Assessment of the uniaxial compressive strength of intact rocks: an extended comparison between machine and advanced machine learning models

Rock strength is the most deterministic parameter for studying geological disasters in resource development and underground engineering construction. However, the experimental procedure for finding rock strength is arduous and lengthy. Therefore, this investigation introduces an optimal computationa...

Full description

Saved in:
Bibliographic Details
Published in:Multiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 4; pp. 3301 - 3325
Main Authors: Khatti, Jitendra, Grover, Kamaldeep Singh
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.09.2024
Subjects:
ISSN:2520-8160, 2520-8179
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Rock strength is the most deterministic parameter for studying geological disasters in resource development and underground engineering construction. However, the experimental procedure for finding rock strength is arduous and lengthy. Therefore, this investigation introduces an optimal computational model for predicting the rock uniaxial compressive strength (UCS) by comparing eight machine learning approaches. For developing the predictive models, the selection of the most significant independent variables is essential. Hence, this investigation reveals the most suitable independent variable by developing three cases of input variables, i.e., (i) area, density, wave velocity, and Young's modulus; (ii) mass, density, wave velocity, and Young's modulus; and (iii) density, wave velocity, and Young's modulus. Sixteen performance metrics have analyzed machine learning models' prediction capabilities and reported that the Gaussian process regression (GPR) model has predicted rock UCS with a correlation coefficient (R) of 0.9788, root mean square error (RMSE) of 14.0804 MPa, performance index (PI) of 1.8821, variance accounted for (VAF) of 95.79, index of scatter (IOS) of 0.1167, and index of agreement (IOA) of 0.9063, close to the ideal values and higher than those of other computational models, in case 1. However, the impact of weak multicollinearity has been observed in the performance of the support vector machine model than GPR and ensemble tree models. The score analysis, error characteristics curve, and Anderson–Darling test confirm the robustness of assessing the rock UCS.
AbstractList Rock strength is the most deterministic parameter for studying geological disasters in resource development and underground engineering construction. However, the experimental procedure for finding rock strength is arduous and lengthy. Therefore, this investigation introduces an optimal computational model for predicting the rock uniaxial compressive strength (UCS) by comparing eight machine learning approaches. For developing the predictive models, the selection of the most significant independent variables is essential. Hence, this investigation reveals the most suitable independent variable by developing three cases of input variables, i.e., (i) area, density, wave velocity, and Young's modulus; (ii) mass, density, wave velocity, and Young's modulus; and (iii) density, wave velocity, and Young's modulus. Sixteen performance metrics have analyzed machine learning models' prediction capabilities and reported that the Gaussian process regression (GPR) model has predicted rock UCS with a correlation coefficient (R) of 0.9788, root mean square error (RMSE) of 14.0804 MPa, performance index (PI) of 1.8821, variance accounted for (VAF) of 95.79, index of scatter (IOS) of 0.1167, and index of agreement (IOA) of 0.9063, close to the ideal values and higher than those of other computational models, in case 1. However, the impact of weak multicollinearity has been observed in the performance of the support vector machine model than GPR and ensemble tree models. The score analysis, error characteristics curve, and Anderson–Darling test confirm the robustness of assessing the rock UCS.
Author Grover, Kamaldeep Singh
Khatti, Jitendra
Author_xml – sequence: 1
  givenname: Jitendra
  orcidid: 0000-0001-9939-4844
  surname: Khatti
  fullname: Khatti, Jitendra
  email: jitendrakhatti197@gmail.com
  organization: Department of Civil Engineering, Rajasthan Technical University
– sequence: 2
  givenname: Kamaldeep Singh
  orcidid: 0000-0003-1154-9608
  surname: Grover
  fullname: Grover, Kamaldeep Singh
  organization: Department of Civil Engineering, Rajasthan Technical University
BookMark eNp9kEtOwzAQhi0EEgV6AVa-QGCcOHXCrqp4SUhsYB0Ze9y6JGNkuzzuwKEJFFiwYDWjmf8bab4DtkuBkLFjAScCQJ0mKdqqLaCUBYCEppA7bFLWJRSNUO3ubz-DfTZNaQ0ApaqkamDC3ucpYUoDUubB8bxCviGvX73uuQnDUxyX_hl5yhFpmVefIU9Zm8xjMI_pjGvi-JqRLNovQkefAvEHzC-IxAdtVp5wjFmu7bMmM-Z-hj3qSJ6WfAgW-3TE9pzuE06_6yG7vzi_W1wVN7eX14v5TWHKVuTCSVXVaBVWSqnGOSEBVSNt3bTgKkSjwcGsVbWozCjG1BJaWdfgbGPVTJTVIWu2d00MKUV0nfFZZx8oR-37TkD3Kbbbiu1Gsd2X2E6OaPkHfYp-0PHtf6jaQmkM0xJjtw6bSOOL_1Efz6yP2Q
CitedBy_id crossref_primary_10_1007_s40996_024_01551_1
crossref_primary_10_1038_s41598_024_84632_5
crossref_primary_10_1038_s41598_025_11121_8
crossref_primary_10_1007_s41939_024_00533_0
crossref_primary_10_1038_s41598_024_83784_8
crossref_primary_10_1007_s12145_024_01603_0
crossref_primary_10_1038_s41598_025_02501_1
crossref_primary_10_1007_s00603_024_04375_7
crossref_primary_10_1038_s41598_024_64635_y
crossref_primary_10_1007_s40515_025_00638_0
crossref_primary_10_1007_s12145_024_01482_5
crossref_primary_10_1007_s12145_025_01731_1
crossref_primary_10_1007_s41939_024_00590_5
crossref_primary_10_1016_j_compag_2024_109221
crossref_primary_10_1038_s41598_024_70421_7
crossref_primary_10_1007_s00603_025_04624_3
crossref_primary_10_1007_s12665_025_12116_4
crossref_primary_10_1007_s12145_024_01499_w
crossref_primary_10_1109_ACCESS_2025_3588377
Cites_doi 10.1038/s41598-023-46064-5
10.1038/s41598-022-25633-0
10.1016/j.cscm.2023.e02191
10.1016/j.compgeo.2023.105912
10.1061/(ASCE)GM.1943-5622.0001134
10.1016/j.jrmge.2022.12.034
10.1007/s00521-016-2728-3
10.5802/crmeca.109
10.3390/su15065201
10.1016/j.tafmec.2022.103665
10.3390/app13010097
10.1007/s10706-023-02643-x
10.1016/j.oregeorev.2023.105790
10.3390/math11071650
10.3390/geosciences13100294
10.12989/cac.2024.33.1.055
10.1007/s41939-022-00137-6
10.1007/s00521-021-06004-8
10.22044/jme.2019.8839.1774
10.1007/s11831-023-10024-z
10.1007/s41939-022-00131-y
10.1016/j.enggeo.2013.12.009
10.3390/ma16103731
10.3390/min12060731
10.1016/j.trgeo.2020.100499
10.1016/j.engstruct.2021.113276
10.3311/PPci.13035
10.1007/s42947-022-00268-6
10.1007/s00366-020-00977-1
10.1007/s10921-020-00725-x
10.1007/s11053-021-09914-5
10.3390/min12121506
10.1016/j.enggeo.2005.06.006
10.1007/s10064-023-03537-1
10.3390/safety8020028
10.22214/ijraset.2022.43662
10.1016/j.asoc.2017.06.030
10.5802/crmeca.3
10.1109/ACCESS.2022.3199443
10.1016/j.ijmst.2020.06.008
10.1016/j.jksus.2023.102846
10.3390/app12178468
10.1007/s10706-018-0624-6
10.1590/0370-44672018720083
10.1007/s41062-020-00346-3
10.1016/j.measurement.2019.06.031
10.1016/j.petrol.2019.106349
10.1007/s10064-020-01906-8
10.1007/s11053-018-9383-6
10.1007/s12517-023-11268-6
10.1144/petgeo2018-126
10.3390/math10081283
10.1007/s12145-023-01145-x
10.1007/s00521-019-04418-z
10.1155/2021/2565488
10.1007/s00521-021-06204-2
10.3390/su15075642
10.1007/s00603-021-02503-1
10.1007/s10706-018-0551-6
10.3390/math10193490
10.1016/j.ijrmms.2014.11.009
10.1007/s41939-023-00191-8
10.1007/s10706-020-01464-6
10.1007/s12665-015-4106-3
10.1007/s12517-020-5273-4
10.4135/9781412983433
10.1007/978-3-031-34644-6_9
10.1007/s40515-023-00357-4
10.1007/978-981-19-6774-0_16
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41939-024-00408-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
EndPage 3325
ExternalDocumentID 10_1007_s41939_024_00408_4
GroupedDBID -EM
0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c291t-f4735ed7e37778ff140e784d5890f3eeca0f0697513c939c54094550fd8d76123
IEDL.DBID RSV
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001191065500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2520-8160
IngestDate Tue Nov 18 20:58:48 EST 2025
Sat Nov 29 03:23:31 EST 2025
Fri Feb 21 02:39:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Gaussian process regression
Uniaxial compressive strength
Multicollinearity impact
Intact rock
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f4735ed7e37778ff140e784d5890f3eeca0f0697513c939c54094550fd8d76123
ORCID 0000-0001-9939-4844
0000-0003-1154-9608
PageCount 25
ParticipantIDs crossref_citationtrail_10_1007_s41939_024_00408_4
crossref_primary_10_1007_s41939_024_00408_4
springer_journals_10_1007_s41939_024_00408_4
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Kahraman (CR22) 2014; 170
Hosseini, Khatti, Taiwo, Fissha, Grover, Ikeda, Pushkarna, Berhanu, Ali (CR19) 2023; 13
Yu, Zhou, Hu (CR74) 2023; 16
Daniel, Khatti, Grover (CR11) 2024; 33
Kumar, Samui (CR37) 2020; 38
Guido, Shaffiee Haghshenas, Shaffiee Haghshenas, Vitale, Astarita, Park, Geem (CR15) 2022; 8
Wang, Zhang, Zhou, Xue, Jia, Zhu (CR66) 2023
CR30
Teymen, Mengüç (CR61) 2020; 30
Mokhtari (CR51) 2022; 16
Sanei, Faramarzi, Fahimifar, Goli, Mehinrad, Rahmati (CR56) 2015; 75
Gupta, Natarajan (CR16) 2021; 33
Mahdiabadi, Khanlari (CR44) 2019; 63
Liu, Dai, Zhang, Liu (CR38) 2015; 73
Mokhtari, Behnia (CR50) 2019; 28
Zhang, Altalbawy, Gasmalla, Al-Khafaji, Iraji, Syah, Nehdi (CR75) 2023; 15
Matin, Farahzadi, Makaremi, Chelgani, Sattari (CR46) 2018; 70
Wang, Zhao, Liang, Wang (CR68) 2023
Yang, Wu, Zhou, Tang, Fu (CR72) 2022; 12
Ren, Wang, Li, Han (CR54) 2019; 37
Qiu, Yin, Pan, Wang, Zhang (CR52) 2022; 10
Ebdali, Khorasani, Salehin (CR12) 2020; 5
Rezaei, Asadizadeh (CR55) 2020; 11
Wang, Yang, Tang (CR64) 2020; 79
CR7
Shahani, Kamran, Zheng, Liu, Guo (CR57) 2021; 2021
Gareth, Daniela, Trevor, Robert (CR14) 2013
Zinno, Haghshenas, Guido, VItale (CR76) 2022; 10
Xue (CR71) 2022; 350
CR48
Chan, Leow, Bea, Cheng, Phoong, Hong, Chen (CR9) 2022; 10
Chen, Zhang, Wang, Yuan, Meng, Yang, Shen, Lu (CR10) 2022; 122
Aydin, Basu (CR4) 2005; 81
Khatti, Grover (CR27) 2023
Wang, Wan, Zhao (CR63) 2020; 348
Zinno, Haghshenas, Guido, Rashvand, Vitale, Sarhadi (CR77) 2022; 13
Asteris, Koopialipoor, Armaghani, Kotsonis, Lourenço (CR2) 2021; 33
Khatti, Grover (CR32) 2023
Smith (CR58) 1986
Matos, Dantas, Barreto (CR47) 2019; 72
Wang, Hasanipanah, Rashid, Le, Ulrikh (CR67) 2023; 16
Sun, Du, Liu (CR59) 2021; 54
Wei, Shahani, Zheng (CR69) 2023; 11
Khatti, Grover, Kim, Mawuntu, Park (CR36) 2024; 165
Khatti, Grover (CR29) 2023; 16
Haghshenas, Faradonbeh, Mikaeil, Haghshenas, Taheri, Saghatforoush, Dormishi (CR17) 2019; 146
CR13
Khatti, Grover (CR34) 2023
Barzegar, Sattarpour, Deo, Fijani, Adamowski (CR6) 2020; 32
Khatti, Grover (CR31) 2023
Li, Zou, Zhang, Ma, Zhu, Li, Cao (CR39) 2019; 183
Khatti, Grover (CR26) 2022; 10
Li, Zhou, Dias, Du, Khandelwal (CR42) 2023; 13
Mahmoodzadeh, Mohammadi, Ibrahim, Abdulhamid, Salim, Ali, Majeed (CR45) 2021; 27
Khatti, Grover (CR33) 2023; 6
Asteris, Lourenço, Hajihassani, Adami, Lemonis, Skentou, Marques, Nguyen, Rodrigues, Varum (CR3) 2021; 248
Li, Armaghani, Zhou, Lai, Hasanipanah (CR40) 2020; 39
Aldeeky, Al Hattamleh (CR1) 2018; 36
Khatti, Grover (CR28) 2023
Mohamad, Armaghani, Momeni, Yazdavar, Ebrahimi (CR49) 2018; 30
Ceryan, Samui (CR8) 2020; 13
Jin, Zhao, Ma (CR20) 2022; 12
Jing, Nikafshan Rad, Hasanipanah, Jahed Armaghani, Qasem (CR21) 2021; 37
CR24
Tariq, Abdulraheem, Mahmoud, Elkatatny, Ali, Al-Shehri, Belayneh (CR60) 2019; 25
Wang, Wan, Zhao (CR65) 2020; 348
CR23
Hassan, Arman (CR18) 2022; 12
Rabe, Silva, Lopes, da Silva Nunes, Guizan Silva (CR53) 2018; 18
CR62
Li, Segarra, Sanchidrián, Gómez, Fernández, Navarro, Bernardini (CR43) 2023
Khatti, Samadi, Grover (CR35) 2023
Li, Zhou, Dias, Gui (CR41) 2022; 12
Xu, Tan, Sun, Ma, Liu, Wang (CR70) 2023; 15
Khatti, Grover (CR25) 2022; 13
Bahmed, Khatti, Grover (CR5) 2024; 83
Yu, Shi, Zhou, Gou, Rao, Huo (CR73) 2021; 30
A Mahmoodzadeh (408_CR45) 2021; 27
M Sanei (408_CR56) 2015; 75
C Li (408_CR42) 2023; 13
408_CR48
B Xu (408_CR70) 2023; 15
IT Bahmed (408_CR5) 2024; 83
N Mahdiabadi (408_CR44) 2019; 63
A Teymen (408_CR61) 2020; 30
J Khatti (408_CR25) 2022; 13
J Khatti (408_CR33) 2023; 6
YMPD Matos (408_CR47) 2019; 72
NM Shahani (408_CR57) 2021; 2021
M Ebdali (408_CR12) 2020; 5
H Wang (408_CR66) 2023
M Wang (408_CR65) 2020; 348
X Xue (408_CR71) 2022; 350
R Barzegar (408_CR6) 2020; 32
PG Asteris (408_CR3) 2021; 248
J Khatti (408_CR29) 2023; 16
S Hosseini (408_CR19) 2023; 13
408_CR13
C Rabe (408_CR53) 2018; 18
H Sun (408_CR59) 2021; 54
PG Asteris (408_CR2) 2021; 33
M Mokhtari (408_CR50) 2019; 28
J Khatti (408_CR36) 2024; 165
X Zhang (408_CR75) 2023; 15
M Kumar (408_CR37) 2020; 38
H Jing (408_CR21) 2021; 37
J Qiu (408_CR52) 2022; 10
M Mokhtari (408_CR51) 2022; 16
J Khatti (408_CR34) 2023
408_CR23
S Chen (408_CR10) 2022; 122
408_CR24
408_CR7
Z Yu (408_CR73) 2021; 30
J Khatti (408_CR31) 2023
Y Wang (408_CR67) 2023; 16
M Rezaei (408_CR55) 2020; 11
C Daniel (408_CR11) 2024; 33
J Khatti (408_CR26) 2022; 10
J Khatti (408_CR35) 2023
R Zinno (408_CR77) 2022; 13
SAİR Kahraman (408_CR22) 2014; 170
Z Wang (408_CR64) 2020; 79
E Li (408_CR43) 2023
M Wang (408_CR68) 2023
N Li (408_CR39) 2019; 183
C Li (408_CR41) 2022; 12
408_CR62
Z Yu (408_CR74) 2023; 16
G Guido (408_CR15) 2022; 8
Q Ren (408_CR54) 2019; 37
J Khatti (408_CR28) 2023
J Khatti (408_CR32) 2023
J Gareth (408_CR14) 2013
X Jin (408_CR20) 2022; 12
X Wei (408_CR69) 2023; 11
Z Yang (408_CR72) 2022; 12
SS Haghshenas (408_CR17) 2019; 146
GN Smith (408_CR58) 1986
Z Tariq (408_CR60) 2019; 25
MY Hassan (408_CR18) 2022; 12
R Zinno (408_CR76) 2022; 10
X Liu (408_CR38) 2015; 73
SS Matin (408_CR46) 2018; 70
M Wang (408_CR63) 2020; 348
ET Mohamad (408_CR49) 2018; 30
JYL Chan (408_CR9) 2022; 10
D Li (408_CR40) 2020; 39
J Khatti (408_CR27) 2023
D Gupta (408_CR16) 2021; 33
N Ceryan (408_CR8) 2020; 13
A Aydin (408_CR4) 2005; 81
408_CR30
H Aldeeky (408_CR1) 2018; 36
References_xml – volume: 13
  start-page: 18582
  issue: 1
  year: 2023
  ident: CR19
  article-title: Assessment of the ground vibration during blasting in mining projects using different computational approaches
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-46064-5
– volume: 12
  start-page: 20969
  issue: 1
  year: 2022
  ident: CR18
  article-title: Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-25633-0
– year: 2023
  ident: CR68
  article-title: A comparative study on the development of hybrid SSA-RF and PSO-RF models for predicting the uniaxial compressive strength of rocks
  publication-title: Case Stud Constr Mater
  doi: 10.1016/j.cscm.2023.e02191
– volume: 165
  start-page: 105912
  year: 2024
  ident: CR36
  article-title: Prediction of ultimate bearing capacity of shallow foundations on cohesionless soil using hybrid lstm and rvm approaches: an extended investigation of multicollinearity
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2023.105912
– volume: 18
  start-page: 05018005
  issue: 8
  year: 2018
  ident: CR53
  article-title: Development of a new correlation to estimate the unconfined compressive strength of a Chicontepec formation
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0001134
– year: 2023
  ident: CR27
  article-title: Prediction of compaction parameters for fine-grained soil: critical comparison of the deep learning and standalone models
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.12.034
– volume: 30
  start-page: 1635
  year: 2018
  end-page: 1646
  ident: CR49
  article-title: Rock strength estimation: a PSO-based BP approach
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2728-3
– volume: 350
  start-page: 159
  issue: G1
  year: 2022
  end-page: 170
  ident: CR71
  article-title: A novel model for prediction of uniaxial compressive strength of rocks
  publication-title: Comptes Rendus Mécanique
  doi: 10.5802/crmeca.109
– volume: 15
  start-page: 5201
  issue: 6
  year: 2023
  ident: CR70
  article-title: Study on the prediction of the uniaxial compressive strength of rock based on the SSA-XGBoost model
  publication-title: Sustainability
  doi: 10.3390/su15065201
– volume: 122
  start-page: 103665
  year: 2022
  ident: CR10
  article-title: Experimental study on the impact disturbance damage of weakly cemented rock based on fractal characteristics and energy dissipation regulation
  publication-title: Theoret Appl Fract Mech
  doi: 10.1016/j.tafmec.2022.103665
– volume: 13
  start-page: 97
  issue: 1
  year: 2022
  ident: CR77
  article-title: The state of the art of artificial intelligence approaches and new technologies in structural health monitoring of bridges
  publication-title: Appl Sci
  doi: 10.3390/app13010097
– year: 2023
  ident: CR35
  article-title: Estimation of settlement of pile group in clay using soft computing techniques
  publication-title: Geotechn Geol Eng
  doi: 10.1007/s10706-023-02643-x
– year: 2023
  ident: CR43
  article-title: Application of percentile color intensities of borehole images for automatic fluorite grade assessment
  publication-title: Ore Geol Rev
  doi: 10.1016/j.oregeorev.2023.105790
– volume: 11
  start-page: 1650
  issue: 7
  year: 2023
  ident: CR69
  article-title: Predictive modeling of the uniaxial compressive strength of rocks using an artificial neural network approach
  publication-title: Mathematics
  doi: 10.3390/math11071650
– volume: 13
  start-page: 294
  issue: 10
  year: 2023
  ident: CR42
  article-title: Comparative evaluation of empirical approaches and artificial intelligence techniques for predicting uniaxial compressive strength of rock
  publication-title: Geosciences
  doi: 10.3390/geosciences13100294
– volume: 33
  start-page: 55
  issue: 1
  year: 2024
  ident: CR11
  article-title: Assessment of compressive strength of high-performance concrete using soft computing approaches
  publication-title: Comput Concrete
  doi: 10.12989/cac.2024.33.1.055
– year: 2023
  ident: CR34
  article-title: Prediction of UCS of fine-grained soil based on machine learning part 1: multivariable regression analysis, gaussian process regression, and gene expression programming
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-022-00137-6
– volume: 33
  start-page: 13089
  issue: 19
  year: 2021
  end-page: 13121
  ident: CR2
  article-title: Prediction of cement-based mortars compressive strength using machine learning techniques
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06004-8
– volume: 11
  start-page: 231
  issue: 1
  year: 2020
  end-page: 246
  ident: CR55
  article-title: Predicting unconfined compressive strength of intact rock using new hybrid intelligent models
  publication-title: J Min Environ
  doi: 10.22044/jme.2019.8839.1774
– year: 2023
  ident: CR31
  article-title: A scientometrics review of soil properties prediction using soft computing approaches
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-023-10024-z
– volume: 6
  start-page: 97
  issue: 1
  year: 2023
  end-page: 121
  ident: CR33
  article-title: Prediction of soaked CBR of fine-grained soils using soft computing techniques
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-022-00131-y
– volume: 170
  start-page: 33
  year: 2014
  end-page: 42
  ident: CR22
  article-title: The determination of uniaxial compressive strength from point load strength for pyroclastic rocks
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2013.12.009
– volume: 16
  start-page: 3731
  issue: 10
  year: 2023
  ident: CR67
  article-title: Advanced tree-based techniques for predicting unconfined compressive strength of rock material employing nondestructive and petrographic tests
  publication-title: Materials
  doi: 10.3390/ma16103731
– year: 1986
  ident: CR58
  publication-title: Probability and statistics in civil engineering—an introduction
– volume: 12
  start-page: 731
  issue: 6
  year: 2022
  ident: CR72
  article-title: Assessment of machine learning models for the prediction of rate-dependent compressive strength of rocks
  publication-title: Minerals
  doi: 10.3390/min12060731
– volume: 27
  start-page: 100499
  year: 2021
  ident: CR45
  article-title: Artificial intelligence forecasting models of uniaxial compressive strength
  publication-title: Transp Geotech
  doi: 10.1016/j.trgeo.2020.100499
– volume: 248
  start-page: 113276
  year: 2021
  ident: CR3
  article-title: Soft computing-based models for the prediction of masonry compressive strength
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.113276
– volume: 63
  start-page: 104
  issue: 1
  year: 2019
  end-page: 114
  ident: CR44
  article-title: Prediction of uniaxial compressive strength and modulus of elasticity in calcareous mudstones using neural networks, fuzzy systems, and regression analysis
  publication-title: Period Polytech Civil Eng
  doi: 10.3311/PPci.13035
– year: 2023
  ident: CR28
  article-title: CBR prediction of pavement materials in unsoaked condition using LSSVM, LSTM-RNN, and ANN approaches
  publication-title: J Pavement Res Technol Int
  doi: 10.1007/s42947-022-00268-6
– volume: 37
  start-page: 2717
  year: 2021
  end-page: 2734
  ident: CR21
  article-title: Design and implementation of a new tuned hybrid intelligent model to predict the uniaxial compressive strength of the rock using SFS-ANFIS
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-00977-1
– volume: 39
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR40
  article-title: A GMDH predictive model to predict rock material strength using three nondestructive tests
  publication-title: J Nondestr Eval
  doi: 10.1007/s10921-020-00725-x
– volume: 30
  start-page: 4063
  year: 2021
  end-page: 4078
  ident: CR73
  article-title: Machine-learning-aided determination of post-blast ore boundary for controlling ore loss and dilution
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09914-5
– volume: 12
  start-page: 1506
  issue: 12
  year: 2022
  ident: CR20
  article-title: Application of a hybrid machine learning model for the prediction of compressive strength and elastic modulus of rocks
  publication-title: Minerals
  doi: 10.3390/min12121506
– volume: 81
  start-page: 1
  issue: 1
  year: 2005
  end-page: 14
  ident: CR4
  article-title: The Schmidt hammer in rock material characterization
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2005.06.006
– ident: CR30
– volume: 83
  start-page: 46
  issue: 1
  year: 2024
  ident: CR5
  article-title: Hybrid soft computing models for predicting unconfined compressive strength of lime stabilized soil using strength property of virgin cohesive soil
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-023-03537-1
– year: 2013
  ident: CR14
  publication-title: An introduction to statistical learning: with applications in R
– volume: 8
  start-page: 28
  issue: 2
  year: 2022
  ident: CR15
  article-title: Evaluation of contributing factors affecting number of vehicles involved in crashes using machine learning techniques in rural roads of Cosenza, Italy
  publication-title: Safety
  doi: 10.3390/safety8020028
– volume: 10
  start-page: 4934
  issue: 5
  year: 2022
  end-page: 4961
  ident: CR26
  article-title: Determination of suitable hyperparameters of artificial neural network for the best prediction of geotechnical properties of soil
  publication-title: Int J Res Appl Sci Eng Technol
  doi: 10.22214/ijraset.2022.43662
– volume: 70
  start-page: 980
  year: 2018
  end-page: 987
  ident: CR46
  article-title: Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.030
– volume: 348
  start-page: 3
  issue: 1
  year: 2020
  end-page: 32
  ident: CR65
  article-title: Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model
  publication-title: Comptes Rendus Mécanique
  doi: 10.5802/crmeca.3
– volume: 10
  start-page: 88058
  year: 2022
  end-page: 88078
  ident: CR76
  article-title: Artificial intelligence and structural health monitoring of bridges: a review of the state-of-the-art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3199443
– volume: 30
  start-page: 785
  issue: 6
  year: 2020
  end-page: 797
  ident: CR61
  article-title: Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2020.06.008
– year: 2023
  ident: CR66
  article-title: Prediction of triaxial mechanical properties of rocks based on mesoscopic finite element numerical simulation and multi-objective machine learning
  publication-title: J King Saud Univ-Sci
  doi: 10.1016/j.jksus.2023.102846
– volume: 12
  start-page: 8468
  issue: 17
  year: 2022
  ident: CR41
  article-title: A kernel extreme learning machine–grey wolf optimizer (KELM-GWO) model to predict uniaxial compressive strength of rock
  publication-title: Appl Sci
  doi: 10.3390/app12178468
– volume: 37
  start-page: 475
  year: 2019
  end-page: 489
  ident: CR54
  article-title: Prediction of rock compressive strength using machine learning algorithms based on spectrum analysis of geological hammer
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0624-6
– volume: 72
  start-page: 193
  year: 2019
  end-page: 198
  ident: CR47
  article-title: A Takagi-Sugeno fuzzy model for predicting the clean rock joints shear strength
  publication-title: REM-Int Eng J
  doi: 10.1590/0370-44672018720083
– volume: 5
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR12
  article-title: A comparative study of various hybrid neural networks and regression analysis to predict unconfined compressive strength of travertine
  publication-title: Innov Infrastr Solut
  doi: 10.1007/s41062-020-00346-3
– volume: 348
  start-page: 3
  issue: 1
  year: 2020
  end-page: 32
  ident: CR63
  article-title: Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model
  publication-title: Comptes Rendus Mécanique
  doi: 10.5802/crmeca.3
– ident: CR23
– volume: 146
  start-page: 159
  year: 2019
  end-page: 170
  ident: CR17
  article-title: A new conventional criterion for the performance evaluation of gang saw machines
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.031
– volume: 183
  start-page: 106349
  year: 2019
  ident: CR39
  article-title: Rock brittleness evaluation based on energy dissipation under triaxial compression
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2019.106349
– volume: 79
  start-page: 5415
  issue: 10
  year: 2020
  end-page: 5432
  ident: CR64
  article-title: Mechanical behavior of different sedimentary rocks in the Brazilian test
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-020-01906-8
– volume: 28
  start-page: 223
  year: 2019
  end-page: 239
  ident: CR50
  article-title: Comparison of LLNF, ANN, and COA-ANN techniques in modeling the uniaxial compressive strength and static Young's modulus of limestone of the Dalan formation
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-018-9383-6
– volume: 16
  start-page: 208
  issue: 3
  year: 2023
  ident: CR29
  article-title: Assessment of fine-grained soil compaction parameters using advanced soft computing techniques
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-023-11268-6
– ident: CR48
– volume: 25
  start-page: 389
  issue: 4
  year: 2019
  end-page: 399
  ident: CR60
  article-title: A new look into the prediction of static Young's modulus and unconfined compressive strength of carbonate using artificial intelligence tools
  publication-title: Pet Geosci
  doi: 10.1144/petgeo2018-126
– volume: 10
  start-page: 1283
  issue: 8
  year: 2022
  ident: CR9
  article-title: Mitigating the multicollinearity problem and its machine learning approach: a review
  publication-title: Mathematics
  doi: 10.3390/math10081283
– volume: 16
  start-page: 4113
  year: 2023
  end-page: 4129
  ident: CR74
  article-title: Prediction of compressive strength of granite: use of machine learning techniques and intelligent system
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-023-01145-x
– volume: 32
  start-page: 9065
  year: 2020
  end-page: 9080
  ident: CR6
  article-title: An ensemble tree-based machine learning model for predicting the uniaxial compressive strength of travertine rocks
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04418-z
– ident: CR13
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 19
  ident: CR57
  article-title: Application of gradient boosting machine learning algorithms to predict uniaxial compressive strength of soft sedimentary rocks at Thar Coalfield
  publication-title: Adv Civil Eng
  doi: 10.1155/2021/2565488
– volume: 33
  start-page: 15843
  year: 2021
  end-page: 15850
  ident: CR16
  article-title: Prediction of uniaxial compressive strength of rock samples using density weighted least squares twin support vector regression
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06204-2
– volume: 15
  start-page: 5642
  issue: 7
  year: 2023
  ident: CR75
  article-title: Performance of statistical and intelligent methods in estimating rock compressive strength
  publication-title: Sustainability
  doi: 10.3390/su15075642
– volume: 16
  start-page: 95
  issue: 1
  year: 2022
  ident: CR51
  article-title: Predicting the Young's modulus and uniaxial compressive strength of a typical limestone using the principal component regression and particle swarm optimization
  publication-title: J Eng Geol
– volume: 54
  start-page: 4225
  issue: 8
  year: 2021
  end-page: 4237
  ident: CR59
  article-title: Uniaxial compressive strength determination of rocks using X-ray computed tomography and convolutional neural networks
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-021-02503-1
– ident: CR7
– volume: 36
  start-page: 3511
  year: 2018
  end-page: 3525
  ident: CR1
  article-title: Prediction of engineering properties of basalt rock in Jordan using ultrasonic pulse velocity test
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0551-6
– volume: 10
  start-page: 3490
  issue: 19
  year: 2022
  ident: CR52
  article-title: Prediction of uniaxial compressive strength in rocks based on extreme learning machine improved with metaheuristic algorithm
  publication-title: Mathematics
  doi: 10.3390/math10193490
– volume: 75
  start-page: 119
  year: 2015
  end-page: 131
  ident: CR56
  article-title: Shear strength of discontinuities in sedimentary rock masses based on direct shear tests
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.11.009
– year: 2023
  ident: CR32
  article-title: Prediction of UCS of fine-grained soil based on machine learning part 2: comparison between hybrid relevance vector machine and Gaussian process regression
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-023-00191-8
– volume: 38
  start-page: 6717
  year: 2020
  end-page: 6730
  ident: CR37
  article-title: Reliability analysis of settlement of pile group in clay using LSSVM, GMDH
  publication-title: GPR Geotech Geol Eng
  doi: 10.1007/s10706-020-01464-6
– volume: 73
  start-page: 5933
  year: 2015
  end-page: 5949
  ident: CR38
  article-title: Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4106-3
– ident: CR62
– ident: CR24
– volume: 13
  start-page: 1074
  year: 2022
  end-page: 1085
  ident: CR25
  article-title: A study of relationship among correlation coefficient, performance, and overfitting using regression analysis
  publication-title: Int J Sci Eng Res
– volume: 13
  start-page: 1
  year: 2020
  end-page: 18
  ident: CR8
  article-title: Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-5273-4
– ident: 408_CR48
  doi: 10.4135/9781412983433
– volume: 16
  start-page: 95
  issue: 1
  year: 2022
  ident: 408_CR51
  publication-title: J Eng Geol
– volume: 146
  start-page: 159
  year: 2019
  ident: 408_CR17
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.031
– volume: 39
  start-page: 1
  year: 2020
  ident: 408_CR40
  publication-title: J Nondestr Eval
  doi: 10.1007/s10921-020-00725-x
– volume: 348
  start-page: 3
  issue: 1
  year: 2020
  ident: 408_CR63
  publication-title: Comptes Rendus Mécanique
  doi: 10.5802/crmeca.3
– volume: 32
  start-page: 9065
  year: 2020
  ident: 408_CR6
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04418-z
– volume: 12
  start-page: 20969
  issue: 1
  year: 2022
  ident: 408_CR18
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-25633-0
– volume: 16
  start-page: 3731
  issue: 10
  year: 2023
  ident: 408_CR67
  publication-title: Materials
  doi: 10.3390/ma16103731
– volume: 12
  start-page: 8468
  issue: 17
  year: 2022
  ident: 408_CR41
  publication-title: Appl Sci
  doi: 10.3390/app12178468
– volume: 30
  start-page: 1635
  year: 2018
  ident: 408_CR49
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2728-3
– volume: 72
  start-page: 193
  year: 2019
  ident: 408_CR47
  publication-title: REM-Int Eng J
  doi: 10.1590/0370-44672018720083
– volume: 13
  start-page: 18582
  issue: 1
  year: 2023
  ident: 408_CR19
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-46064-5
– volume: 75
  start-page: 119
  year: 2015
  ident: 408_CR56
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.11.009
– volume: 33
  start-page: 15843
  year: 2021
  ident: 408_CR16
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06204-2
– volume: 79
  start-page: 5415
  issue: 10
  year: 2020
  ident: 408_CR64
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-020-01906-8
– volume: 10
  start-page: 88058
  year: 2022
  ident: 408_CR76
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3199443
– volume: 70
  start-page: 980
  year: 2018
  ident: 408_CR46
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.030
– ident: 408_CR62
– ident: 408_CR24
  doi: 10.1007/978-3-031-34644-6_9
– volume: 11
  start-page: 231
  issue: 1
  year: 2020
  ident: 408_CR55
  publication-title: J Min Environ
  doi: 10.22044/jme.2019.8839.1774
– volume: 12
  start-page: 1506
  issue: 12
  year: 2022
  ident: 408_CR20
  publication-title: Minerals
  doi: 10.3390/min12121506
– volume: 27
  start-page: 100499
  year: 2021
  ident: 408_CR45
  publication-title: Transp Geotech
  doi: 10.1016/j.trgeo.2020.100499
– volume: 63
  start-page: 104
  issue: 1
  year: 2019
  ident: 408_CR44
  publication-title: Period Polytech Civil Eng
  doi: 10.3311/PPci.13035
– volume: 2021
  start-page: 1
  year: 2021
  ident: 408_CR57
  publication-title: Adv Civil Eng
  doi: 10.1155/2021/2565488
– volume: 33
  start-page: 55
  issue: 1
  year: 2024
  ident: 408_CR11
  publication-title: Comput Concrete
  doi: 10.12989/cac.2024.33.1.055
– volume: 10
  start-page: 4934
  issue: 5
  year: 2022
  ident: 408_CR26
  publication-title: Int J Res Appl Sci Eng Technol
  doi: 10.22214/ijraset.2022.43662
– ident: 408_CR30
  doi: 10.1007/s40515-023-00357-4
– year: 2023
  ident: 408_CR43
  publication-title: Ore Geol Rev
  doi: 10.1016/j.oregeorev.2023.105790
– volume: 5
  start-page: 1
  year: 2020
  ident: 408_CR12
  publication-title: Innov Infrastr Solut
  doi: 10.1007/s41062-020-00346-3
– volume: 30
  start-page: 785
  issue: 6
  year: 2020
  ident: 408_CR61
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2020.06.008
– volume-title: Probability and statistics in civil engineering—an introduction
  year: 1986
  ident: 408_CR58
– ident: 408_CR23
  doi: 10.1007/978-981-19-6774-0_16
– year: 2023
  ident: 408_CR68
  publication-title: Case Stud Constr Mater
  doi: 10.1016/j.cscm.2023.e02191
– volume: 12
  start-page: 731
  issue: 6
  year: 2022
  ident: 408_CR72
  publication-title: Minerals
  doi: 10.3390/min12060731
– volume: 350
  start-page: 159
  issue: G1
  year: 2022
  ident: 408_CR71
  publication-title: Comptes Rendus Mécanique
  doi: 10.5802/crmeca.109
– volume: 36
  start-page: 3511
  year: 2018
  ident: 408_CR1
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0551-6
– volume: 13
  start-page: 294
  issue: 10
  year: 2023
  ident: 408_CR42
  publication-title: Geosciences
  doi: 10.3390/geosciences13100294
– volume: 348
  start-page: 3
  issue: 1
  year: 2020
  ident: 408_CR65
  publication-title: Comptes Rendus Mécanique
  doi: 10.5802/crmeca.3
– volume: 25
  start-page: 389
  issue: 4
  year: 2019
  ident: 408_CR60
  publication-title: Pet Geosci
  doi: 10.1144/petgeo2018-126
– volume: 30
  start-page: 4063
  year: 2021
  ident: 408_CR73
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09914-5
– volume: 73
  start-page: 5933
  year: 2015
  ident: 408_CR38
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4106-3
– year: 2023
  ident: 408_CR27
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.12.034
– volume: 122
  start-page: 103665
  year: 2022
  ident: 408_CR10
  publication-title: Theoret Appl Fract Mech
  doi: 10.1016/j.tafmec.2022.103665
– year: 2023
  ident: 408_CR31
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-023-10024-z
– volume: 37
  start-page: 475
  year: 2019
  ident: 408_CR54
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0624-6
– year: 2023
  ident: 408_CR34
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-022-00137-6
– ident: 408_CR13
– volume: 8
  start-page: 28
  issue: 2
  year: 2022
  ident: 408_CR15
  publication-title: Safety
  doi: 10.3390/safety8020028
– volume: 10
  start-page: 1283
  issue: 8
  year: 2022
  ident: 408_CR9
  publication-title: Mathematics
  doi: 10.3390/math10081283
– volume: 15
  start-page: 5642
  issue: 7
  year: 2023
  ident: 408_CR75
  publication-title: Sustainability
  doi: 10.3390/su15075642
– volume: 81
  start-page: 1
  issue: 1
  year: 2005
  ident: 408_CR4
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2005.06.006
– volume: 10
  start-page: 3490
  issue: 19
  year: 2022
  ident: 408_CR52
  publication-title: Mathematics
  doi: 10.3390/math10193490
– volume: 16
  start-page: 4113
  year: 2023
  ident: 408_CR74
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-023-01145-x
– volume: 18
  start-page: 05018005
  issue: 8
  year: 2018
  ident: 408_CR53
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0001134
– volume: 6
  start-page: 97
  issue: 1
  year: 2023
  ident: 408_CR33
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-022-00131-y
– volume: 83
  start-page: 46
  issue: 1
  year: 2024
  ident: 408_CR5
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-023-03537-1
– volume: 165
  start-page: 105912
  year: 2024
  ident: 408_CR36
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2023.105912
– volume: 183
  start-page: 106349
  year: 2019
  ident: 408_CR39
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2019.106349
– year: 2023
  ident: 408_CR66
  publication-title: J King Saud Univ-Sci
  doi: 10.1016/j.jksus.2023.102846
– volume-title: An introduction to statistical learning: with applications in R
  year: 2013
  ident: 408_CR14
– year: 2023
  ident: 408_CR32
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-023-00191-8
– year: 2023
  ident: 408_CR28
  publication-title: J Pavement Res Technol Int
  doi: 10.1007/s42947-022-00268-6
– year: 2023
  ident: 408_CR35
  publication-title: Geotechn Geol Eng
  doi: 10.1007/s10706-023-02643-x
– volume: 15
  start-page: 5201
  issue: 6
  year: 2023
  ident: 408_CR70
  publication-title: Sustainability
  doi: 10.3390/su15065201
– volume: 16
  start-page: 208
  issue: 3
  year: 2023
  ident: 408_CR29
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-023-11268-6
– volume: 248
  start-page: 113276
  year: 2021
  ident: 408_CR3
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.113276
– volume: 37
  start-page: 2717
  year: 2021
  ident: 408_CR21
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-00977-1
– volume: 11
  start-page: 1650
  issue: 7
  year: 2023
  ident: 408_CR69
  publication-title: Mathematics
  doi: 10.3390/math11071650
– volume: 13
  start-page: 1074
  year: 2022
  ident: 408_CR25
  publication-title: Int J Sci Eng Res
– volume: 54
  start-page: 4225
  issue: 8
  year: 2021
  ident: 408_CR59
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-021-02503-1
– volume: 38
  start-page: 6717
  year: 2020
  ident: 408_CR37
  publication-title: GPR Geotech Geol Eng
  doi: 10.1007/s10706-020-01464-6
– volume: 28
  start-page: 223
  year: 2019
  ident: 408_CR50
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-018-9383-6
– volume: 33
  start-page: 13089
  issue: 19
  year: 2021
  ident: 408_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06004-8
– volume: 170
  start-page: 33
  year: 2014
  ident: 408_CR22
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2013.12.009
– ident: 408_CR7
– volume: 13
  start-page: 97
  issue: 1
  year: 2022
  ident: 408_CR77
  publication-title: Appl Sci
  doi: 10.3390/app13010097
– volume: 13
  start-page: 1
  year: 2020
  ident: 408_CR8
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-5273-4
SSID ssj0002734780
ssib042110740
Score 2.3972428
Snippet Rock strength is the most deterministic parameter for studying geological disasters in resource development and underground engineering construction. However,...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 3301
SubjectTerms Characterization and Evaluation of Materials
Engineering
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Original Paper
Simulation
Solid Mechanics
Title Assessment of the uniaxial compressive strength of intact rocks: an extended comparison between machine and advanced machine learning models
URI https://link.springer.com/article/10.1007/s41939-024-00408-4
Volume 7
WOSCitedRecordID wos001191065500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: P5Z
  dateStart: 20240701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: M7S
  dateStart: 20240701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: BENPR
  dateStart: 20240701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: RSV
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6Js8oEbWIoTJ7a5VYiKU4XY1FuUeCllSVGTVnwEH43tOhGVUCW4RpMoGo89M8mb9wA4S3AeESkwYmEWI6ICcw5iESCZBNJOpJmKNnBiE7TXY_0-v_VDYWWNdq9_SbqTuhl2I6bW4MjkFGQjjyGyDFZMumN2O97dP9VRRFxL4xlMXjyBC3USamFseiWGk8BPz_z-2PkMNf971GWd7ub_3ncLbPgqE3ZmYbENllSxA9Z_cA_ugq9Ow8kJRxqaOhBOimH2aeIRWpy5w8dOFbTDJMWgerZGw6LKRAVNznstL2FWwPoTOhSNnCH0yC_47mCayphJWCMNmoterGIAnRJPuQceu9cPVzfISzMgEXJcIW0Vi5WkKqKUMq1Nm6YoIzJmPNCRUiILdJBwGuNIGC-I2LaRphnSkklqGV_2QasYFeoAwBxjmeuY5jLhJMkijnMtTBURY1P4RxFvA1wvRyo8b7mVz3hLG8Zl5-nUeDp1nk5JG5w393zMWDsWWl_UK5j6HVwuMD_8m_kRWAtdEFhc2jFoVeOJOgGrYloNy_GpC91v3JXmFw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBNA02bNq1vQxyKc4hO2Vtpc5nz0snaDX-EP9okS4sDGehrOS3l5DTnnOY73wfASYBTj3CGUegmPiLCUfsgZg7igcP1RJqqaB0jNkHb7bDbje7sUFheot3LI0mzU1fDbkTVGhFSOQXpyAsRmQcLRGUsDeS7f3gqo4iYlsYymLxYAhdqJNRcX_VKIQ4cOz3z-2OnM9T08ajJOs21_73vOli1VSZsTMJiA8yJbBOs_OAe3AJfjYqTEw4kVHUgHGX95FPFI9Q4c4OPHQuoh0myXvGsjfpZkbACqpz3mp_DJIPlL3TIKjlDaJFf8N3ANIUy47BEGlQXrVhFDxolnnwbPDYvOxdXyEozIOZGuEBSKxYLToVHKQ2lVG2aoCHhfhg50hOCJY50goj62GPKC8zXbaRqhiQPOdWMLzuglg0ysQtgijFPpU9THkQkSLwIp5KpKsLHqvD3vKgOcLkcMbO85Vo-4y2uGJeNp2Pl6dh4OiZ1cFrd8zFh7ZhpfVauYGy_4HyG-d7fzI_B0lXnthW3rts3-2DZNQGhMWoHoFYMR-IQLLJx0c-HRyaMvwGtiej7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBNw5o2bVrfhjoUZQy8sLfS5jLnpRtbN_wR_miTLC0byEB8LaelnJz0nK855_sAOAtw6hHOMArdxEdEOOo7iJmDeOBwPZGmKlrHiE3QZjNst6PW1BS_6XYvjiQnMw2apSnLa30ua-XgG1F1R4RUfkE6CkNEFsES0aJBGq8_vhQRRQy8sWwmb5bMhRo5NddXuCnEgWMnaX5_7Gy2mj0qNRmosfH_d98E67b6hPVJuGyBBZFtg7UpTsId8F0vuTphT0JVH8JR1k2-VJxC3X9u-mbHAuohk6yTv2qjbpYnLIcqF74PL2GSweLXOmSlzCG0HWHw07RvCmXGYdGBUF60IhYdaBR6hrvguXHzdHWLrGQDYm6EcyS1krHgVHiU0lBKBd8EDQn3w8iRnhAscaQTRNTHHlNeYL6GlwokSR5yqplg9kAl62ViH8AUY55Kn6Y8iEiQeBFOJVPVhY8VIPC8qApwsTQxs3zmWlbjIy6ZmI2nY-Xp2Hg6JlVwXt7Tn7B5zLW-KFYztjt7OMf84G_mp2Cldd2IH-6a94dg1TXxoFvXjkAlH4zEMVhm47w7HJyYiP4BBc3x3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+uniaxial+compressive+strength+of+intact+rocks%3A+an+extended+comparison+between+machine+and+advanced+machine+learning+models&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Khatti%2C+Jitendra&rft.au=Grover%2C+Kamaldeep+Singh&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=4&rft.spage=3301&rft.epage=3325&rft_id=info:doi/10.1007%2Fs41939-024-00408-4&rft.externalDocID=10_1007_s41939_024_00408_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon