1109/TSG.2017.2753738
– start-page: 231
  volume-title: Proc. Asian Conf. Mach. Learn.
  ident: ref24
  article-title: Robust generation of dynamical patterns in human motion by a deep belief nets
– ident: ref26
  doi: 10.1109/CAC.2018.8623514
– ident: ref14
  doi: 10.1109/ACCESS.2019.2891315
– ident: ref12
  doi: 10.1109/TSG.2015.2403329
– ident: ref27
  doi: 10.1016/B978-0-12-816514-0.00014-X
– volume: 1
  volume-title: Deep Learning
  year: 2016
  ident: ref34
– ident: ref30
  doi: 10.1109/TSG.2016.2604120
– ident: ref29
  doi: 10.1109/PECI51586.2021.9435204
– ident: ref1
  doi: 10.1109/COMST.2019.2899354
– ident: ref13
  doi: 10.1049/iet-gtd.2017.0455
– ident: ref28
  doi: 10.1016/j.ijepes.2018.01.036
– ident: ref20
  doi: 10.1109/TII.2019.2921106
– ident: ref42
  doi: 10.1007/3-540-44596-X
– ident: ref41
  doi: 10.1109/TPWRS.2005.846209
– ident: ref17
  doi: 10.1109/TII.2018.2804669
– ident: ref22
  doi: 10.1109/TIFS.2019.2902822
– ident: ref4
  doi: 10.1109/TII.2016.2543145
– ident: ref43
  doi: 10.1007/978-3-319-93677-2
– ident: ref32
  doi: 10.1109/JSYST.2021.3130080
– ident: ref35
  doi: 10.1017/CBO9780511973000
– ident: ref5
  doi: 10.1109/TSG.2015.2425222
– ident: ref7
  doi: 10.1016/j.jisa.2019.02.008
– ident: ref10
  doi: 10.1016/j.apenergy.2019.01.076
– volume-title: New York Independent System Operator (NYISO) Load Data
  year: 2020
  ident: ref40
– ident: ref37
  doi: 10.1002/sys.21239
– ident: ref6
  doi: 10.1109/TSG.2019.2896381
– ident: ref11
  doi: 10.1109/JSAC.2013.130714
– volume: 7988
  volume-title: Proc. 9th Int. Conf. MLDM
  ident: ref36
  article-title: Machine learning and data mining in pattern recognition
– ident: ref19
  doi: 10.1016/j.ijepes.2017.03.011
– ident: ref3
  doi: 10.1016/j.ijepes.2017.04.005
– ident: ref16
  doi: 10.1109/TETCI.2019.2902845
– ident: ref33
  doi: 10.1016/j.asoc.2022.108877
– ident: ref39
  doi: 10.1109/TII.2015.2470218
– ident: ref2
  doi: 10.1109/COMST.2019.2907650
SSID ssj0000333629
Score 2.5105798
Snippet This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4848
SubjectTerms adaptive semi-supervised learning detection method
Algorithms
Classification
Clustering
Clustering algorithms
Collaboration
Cybersecurity
Dimensionality reduction
False data injection attack (FDIA)
Feature extraction
Hidden Markov models
hyper-parameter optimization
Machine learning
noisy clustering algorithm
Position measurement
Power systems
Principal component analysis
Principal components analysis
State vectors
Visualization
Title Cyber-Attack Detection Using Principal Component Analysis and Noisy Clustering Algorithms: A Collaborative Machine Learning-Based Framework
URI https://ieeexplore.ieee.org/document/9778203
https://www.proquest.com/docview/2727045519
Volume 13
WOSCitedRecordID wos000871062300056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5tKw5wgIWC6NJd-cAFidDGaeyYW-lu4QBVJQrqLYpf3YqSrNq0Un_D_ukdO0kBsULi5oNtWfo8L8_MZ4DXkUlUJmQYKE05BijDJEgsQ8GLB6FKpBXMZ_C_f-bTabJYiNkJvD32whhjfPGZeeeGPpevC7VzT2V99FXQYEUtaHHOq16t43vKIIpQFwufRB66dH4cNVnJgejPv37EWJBSDFFRoMLwDyvkv1X5Sxd7AzN58n9HO4XHtSNJRhXyT-HE5M_g0W_0gh24HR-k2QSjsszUD3JpSl92lRNfJkBm1TM77uF0QpHj_qShKCFZrsm0WG0PZLzeOS4Ft2K0XhabVXn9c_uejMj41w3aG_LFF2UaUvO1LoMPaB41mTS1X8_h2-RqPv4U1J8vBIqKsAxsHErKWSbQxDGuEVKbiETHwjGeGSlsLKlmzFITxmhnbYaSLTOGAbVAEbcmegHtHM_-EogUoUS9QAXTdqhRwxrLuTJaIF5MKtWFfgNGqmpmcvdBxjr1EcpApAhf6uBLa_i68Oa44qZi5fjH3I6D6zivRqoLvQbvtBbbbUrRm0MfF73as_tXvYKHbu-qGbEH7XKzM-fwQO3L1XZz4W_kHROT32A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8ChjR22AYMrRsDH3ZBImvtJE68W-lWmFYqJMrELYq_WLUundoUib9h__SenaSAmJC45WA7ln5-X37v_QzwMTSpyoWkgdIswQAlSoPUchS8uENVKq3gPoP_Y5AMh-nlpThbgcNlL4wxxhefmU_u0-fy9VQt3FVZG30VNFjhKjyLo4jRqltreaPSCUPUxsKnkSOX0I_DJi_ZEe3R-TFGg4xhkIoiRek9O-QfVnmgjb2J6b962uZew8valSTdCvtNWDHFFry4QzC4DX97N9LMgm5Z5uoX-WJKX3hVEF8oQM6qi3Zcw2mFaYHrk4akhOSFJsPpeH5DepOFY1NwM7qTq-lsXP78Pf9MuqR3e4auDTn1ZZmG1IytV8ERGkhN-k311xu46H8d9U6C-vmFQDFBy8DGVLKE5wKNHE80gmpTkepYOM4zI4WNJdOcW2ZojJbW5ijbMucYUgsUcmvCHVgrcO9vgUhBJWoGJri2kUYda2ySKKMF4sWlUi1oN2BkquYmd09kTDIfo3REhvBlDr6shq8FB8sZfypejkfGbju4luNqpFqw2-Cd1YI7zxj6c-jlol_77v-z9uH5yeh0kA2-Db-_hw33n6o1cRfWytnCfIB1dV2O57M9fzr_AdWW4qc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyber-Attack+Detection+Using+Principal+Component+Analysis+and+Noisy+Clustering+Algorithms%3A+A+Collaborative+Machine+Learning-Based+Framework&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Parizad%2C+Ali&rft.au=Hatziadoniu%2C+Constantine+J.&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=13&rft.issue=6&rft.spage=4848&rft.epage=4861&rft_id=info:doi/10.1109%2FTSG.2022.3176311&rft.externalDocID=9778203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon