Assessment of the uniaxial compressive strength of intact rocks: an extended comparison between machine and advanced machine learning models
Rock strength is the most deterministic parameter for studying geological disasters in resource development and underground engineering construction. However, the experimental procedure for finding rock strength is arduous and lengthy. Therefore, this investigation introduces an optimal computationa...
Saved in:
| Published in: | Multiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 4; pp. 3301 - 3325 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.09.2024
|
| Subjects: | |
| ISSN: | 2520-8160, 2520-8179 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Rock strength is the most deterministic parameter for studying geological disasters in resource development and underground engineering construction. However, the experimental procedure for finding rock strength is arduous and lengthy. Therefore, this investigation introduces an optimal computational model for predicting the rock uniaxial compressive strength (UCS) by comparing eight machine learning approaches. For developing the predictive models, the selection of the most significant independent variables is essential. Hence, this investigation reveals the most suitable independent variable by developing three cases of input variables, i.e., (i) area, density, wave velocity, and Young's modulus; (ii) mass, density, wave velocity, and Young's modulus; and (iii) density, wave velocity, and Young's modulus. Sixteen performance metrics have analyzed machine learning models' prediction capabilities and reported that the Gaussian process regression (GPR) model has predicted rock UCS with a correlation coefficient (R) of 0.9788, root mean square error (RMSE) of 14.0804 MPa, performance index (PI) of 1.8821, variance accounted for (VAF) of 95.79, index of scatter (IOS) of 0.1167, and index of agreement (IOA) of 0.9063, close to the ideal values and higher than those of other computational models, in case 1. However, the impact of weak multicollinearity has been observed in the performance of the support vector machine model than GPR and ensemble tree models. The score analysis, error characteristics curve, and Anderson–Darling test confirm the robustness of assessing the rock UCS. |
|---|---|
| AbstractList | Rock strength is the most deterministic parameter for studying geological disasters in resource development and underground engineering construction. However, the experimental procedure for finding rock strength is arduous and lengthy. Therefore, this investigation introduces an optimal computational model for predicting the rock uniaxial compressive strength (UCS) by comparing eight machine learning approaches. For developing the predictive models, the selection of the most significant independent variables is essential. Hence, this investigation reveals the most suitable independent variable by developing three cases of input variables, i.e., (i) area, density, wave velocity, and Young's modulus; (ii) mass, density, wave velocity, and Young's modulus; and (iii) density, wave velocity, and Young's modulus. Sixteen performance metrics have analyzed machine learning models' prediction capabilities and reported that the Gaussian process regression (GPR) model has predicted rock UCS with a correlation coefficient (R) of 0.9788, root mean square error (RMSE) of 14.0804 MPa, performance index (PI) of 1.8821, variance accounted for (VAF) of 95.79, index of scatter (IOS) of 0.1167, and index of agreement (IOA) of 0.9063, close to the ideal values and higher than those of other computational models, in case 1. However, the impact of weak multicollinearity has been observed in the performance of the support vector machine model than GPR and ensemble tree models. The score analysis, error characteristics curve, and Anderson–Darling test confirm the robustness of assessing the rock UCS. |
| Author | Grover, Kamaldeep Singh Khatti, Jitendra |
| Author_xml | – sequence: 1 givenname: Jitendra orcidid: 0000-0001-9939-4844 surname: Khatti fullname: Khatti, Jitendra email: jitendrakhatti197@gmail.com organization: Department of Civil Engineering, Rajasthan Technical University – sequence: 2 givenname: Kamaldeep Singh orcidid: 0000-0003-1154-9608 surname: Grover fullname: Grover, Kamaldeep Singh organization: Department of Civil Engineering, Rajasthan Technical University |
| BookMark | eNp9kEtOwzAQhi0EEgV6AVa-QGCcOHXCrqp4SUhsYB0Ze9y6JGNkuzzuwKEJFFiwYDWjmf8bab4DtkuBkLFjAScCQJ0mKdqqLaCUBYCEppA7bFLWJRSNUO3ubz-DfTZNaQ0ApaqkamDC3ucpYUoDUubB8bxCviGvX73uuQnDUxyX_hl5yhFpmVefIU9Zm8xjMI_pjGvi-JqRLNovQkefAvEHzC-IxAdtVp5wjFmu7bMmM-Z-hj3qSJ6WfAgW-3TE9pzuE06_6yG7vzi_W1wVN7eX14v5TWHKVuTCSVXVaBVWSqnGOSEBVSNt3bTgKkSjwcGsVbWozCjG1BJaWdfgbGPVTJTVIWu2d00MKUV0nfFZZx8oR-37TkD3Kbbbiu1Gsd2X2E6OaPkHfYp-0PHtf6jaQmkM0xJjtw6bSOOL_1Efz6yP2Q |
| CitedBy_id | crossref_primary_10_1007_s40996_024_01551_1 crossref_primary_10_1038_s41598_024_84632_5 crossref_primary_10_1038_s41598_025_11121_8 crossref_primary_10_1007_s41939_024_00533_0 crossref_primary_10_1038_s41598_024_83784_8 crossref_primary_10_1007_s12145_024_01603_0 crossref_primary_10_1038_s41598_025_02501_1 crossref_primary_10_1007_s00603_024_04375_7 crossref_primary_10_1038_s41598_024_64635_y crossref_primary_10_1007_s40515_025_00638_0 crossref_primary_10_1007_s12145_024_01482_5 crossref_primary_10_1007_s12145_025_01731_1 crossref_primary_10_1007_s41939_024_00590_5 crossref_primary_10_1016_j_compag_2024_109221 crossref_primary_10_1038_s41598_024_70421_7 crossref_primary_10_1007_s00603_025_04624_3 crossref_primary_10_1007_s12665_025_12116_4 crossref_primary_10_1007_s12145_024_01499_w crossref_primary_10_1109_ACCESS_2025_3588377 |
| Cites_doi | 10.1038/s41598-023-46064-5 10.1038/s41598-022-25633-0 10.1016/j.cscm.2023.e02191 10.1016/j.compgeo.2023.105912 10.1061/(ASCE)GM.1943-5622.0001134 10.1016/j.jrmge.2022.12.034 10.1007/s00521-016-2728-3 10.5802/crmeca.109 10.3390/su15065201 10.1016/j.tafmec.2022.103665 10.3390/app13010097 10.1007/s10706-023-02643-x 10.1016/j.oregeorev.2023.105790 10.3390/math11071650 10.3390/geosciences13100294 10.12989/cac.2024.33.1.055 10.1007/s41939-022-00137-6 10.1007/s00521-021-06004-8 10.22044/jme.2019.8839.1774 10.1007/s11831-023-10024-z 10.1007/s41939-022-00131-y 10.1016/j.enggeo.2013.12.009 10.3390/ma16103731 10.3390/min12060731 10.1016/j.trgeo.2020.100499 10.1016/j.engstruct.2021.113276 10.3311/PPci.13035 10.1007/s42947-022-00268-6 10.1007/s00366-020-00977-1 10.1007/s10921-020-00725-x 10.1007/s11053-021-09914-5 10.3390/min12121506 10.1016/j.enggeo.2005.06.006 10.1007/s10064-023-03537-1 10.3390/safety8020028 10.22214/ijraset.2022.43662 10.1016/j.asoc.2017.06.030 10.5802/crmeca.3 10.1109/ACCESS.2022.3199443 10.1016/j.ijmst.2020.06.008 10.1016/j.jksus.2023.102846 10.3390/app12178468 10.1007/s10706-018-0624-6 10.1590/0370-44672018720083 10.1007/s41062-020-00346-3 10.1016/j.measurement.2019.06.031 10.1016/j.petrol.2019.106349 10.1007/s10064-020-01906-8 10.1007/s11053-018-9383-6 10.1007/s12517-023-11268-6 10.1144/petgeo2018-126 10.3390/math10081283 10.1007/s12145-023-01145-x 10.1007/s00521-019-04418-z 10.1155/2021/2565488 10.1007/s00521-021-06204-2 10.3390/su15075642 10.1007/s00603-021-02503-1 10.1007/s10706-018-0551-6 10.3390/math10193490 10.1016/j.ijrmms.2014.11.009 10.1007/s41939-023-00191-8 10.1007/s10706-020-01464-6 10.1007/s12665-015-4106-3 10.1007/s12517-020-5273-4 10.4135/9781412983433 10.1007/978-3-031-34644-6_9 10.1007/s40515-023-00357-4 10.1007/978-981-19-6774-0_16 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s41939-024-00408-4 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2520-8179 |
| EndPage | 3325 |
| ExternalDocumentID | 10_1007_s41939_024_00408_4 |
| GroupedDBID | -EM 0R~ 406 AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEUYN AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c291t-f4735ed7e37778ff140e784d5890f3eeca0f0697513c939c54094550fd8d76123 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001191065500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2520-8160 |
| IngestDate | Tue Nov 18 20:58:48 EST 2025 Sat Nov 29 03:23:31 EST 2025 Fri Feb 21 02:39:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Gaussian process regression Uniaxial compressive strength Multicollinearity impact Intact rock |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-f4735ed7e37778ff140e784d5890f3eeca0f0697513c939c54094550fd8d76123 |
| ORCID | 0000-0001-9939-4844 0000-0003-1154-9608 |
| PageCount | 25 |
| ParticipantIDs | crossref_citationtrail_10_1007_s41939_024_00408_4 crossref_primary_10_1007_s41939_024_00408_4 springer_journals_10_1007_s41939_024_00408_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design |
| PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | Kahraman (CR22) 2014; 170 Hosseini, Khatti, Taiwo, Fissha, Grover, Ikeda, Pushkarna, Berhanu, Ali (CR19) 2023; 13 Yu, Zhou, Hu (CR74) 2023; 16 Daniel, Khatti, Grover (CR11) 2024; 33 Kumar, Samui (CR37) 2020; 38 Guido, Shaffiee Haghshenas, Shaffiee Haghshenas, Vitale, Astarita, Park, Geem (CR15) 2022; 8 Wang, Zhang, Zhou, Xue, Jia, Zhu (CR66) 2023 CR30 Teymen, Mengüç (CR61) 2020; 30 Mokhtari (CR51) 2022; 16 Sanei, Faramarzi, Fahimifar, Goli, Mehinrad, Rahmati (CR56) 2015; 75 Gupta, Natarajan (CR16) 2021; 33 Mahdiabadi, Khanlari (CR44) 2019; 63 Liu, Dai, Zhang, Liu (CR38) 2015; 73 Mokhtari, Behnia (CR50) 2019; 28 Zhang, Altalbawy, Gasmalla, Al-Khafaji, Iraji, Syah, Nehdi (CR75) 2023; 15 Matin, Farahzadi, Makaremi, Chelgani, Sattari (CR46) 2018; 70 Wang, Zhao, Liang, Wang (CR68) 2023 Yang, Wu, Zhou, Tang, Fu (CR72) 2022; 12 Ren, Wang, Li, Han (CR54) 2019; 37 Qiu, Yin, Pan, Wang, Zhang (CR52) 2022; 10 Ebdali, Khorasani, Salehin (CR12) 2020; 5 Rezaei, Asadizadeh (CR55) 2020; 11 Wang, Yang, Tang (CR64) 2020; 79 CR7 Shahani, Kamran, Zheng, Liu, Guo (CR57) 2021; 2021 Gareth, Daniela, Trevor, Robert (CR14) 2013 Zinno, Haghshenas, Guido, VItale (CR76) 2022; 10 Xue (CR71) 2022; 350 CR48 Chan, Leow, Bea, Cheng, Phoong, Hong, Chen (CR9) 2022; 10 Chen, Zhang, Wang, Yuan, Meng, Yang, Shen, Lu (CR10) 2022; 122 Aydin, Basu (CR4) 2005; 81 Khatti, Grover (CR27) 2023 Wang, Wan, Zhao (CR63) 2020; 348 Zinno, Haghshenas, Guido, Rashvand, Vitale, Sarhadi (CR77) 2022; 13 Asteris, Koopialipoor, Armaghani, Kotsonis, Lourenço (CR2) 2021; 33 Khatti, Grover (CR32) 2023 Smith (CR58) 1986 Matos, Dantas, Barreto (CR47) 2019; 72 Wang, Hasanipanah, Rashid, Le, Ulrikh (CR67) 2023; 16 Sun, Du, Liu (CR59) 2021; 54 Wei, Shahani, Zheng (CR69) 2023; 11 Khatti, Grover, Kim, Mawuntu, Park (CR36) 2024; 165 Khatti, Grover (CR29) 2023; 16 Haghshenas, Faradonbeh, Mikaeil, Haghshenas, Taheri, Saghatforoush, Dormishi (CR17) 2019; 146 CR13 Khatti, Grover (CR34) 2023 Barzegar, Sattarpour, Deo, Fijani, Adamowski (CR6) 2020; 32 Khatti, Grover (CR31) 2023 Li, Zou, Zhang, Ma, Zhu, Li, Cao (CR39) 2019; 183 Khatti, Grover (CR26) 2022; 10 Li, Zhou, Dias, Du, Khandelwal (CR42) 2023; 13 Mahmoodzadeh, Mohammadi, Ibrahim, Abdulhamid, Salim, Ali, Majeed (CR45) 2021; 27 Khatti, Grover (CR33) 2023; 6 Asteris, Lourenço, Hajihassani, Adami, Lemonis, Skentou, Marques, Nguyen, Rodrigues, Varum (CR3) 2021; 248 Li, Armaghani, Zhou, Lai, Hasanipanah (CR40) 2020; 39 Aldeeky, Al Hattamleh (CR1) 2018; 36 Khatti, Grover (CR28) 2023 Mohamad, Armaghani, Momeni, Yazdavar, Ebrahimi (CR49) 2018; 30 Ceryan, Samui (CR8) 2020; 13 Jin, Zhao, Ma (CR20) 2022; 12 Jing, Nikafshan Rad, Hasanipanah, Jahed Armaghani, Qasem (CR21) 2021; 37 CR24 Tariq, Abdulraheem, Mahmoud, Elkatatny, Ali, Al-Shehri, Belayneh (CR60) 2019; 25 Wang, Wan, Zhao (CR65) 2020; 348 CR23 Hassan, Arman (CR18) 2022; 12 Rabe, Silva, Lopes, da Silva Nunes, Guizan Silva (CR53) 2018; 18 CR62 Li, Segarra, Sanchidrián, Gómez, Fernández, Navarro, Bernardini (CR43) 2023 Khatti, Samadi, Grover (CR35) 2023 Li, Zhou, Dias, Gui (CR41) 2022; 12 Xu, Tan, Sun, Ma, Liu, Wang (CR70) 2023; 15 Khatti, Grover (CR25) 2022; 13 Bahmed, Khatti, Grover (CR5) 2024; 83 Yu, Shi, Zhou, Gou, Rao, Huo (CR73) 2021; 30 A Mahmoodzadeh (408_CR45) 2021; 27 M Sanei (408_CR56) 2015; 75 C Li (408_CR42) 2023; 13 408_CR48 B Xu (408_CR70) 2023; 15 IT Bahmed (408_CR5) 2024; 83 N Mahdiabadi (408_CR44) 2019; 63 A Teymen (408_CR61) 2020; 30 J Khatti (408_CR25) 2022; 13 J Khatti (408_CR33) 2023; 6 YMPD Matos (408_CR47) 2019; 72 NM Shahani (408_CR57) 2021; 2021 M Ebdali (408_CR12) 2020; 5 H Wang (408_CR66) 2023 M Wang (408_CR65) 2020; 348 X Xue (408_CR71) 2022; 350 R Barzegar (408_CR6) 2020; 32 PG Asteris (408_CR3) 2021; 248 J Khatti (408_CR29) 2023; 16 S Hosseini (408_CR19) 2023; 13 408_CR13 C Rabe (408_CR53) 2018; 18 H Sun (408_CR59) 2021; 54 PG Asteris (408_CR2) 2021; 33 M Mokhtari (408_CR50) 2019; 28 J Khatti (408_CR36) 2024; 165 X Zhang (408_CR75) 2023; 15 M Kumar (408_CR37) 2020; 38 H Jing (408_CR21) 2021; 37 J Qiu (408_CR52) 2022; 10 M Mokhtari (408_CR51) 2022; 16 J Khatti (408_CR34) 2023 408_CR23 S Chen (408_CR10) 2022; 122 408_CR24 408_CR7 Z Yu (408_CR73) 2021; 30 J Khatti (408_CR31) 2023 Y Wang (408_CR67) 2023; 16 M Rezaei (408_CR55) 2020; 11 C Daniel (408_CR11) 2024; 33 J Khatti (408_CR26) 2022; 10 J Khatti (408_CR35) 2023 R Zinno (408_CR77) 2022; 13 SAİR Kahraman (408_CR22) 2014; 170 Z Wang (408_CR64) 2020; 79 E Li (408_CR43) 2023 M Wang (408_CR68) 2023 N Li (408_CR39) 2019; 183 C Li (408_CR41) 2022; 12 408_CR62 Z Yu (408_CR74) 2023; 16 G Guido (408_CR15) 2022; 8 Q Ren (408_CR54) 2019; 37 J Khatti (408_CR28) 2023 J Khatti (408_CR32) 2023 J Gareth (408_CR14) 2013 X Jin (408_CR20) 2022; 12 X Wei (408_CR69) 2023; 11 Z Yang (408_CR72) 2022; 12 SS Haghshenas (408_CR17) 2019; 146 GN Smith (408_CR58) 1986 Z Tariq (408_CR60) 2019; 25 MY Hassan (408_CR18) 2022; 12 R Zinno (408_CR76) 2022; 10 X Liu (408_CR38) 2015; 73 SS Matin (408_CR46) 2018; 70 M Wang (408_CR63) 2020; 348 ET Mohamad (408_CR49) 2018; 30 JYL Chan (408_CR9) 2022; 10 D Li (408_CR40) 2020; 39 J Khatti (408_CR27) 2023 D Gupta (408_CR16) 2021; 33 N Ceryan (408_CR8) 2020; 13 A Aydin (408_CR4) 2005; 81 408_CR30 H Aldeeky (408_CR1) 2018; 36 |
| References_xml | – volume: 13 start-page: 18582 issue: 1 year: 2023 ident: CR19 article-title: Assessment of the ground vibration during blasting in mining projects using different computational approaches publication-title: Sci Rep doi: 10.1038/s41598-023-46064-5 – volume: 12 start-page: 20969 issue: 1 year: 2022 ident: CR18 article-title: Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks publication-title: Sci Rep doi: 10.1038/s41598-022-25633-0 – year: 2023 ident: CR68 article-title: A comparative study on the development of hybrid SSA-RF and PSO-RF models for predicting the uniaxial compressive strength of rocks publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2023.e02191 – volume: 165 start-page: 105912 year: 2024 ident: CR36 article-title: Prediction of ultimate bearing capacity of shallow foundations on cohesionless soil using hybrid lstm and rvm approaches: an extended investigation of multicollinearity publication-title: Comput Geotech doi: 10.1016/j.compgeo.2023.105912 – volume: 18 start-page: 05018005 issue: 8 year: 2018 ident: CR53 article-title: Development of a new correlation to estimate the unconfined compressive strength of a Chicontepec formation publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0001134 – year: 2023 ident: CR27 article-title: Prediction of compaction parameters for fine-grained soil: critical comparison of the deep learning and standalone models publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.12.034 – volume: 30 start-page: 1635 year: 2018 end-page: 1646 ident: CR49 article-title: Rock strength estimation: a PSO-based BP approach publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2728-3 – volume: 350 start-page: 159 issue: G1 year: 2022 end-page: 170 ident: CR71 article-title: A novel model for prediction of uniaxial compressive strength of rocks publication-title: Comptes Rendus Mécanique doi: 10.5802/crmeca.109 – volume: 15 start-page: 5201 issue: 6 year: 2023 ident: CR70 article-title: Study on the prediction of the uniaxial compressive strength of rock based on the SSA-XGBoost model publication-title: Sustainability doi: 10.3390/su15065201 – volume: 122 start-page: 103665 year: 2022 ident: CR10 article-title: Experimental study on the impact disturbance damage of weakly cemented rock based on fractal characteristics and energy dissipation regulation publication-title: Theoret Appl Fract Mech doi: 10.1016/j.tafmec.2022.103665 – volume: 13 start-page: 97 issue: 1 year: 2022 ident: CR77 article-title: The state of the art of artificial intelligence approaches and new technologies in structural health monitoring of bridges publication-title: Appl Sci doi: 10.3390/app13010097 – year: 2023 ident: CR35 article-title: Estimation of settlement of pile group in clay using soft computing techniques publication-title: Geotechn Geol Eng doi: 10.1007/s10706-023-02643-x – year: 2023 ident: CR43 article-title: Application of percentile color intensities of borehole images for automatic fluorite grade assessment publication-title: Ore Geol Rev doi: 10.1016/j.oregeorev.2023.105790 – volume: 11 start-page: 1650 issue: 7 year: 2023 ident: CR69 article-title: Predictive modeling of the uniaxial compressive strength of rocks using an artificial neural network approach publication-title: Mathematics doi: 10.3390/math11071650 – volume: 13 start-page: 294 issue: 10 year: 2023 ident: CR42 article-title: Comparative evaluation of empirical approaches and artificial intelligence techniques for predicting uniaxial compressive strength of rock publication-title: Geosciences doi: 10.3390/geosciences13100294 – volume: 33 start-page: 55 issue: 1 year: 2024 ident: CR11 article-title: Assessment of compressive strength of high-performance concrete using soft computing approaches publication-title: Comput Concrete doi: 10.12989/cac.2024.33.1.055 – year: 2023 ident: CR34 article-title: Prediction of UCS of fine-grained soil based on machine learning part 1: multivariable regression analysis, gaussian process regression, and gene expression programming publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-022-00137-6 – volume: 33 start-page: 13089 issue: 19 year: 2021 end-page: 13121 ident: CR2 article-title: Prediction of cement-based mortars compressive strength using machine learning techniques publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06004-8 – volume: 11 start-page: 231 issue: 1 year: 2020 end-page: 246 ident: CR55 article-title: Predicting unconfined compressive strength of intact rock using new hybrid intelligent models publication-title: J Min Environ doi: 10.22044/jme.2019.8839.1774 – year: 2023 ident: CR31 article-title: A scientometrics review of soil properties prediction using soft computing approaches publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-10024-z – volume: 6 start-page: 97 issue: 1 year: 2023 end-page: 121 ident: CR33 article-title: Prediction of soaked CBR of fine-grained soils using soft computing techniques publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-022-00131-y – volume: 170 start-page: 33 year: 2014 end-page: 42 ident: CR22 article-title: The determination of uniaxial compressive strength from point load strength for pyroclastic rocks publication-title: Eng Geol doi: 10.1016/j.enggeo.2013.12.009 – volume: 16 start-page: 3731 issue: 10 year: 2023 ident: CR67 article-title: Advanced tree-based techniques for predicting unconfined compressive strength of rock material employing nondestructive and petrographic tests publication-title: Materials doi: 10.3390/ma16103731 – year: 1986 ident: CR58 publication-title: Probability and statistics in civil engineering—an introduction – volume: 12 start-page: 731 issue: 6 year: 2022 ident: CR72 article-title: Assessment of machine learning models for the prediction of rate-dependent compressive strength of rocks publication-title: Minerals doi: 10.3390/min12060731 – volume: 27 start-page: 100499 year: 2021 ident: CR45 article-title: Artificial intelligence forecasting models of uniaxial compressive strength publication-title: Transp Geotech doi: 10.1016/j.trgeo.2020.100499 – volume: 248 start-page: 113276 year: 2021 ident: CR3 article-title: Soft computing-based models for the prediction of masonry compressive strength publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.113276 – volume: 63 start-page: 104 issue: 1 year: 2019 end-page: 114 ident: CR44 article-title: Prediction of uniaxial compressive strength and modulus of elasticity in calcareous mudstones using neural networks, fuzzy systems, and regression analysis publication-title: Period Polytech Civil Eng doi: 10.3311/PPci.13035 – year: 2023 ident: CR28 article-title: CBR prediction of pavement materials in unsoaked condition using LSSVM, LSTM-RNN, and ANN approaches publication-title: J Pavement Res Technol Int doi: 10.1007/s42947-022-00268-6 – volume: 37 start-page: 2717 year: 2021 end-page: 2734 ident: CR21 article-title: Design and implementation of a new tuned hybrid intelligent model to predict the uniaxial compressive strength of the rock using SFS-ANFIS publication-title: Eng Comput doi: 10.1007/s00366-020-00977-1 – volume: 39 start-page: 1 year: 2020 end-page: 14 ident: CR40 article-title: A GMDH predictive model to predict rock material strength using three nondestructive tests publication-title: J Nondestr Eval doi: 10.1007/s10921-020-00725-x – volume: 30 start-page: 4063 year: 2021 end-page: 4078 ident: CR73 article-title: Machine-learning-aided determination of post-blast ore boundary for controlling ore loss and dilution publication-title: Nat Resour Res doi: 10.1007/s11053-021-09914-5 – volume: 12 start-page: 1506 issue: 12 year: 2022 ident: CR20 article-title: Application of a hybrid machine learning model for the prediction of compressive strength and elastic modulus of rocks publication-title: Minerals doi: 10.3390/min12121506 – volume: 81 start-page: 1 issue: 1 year: 2005 end-page: 14 ident: CR4 article-title: The Schmidt hammer in rock material characterization publication-title: Eng Geol doi: 10.1016/j.enggeo.2005.06.006 – ident: CR30 – volume: 83 start-page: 46 issue: 1 year: 2024 ident: CR5 article-title: Hybrid soft computing models for predicting unconfined compressive strength of lime stabilized soil using strength property of virgin cohesive soil publication-title: Bull Eng Geol Env doi: 10.1007/s10064-023-03537-1 – year: 2013 ident: CR14 publication-title: An introduction to statistical learning: with applications in R – volume: 8 start-page: 28 issue: 2 year: 2022 ident: CR15 article-title: Evaluation of contributing factors affecting number of vehicles involved in crashes using machine learning techniques in rural roads of Cosenza, Italy publication-title: Safety doi: 10.3390/safety8020028 – volume: 10 start-page: 4934 issue: 5 year: 2022 end-page: 4961 ident: CR26 article-title: Determination of suitable hyperparameters of artificial neural network for the best prediction of geotechnical properties of soil publication-title: Int J Res Appl Sci Eng Technol doi: 10.22214/ijraset.2022.43662 – volume: 70 start-page: 980 year: 2018 end-page: 987 ident: CR46 article-title: Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.030 – volume: 348 start-page: 3 issue: 1 year: 2020 end-page: 32 ident: CR65 article-title: Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model publication-title: Comptes Rendus Mécanique doi: 10.5802/crmeca.3 – volume: 10 start-page: 88058 year: 2022 end-page: 88078 ident: CR76 article-title: Artificial intelligence and structural health monitoring of bridges: a review of the state-of-the-art publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3199443 – volume: 30 start-page: 785 issue: 6 year: 2020 end-page: 797 ident: CR61 article-title: Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2020.06.008 – year: 2023 ident: CR66 article-title: Prediction of triaxial mechanical properties of rocks based on mesoscopic finite element numerical simulation and multi-objective machine learning publication-title: J King Saud Univ-Sci doi: 10.1016/j.jksus.2023.102846 – volume: 12 start-page: 8468 issue: 17 year: 2022 ident: CR41 article-title: A kernel extreme learning machine–grey wolf optimizer (KELM-GWO) model to predict uniaxial compressive strength of rock publication-title: Appl Sci doi: 10.3390/app12178468 – volume: 37 start-page: 475 year: 2019 end-page: 489 ident: CR54 article-title: Prediction of rock compressive strength using machine learning algorithms based on spectrum analysis of geological hammer publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0624-6 – volume: 72 start-page: 193 year: 2019 end-page: 198 ident: CR47 article-title: A Takagi-Sugeno fuzzy model for predicting the clean rock joints shear strength publication-title: REM-Int Eng J doi: 10.1590/0370-44672018720083 – volume: 5 start-page: 1 year: 2020 end-page: 14 ident: CR12 article-title: A comparative study of various hybrid neural networks and regression analysis to predict unconfined compressive strength of travertine publication-title: Innov Infrastr Solut doi: 10.1007/s41062-020-00346-3 – volume: 348 start-page: 3 issue: 1 year: 2020 end-page: 32 ident: CR63 article-title: Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model publication-title: Comptes Rendus Mécanique doi: 10.5802/crmeca.3 – ident: CR23 – volume: 146 start-page: 159 year: 2019 end-page: 170 ident: CR17 article-title: A new conventional criterion for the performance evaluation of gang saw machines publication-title: Measurement doi: 10.1016/j.measurement.2019.06.031 – volume: 183 start-page: 106349 year: 2019 ident: CR39 article-title: Rock brittleness evaluation based on energy dissipation under triaxial compression publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2019.106349 – volume: 79 start-page: 5415 issue: 10 year: 2020 end-page: 5432 ident: CR64 article-title: Mechanical behavior of different sedimentary rocks in the Brazilian test publication-title: Bull Eng Geol Env doi: 10.1007/s10064-020-01906-8 – volume: 28 start-page: 223 year: 2019 end-page: 239 ident: CR50 article-title: Comparison of LLNF, ANN, and COA-ANN techniques in modeling the uniaxial compressive strength and static Young's modulus of limestone of the Dalan formation publication-title: Nat Resour Res doi: 10.1007/s11053-018-9383-6 – volume: 16 start-page: 208 issue: 3 year: 2023 ident: CR29 article-title: Assessment of fine-grained soil compaction parameters using advanced soft computing techniques publication-title: Arab J Geosci doi: 10.1007/s12517-023-11268-6 – ident: CR48 – volume: 25 start-page: 389 issue: 4 year: 2019 end-page: 399 ident: CR60 article-title: A new look into the prediction of static Young's modulus and unconfined compressive strength of carbonate using artificial intelligence tools publication-title: Pet Geosci doi: 10.1144/petgeo2018-126 – volume: 10 start-page: 1283 issue: 8 year: 2022 ident: CR9 article-title: Mitigating the multicollinearity problem and its machine learning approach: a review publication-title: Mathematics doi: 10.3390/math10081283 – volume: 16 start-page: 4113 year: 2023 end-page: 4129 ident: CR74 article-title: Prediction of compressive strength of granite: use of machine learning techniques and intelligent system publication-title: Earth Sci Inform doi: 10.1007/s12145-023-01145-x – volume: 32 start-page: 9065 year: 2020 end-page: 9080 ident: CR6 article-title: An ensemble tree-based machine learning model for predicting the uniaxial compressive strength of travertine rocks publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04418-z – ident: CR13 – volume: 2021 start-page: 1 year: 2021 end-page: 19 ident: CR57 article-title: Application of gradient boosting machine learning algorithms to predict uniaxial compressive strength of soft sedimentary rocks at Thar Coalfield publication-title: Adv Civil Eng doi: 10.1155/2021/2565488 – volume: 33 start-page: 15843 year: 2021 end-page: 15850 ident: CR16 article-title: Prediction of uniaxial compressive strength of rock samples using density weighted least squares twin support vector regression publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06204-2 – volume: 15 start-page: 5642 issue: 7 year: 2023 ident: CR75 article-title: Performance of statistical and intelligent methods in estimating rock compressive strength publication-title: Sustainability doi: 10.3390/su15075642 – volume: 16 start-page: 95 issue: 1 year: 2022 ident: CR51 article-title: Predicting the Young's modulus and uniaxial compressive strength of a typical limestone using the principal component regression and particle swarm optimization publication-title: J Eng Geol – volume: 54 start-page: 4225 issue: 8 year: 2021 end-page: 4237 ident: CR59 article-title: Uniaxial compressive strength determination of rocks using X-ray computed tomography and convolutional neural networks publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-021-02503-1 – ident: CR7 – volume: 36 start-page: 3511 year: 2018 end-page: 3525 ident: CR1 article-title: Prediction of engineering properties of basalt rock in Jordan using ultrasonic pulse velocity test publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0551-6 – volume: 10 start-page: 3490 issue: 19 year: 2022 ident: CR52 article-title: Prediction of uniaxial compressive strength in rocks based on extreme learning machine improved with metaheuristic algorithm publication-title: Mathematics doi: 10.3390/math10193490 – volume: 75 start-page: 119 year: 2015 end-page: 131 ident: CR56 article-title: Shear strength of discontinuities in sedimentary rock masses based on direct shear tests publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.11.009 – year: 2023 ident: CR32 article-title: Prediction of UCS of fine-grained soil based on machine learning part 2: comparison between hybrid relevance vector machine and Gaussian process regression publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00191-8 – volume: 38 start-page: 6717 year: 2020 end-page: 6730 ident: CR37 article-title: Reliability analysis of settlement of pile group in clay using LSSVM, GMDH publication-title: GPR Geotech Geol Eng doi: 10.1007/s10706-020-01464-6 – volume: 73 start-page: 5933 year: 2015 end-page: 5949 ident: CR38 article-title: Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4106-3 – ident: CR62 – ident: CR24 – volume: 13 start-page: 1074 year: 2022 end-page: 1085 ident: CR25 article-title: A study of relationship among correlation coefficient, performance, and overfitting using regression analysis publication-title: Int J Sci Eng Res – volume: 13 start-page: 1 year: 2020 end-page: 18 ident: CR8 article-title: Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree publication-title: Arab J Geosci doi: 10.1007/s12517-020-5273-4 – ident: 408_CR48 doi: 10.4135/9781412983433 – volume: 16 start-page: 95 issue: 1 year: 2022 ident: 408_CR51 publication-title: J Eng Geol – volume: 146 start-page: 159 year: 2019 ident: 408_CR17 publication-title: Measurement doi: 10.1016/j.measurement.2019.06.031 – volume: 39 start-page: 1 year: 2020 ident: 408_CR40 publication-title: J Nondestr Eval doi: 10.1007/s10921-020-00725-x – volume: 348 start-page: 3 issue: 1 year: 2020 ident: 408_CR63 publication-title: Comptes Rendus Mécanique doi: 10.5802/crmeca.3 – volume: 32 start-page: 9065 year: 2020 ident: 408_CR6 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04418-z – volume: 12 start-page: 20969 issue: 1 year: 2022 ident: 408_CR18 publication-title: Sci Rep doi: 10.1038/s41598-022-25633-0 – volume: 16 start-page: 3731 issue: 10 year: 2023 ident: 408_CR67 publication-title: Materials doi: 10.3390/ma16103731 – volume: 12 start-page: 8468 issue: 17 year: 2022 ident: 408_CR41 publication-title: Appl Sci doi: 10.3390/app12178468 – volume: 30 start-page: 1635 year: 2018 ident: 408_CR49 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2728-3 – volume: 72 start-page: 193 year: 2019 ident: 408_CR47 publication-title: REM-Int Eng J doi: 10.1590/0370-44672018720083 – volume: 13 start-page: 18582 issue: 1 year: 2023 ident: 408_CR19 publication-title: Sci Rep doi: 10.1038/s41598-023-46064-5 – volume: 75 start-page: 119 year: 2015 ident: 408_CR56 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.11.009 – volume: 33 start-page: 15843 year: 2021 ident: 408_CR16 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06204-2 – volume: 79 start-page: 5415 issue: 10 year: 2020 ident: 408_CR64 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-020-01906-8 – volume: 10 start-page: 88058 year: 2022 ident: 408_CR76 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3199443 – volume: 70 start-page: 980 year: 2018 ident: 408_CR46 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.030 – ident: 408_CR62 – ident: 408_CR24 doi: 10.1007/978-3-031-34644-6_9 – volume: 11 start-page: 231 issue: 1 year: 2020 ident: 408_CR55 publication-title: J Min Environ doi: 10.22044/jme.2019.8839.1774 – volume: 12 start-page: 1506 issue: 12 year: 2022 ident: 408_CR20 publication-title: Minerals doi: 10.3390/min12121506 – volume: 27 start-page: 100499 year: 2021 ident: 408_CR45 publication-title: Transp Geotech doi: 10.1016/j.trgeo.2020.100499 – volume: 63 start-page: 104 issue: 1 year: 2019 ident: 408_CR44 publication-title: Period Polytech Civil Eng doi: 10.3311/PPci.13035 – volume: 2021 start-page: 1 year: 2021 ident: 408_CR57 publication-title: Adv Civil Eng doi: 10.1155/2021/2565488 – volume: 33 start-page: 55 issue: 1 year: 2024 ident: 408_CR11 publication-title: Comput Concrete doi: 10.12989/cac.2024.33.1.055 – volume: 10 start-page: 4934 issue: 5 year: 2022 ident: 408_CR26 publication-title: Int J Res Appl Sci Eng Technol doi: 10.22214/ijraset.2022.43662 – ident: 408_CR30 doi: 10.1007/s40515-023-00357-4 – year: 2023 ident: 408_CR43 publication-title: Ore Geol Rev doi: 10.1016/j.oregeorev.2023.105790 – volume: 5 start-page: 1 year: 2020 ident: 408_CR12 publication-title: Innov Infrastr Solut doi: 10.1007/s41062-020-00346-3 – volume: 30 start-page: 785 issue: 6 year: 2020 ident: 408_CR61 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2020.06.008 – volume-title: Probability and statistics in civil engineering—an introduction year: 1986 ident: 408_CR58 – ident: 408_CR23 doi: 10.1007/978-981-19-6774-0_16 – year: 2023 ident: 408_CR68 publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2023.e02191 – volume: 12 start-page: 731 issue: 6 year: 2022 ident: 408_CR72 publication-title: Minerals doi: 10.3390/min12060731 – volume: 350 start-page: 159 issue: G1 year: 2022 ident: 408_CR71 publication-title: Comptes Rendus Mécanique doi: 10.5802/crmeca.109 – volume: 36 start-page: 3511 year: 2018 ident: 408_CR1 publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0551-6 – volume: 13 start-page: 294 issue: 10 year: 2023 ident: 408_CR42 publication-title: Geosciences doi: 10.3390/geosciences13100294 – volume: 348 start-page: 3 issue: 1 year: 2020 ident: 408_CR65 publication-title: Comptes Rendus Mécanique doi: 10.5802/crmeca.3 – volume: 25 start-page: 389 issue: 4 year: 2019 ident: 408_CR60 publication-title: Pet Geosci doi: 10.1144/petgeo2018-126 – volume: 30 start-page: 4063 year: 2021 ident: 408_CR73 publication-title: Nat Resour Res doi: 10.1007/s11053-021-09914-5 – volume: 73 start-page: 5933 year: 2015 ident: 408_CR38 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4106-3 – year: 2023 ident: 408_CR27 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.12.034 – volume: 122 start-page: 103665 year: 2022 ident: 408_CR10 publication-title: Theoret Appl Fract Mech doi: 10.1016/j.tafmec.2022.103665 – year: 2023 ident: 408_CR31 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-10024-z – volume: 37 start-page: 475 year: 2019 ident: 408_CR54 publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0624-6 – year: 2023 ident: 408_CR34 publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-022-00137-6 – ident: 408_CR13 – volume: 8 start-page: 28 issue: 2 year: 2022 ident: 408_CR15 publication-title: Safety doi: 10.3390/safety8020028 – volume: 10 start-page: 1283 issue: 8 year: 2022 ident: 408_CR9 publication-title: Mathematics doi: 10.3390/math10081283 – volume: 15 start-page: 5642 issue: 7 year: 2023 ident: 408_CR75 publication-title: Sustainability doi: 10.3390/su15075642 – volume: 81 start-page: 1 issue: 1 year: 2005 ident: 408_CR4 publication-title: Eng Geol doi: 10.1016/j.enggeo.2005.06.006 – volume: 10 start-page: 3490 issue: 19 year: 2022 ident: 408_CR52 publication-title: Mathematics doi: 10.3390/math10193490 – volume: 16 start-page: 4113 year: 2023 ident: 408_CR74 publication-title: Earth Sci Inform doi: 10.1007/s12145-023-01145-x – volume: 18 start-page: 05018005 issue: 8 year: 2018 ident: 408_CR53 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0001134 – volume: 6 start-page: 97 issue: 1 year: 2023 ident: 408_CR33 publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-022-00131-y – volume: 83 start-page: 46 issue: 1 year: 2024 ident: 408_CR5 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-023-03537-1 – volume: 165 start-page: 105912 year: 2024 ident: 408_CR36 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2023.105912 – volume: 183 start-page: 106349 year: 2019 ident: 408_CR39 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2019.106349 – year: 2023 ident: 408_CR66 publication-title: J King Saud Univ-Sci doi: 10.1016/j.jksus.2023.102846 – volume-title: An introduction to statistical learning: with applications in R year: 2013 ident: 408_CR14 – year: 2023 ident: 408_CR32 publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00191-8 – year: 2023 ident: 408_CR28 publication-title: J Pavement Res Technol Int doi: 10.1007/s42947-022-00268-6 – year: 2023 ident: 408_CR35 publication-title: Geotechn Geol Eng doi: 10.1007/s10706-023-02643-x – volume: 15 start-page: 5201 issue: 6 year: 2023 ident: 408_CR70 publication-title: Sustainability doi: 10.3390/su15065201 – volume: 16 start-page: 208 issue: 3 year: 2023 ident: 408_CR29 publication-title: Arab J Geosci doi: 10.1007/s12517-023-11268-6 – volume: 248 start-page: 113276 year: 2021 ident: 408_CR3 publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.113276 – volume: 37 start-page: 2717 year: 2021 ident: 408_CR21 publication-title: Eng Comput doi: 10.1007/s00366-020-00977-1 – volume: 11 start-page: 1650 issue: 7 year: 2023 ident: 408_CR69 publication-title: Mathematics doi: 10.3390/math11071650 – volume: 13 start-page: 1074 year: 2022 ident: 408_CR25 publication-title: Int J Sci Eng Res – volume: 54 start-page: 4225 issue: 8 year: 2021 ident: 408_CR59 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-021-02503-1 – volume: 38 start-page: 6717 year: 2020 ident: 408_CR37 publication-title: GPR Geotech Geol Eng doi: 10.1007/s10706-020-01464-6 – volume: 28 start-page: 223 year: 2019 ident: 408_CR50 publication-title: Nat Resour Res doi: 10.1007/s11053-018-9383-6 – volume: 33 start-page: 13089 issue: 19 year: 2021 ident: 408_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06004-8 – volume: 170 start-page: 33 year: 2014 ident: 408_CR22 publication-title: Eng Geol doi: 10.1016/j.enggeo.2013.12.009 – ident: 408_CR7 – volume: 13 start-page: 97 issue: 1 year: 2022 ident: 408_CR77 publication-title: Appl Sci doi: 10.3390/app13010097 – volume: 13 start-page: 1 year: 2020 ident: 408_CR8 publication-title: Arab J Geosci doi: 10.1007/s12517-020-5273-4 |
| SSID | ssj0002734780 ssib042110740 |
| Score | 2.3972428 |
| Snippet | Rock strength is the most deterministic parameter for studying geological disasters in resource development and underground engineering construction. However,... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 3301 |
| SubjectTerms | Characterization and Evaluation of Materials Engineering Mathematical Applications in the Physical Sciences Mechanical Engineering Numerical and Computational Physics Original Paper Simulation Solid Mechanics |
| Title | Assessment of the uniaxial compressive strength of intact rocks: an extended comparison between machine and advanced machine learning models |
| URI | https://link.springer.com/article/10.1007/s41939-024-00408-4 |
| Volume | 7 |
| WOSCitedRecordID | wos001191065500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2520-8179 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: P5Z dateStart: 20240701 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2520-8179 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: M7S dateStart: 20240701 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2520-8179 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: BENPR dateStart: 20240701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2520-8179 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: RSV dateStart: 20180301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6Js8oEbWIoTJ7a5VYiKU4XY1FuUeCllSVGTVnwEH43tOhGVUCW4RpMoGo89M8mb9wA4S3AeESkwYmEWI6ICcw5iESCZBNJOpJmKNnBiE7TXY_0-v_VDYWWNdq9_SbqTuhl2I6bW4MjkFGQjjyGyDFZMumN2O97dP9VRRFxL4xlMXjyBC3USamFseiWGk8BPz_z-2PkMNf971GWd7ub_3ncLbPgqE3ZmYbENllSxA9Z_cA_ugq9Ow8kJRxqaOhBOimH2aeIRWpy5w8dOFbTDJMWgerZGw6LKRAVNznstL2FWwPoTOhSNnCH0yC_47mCayphJWCMNmoterGIAnRJPuQceu9cPVzfISzMgEXJcIW0Vi5WkKqKUMq1Nm6YoIzJmPNCRUiILdJBwGuNIGC-I2LaRphnSkklqGV_2QasYFeoAwBxjmeuY5jLhJMkijnMtTBURY1P4RxFvA1wvRyo8b7mVz3hLG8Zl5-nUeDp1nk5JG5w393zMWDsWWl_UK5j6HVwuMD_8m_kRWAtdEFhc2jFoVeOJOgGrYloNy_GpC91v3JXmFw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBNA02bNq1vQxyKc4hO2Vtpc5nz0snaDX-EP9okS4sDGehrOS3l5DTnnOY73wfASYBTj3CGUegmPiLCUfsgZg7igcP1RJqqaB0jNkHb7bDbje7sUFheot3LI0mzU1fDbkTVGhFSOQXpyAsRmQcLRGUsDeS7f3gqo4iYlsYymLxYAhdqJNRcX_VKIQ4cOz3z-2OnM9T08ajJOs21_73vOli1VSZsTMJiA8yJbBOs_OAe3AJfjYqTEw4kVHUgHGX95FPFI9Q4c4OPHQuoh0myXvGsjfpZkbACqpz3mp_DJIPlL3TIKjlDaJFf8N3ANIUy47BEGlQXrVhFDxolnnwbPDYvOxdXyEozIOZGuEBSKxYLToVHKQ2lVG2aoCHhfhg50hOCJY50goj62GPKC8zXbaRqhiQPOdWMLzuglg0ysQtgijFPpU9THkQkSLwIp5KpKsLHqvD3vKgOcLkcMbO85Vo-4y2uGJeNp2Pl6dh4OiZ1cFrd8zFh7ZhpfVauYGy_4HyG-d7fzI_B0lXnthW3rts3-2DZNQGhMWoHoFYMR-IQLLJx0c-HRyaMvwGtiej7 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBNw5o2bVrfhjoUZQy8sLfS5jLnpRtbN_wR_miTLC0byEB8LaelnJz0nK855_sAOAtw6hHOMArdxEdEOOo7iJmDeOBwPZGmKlrHiE3QZjNst6PW1BS_6XYvjiQnMw2apSnLa30ua-XgG1F1R4RUfkE6CkNEFsES0aJBGq8_vhQRRQy8sWwmb5bMhRo5NddXuCnEgWMnaX5_7Gy2mj0qNRmosfH_d98E67b6hPVJuGyBBZFtg7UpTsId8F0vuTphT0JVH8JR1k2-VJxC3X9u-mbHAuohk6yTv2qjbpYnLIcqF74PL2GSweLXOmSlzCG0HWHw07RvCmXGYdGBUF60IhYdaBR6hrvguXHzdHWLrGQDYm6EcyS1krHgVHiU0lBKBd8EDQn3w8iRnhAscaQTRNTHHlNeYL6GlwokSR5yqplg9kAl62ViH8AUY55Kn6Y8iEiQeBFOJVPVhY8VIPC8qApwsTQxs3zmWlbjIy6ZmI2nY-Xp2Hg6JlVwXt7Tn7B5zLW-KFYztjt7OMf84G_mp2Cldd2IH-6a94dg1TXxoFvXjkAlH4zEMVhm47w7HJyYiP4BBc3x3w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+uniaxial+compressive+strength+of+intact+rocks%3A+an+extended+comparison+between+machine+and+advanced+machine+learning+models&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Khatti%2C+Jitendra&rft.au=Grover%2C+Kamaldeep+Singh&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=4&rft.spage=3301&rft.epage=3325&rft_id=info:doi/10.1007%2Fs41939-024-00408-4&rft.externalDocID=10_1007_s41939_024_00408_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |