Extended Feature Pyramid Network for Small Object Detection

Small object detection remains an unsolved challenge because it is hard to extract the information of small objects with only a few pixels. While scale-level corresponding detection in feature pyramid network alleviates this problem, we find feature coupling of various scales still impairs the perfo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on multimedia Ročník 24; s. 1968 - 1979
Hlavní autoři: Deng, Chunfang, Wang, Mengmeng, Liu, Liang, Liu, Yong, Jiang, Yunliang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1520-9210, 1941-0077
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Small object detection remains an unsolved challenge because it is hard to extract the information of small objects with only a few pixels. While scale-level corresponding detection in feature pyramid network alleviates this problem, we find feature coupling of various scales still impairs the performance of small objects. In this paper, we propose an extended feature pyramid network (EFPN) with an extra high-resolution pyramid level specialized for small object detection. Specifically, we design a novel module, named feature texture transfer (FTT), which is used to super-resolve features and extract credible regional details simultaneously. Moreover, we introduce a cross resolution distillation mechanism to transfer the ability of perceiving details across the scales of the network, where a foreground-background-balanced loss function is designed to alleviate area imbalance of foreground and background. In our experiments, the proposed EFPN is efficient on both computation and memory, and yields state-of-the-art results on small traffic-sign dataset Tsinghua-Tencent 100 K and small category of general object detection dataset MS COCO.
AbstractList Small object detection remains an unsolved challenge because it is hard to extract the information of small objects with only a few pixels. While scale-level corresponding detection in feature pyramid network alleviates this problem, we find feature coupling of various scales still impairs the performance of small objects. In this paper, we propose an extended feature pyramid network (EFPN) with an extra high-resolution pyramid level specialized for small object detection. Specifically, we design a novel module, named feature texture transfer (FTT), which is used to super-resolve features and extract credible regional details simultaneously. Moreover, we introduce a cross resolution distillation mechanism to transfer the ability of perceiving details across the scales of the network, where a foreground-background-balanced loss function is designed to alleviate area imbalance of foreground and background. In our experiments, the proposed EFPN is efficient on both computation and memory, and yields state-of-the-art results on small traffic-sign dataset Tsinghua-Tencent 100 K and small category of general object detection dataset MS COCO.
Author Jiang, Yunliang
Liu, Yong
Deng, Chunfang
Wang, Mengmeng
Liu, Liang
Author_xml – sequence: 1
  givenname: Chunfang
  orcidid: 0000-0001-9476-3014
  surname: Deng
  fullname: Deng, Chunfang
  email: dengcf@zju.edu.cn
  organization: Advanced Perception on Robotics and Intelligent Learning Laboratory, College of Control Science and Enginneering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Mengmeng
  orcidid: 0000-0003-4035-0630
  surname: Wang
  fullname: Wang, Mengmeng
  email: mengmengwang@zju.edu.cn
  organization: Advanced Perception on Robotics and Intelligent Learning Laboratory, College of Control Science and Enginneering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Liang
  orcidid: 0000-0001-7910-810X
  surname: Liu
  fullname: Liu, Liang
  email: leonliuz@zju.edu.cn
  organization: Advanced Perception on Robotics and Intelligent Learning Laboratory, College of Control Science and Enginneering, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Yong
  orcidid: 0000-0003-4822-8939
  surname: Liu
  fullname: Liu, Yong
  email: yongliu@iipc.zju.edu.cn
  organization: Advanced Perception on Robotics and Intelligent Learning Laboratory, College of Control Science and Enginneering, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Yunliang
  orcidid: 0000-0003-4500-5836
  surname: Jiang
  fullname: Jiang, Yunliang
  email: jyl@zjhu.edu.cn
  organization: Huzhou University, Huzhou, China
BookMark eNp9kM1PAjEUxBuDiYDeTbxs4nnx9WNpG08GQU1ATMRzU7qvySLsYrdE-e8twXjw4GneYX5vMtMjnbqpkZBLCgNKQd8sZrMBA0YHHKRgkp-QLtWC5gBSdtJdMMg1o3BGem27AqCiANklt-OviHWJZTZBG3cBs5d9sJuqzJ4xfjbhPfNNyF43dr3O5ssVupjdY0xSNfU5OfV23eLFj_bJ22S8GD3m0_nD0-humjumacy9KByFJTikJQjplPZDzcEuNZfOac-8UlI5ypUv0WueIOVVCawsVOHQ8T65Pv7dhuZjh200q2YX6hRp2FCktoWQRXLB0eVC07YBvdmGamPD3lAwh4lMmsgcJjI_EyVk-AdxVbSHajHYav0feHUEK0T8zdECtGSafwO34XQr
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_TGRS_2022_3188677
crossref_primary_10_3390_drones8050181
crossref_primary_10_1088_1361_6501_ad8a80
crossref_primary_10_1016_j_biosystemseng_2024_11_009
crossref_primary_10_1109_TGRS_2021_3128989
crossref_primary_10_1109_ACCESS_2022_3211394
crossref_primary_10_1109_TITS_2023_3304288
crossref_primary_10_1109_TPAMI_2023_3290594
crossref_primary_10_1016_j_infrared_2024_105475
crossref_primary_10_1016_j_engappai_2024_109362
crossref_primary_10_3390_app12115458
crossref_primary_10_32604_cmes_2024_052759
crossref_primary_10_3390_aerospace11050392
crossref_primary_10_1007_s11760_025_04222_4
crossref_primary_10_3390_app15137194
crossref_primary_10_1007_s42979_024_02658_y
crossref_primary_10_1109_ACCESS_2024_3349978
crossref_primary_10_1016_j_eswa_2023_120185
crossref_primary_10_3390_s23167242
crossref_primary_10_1109_LGRS_2022_3223470
crossref_primary_10_1007_s11042_022_13735_w
crossref_primary_10_1016_j_compag_2024_108719
crossref_primary_10_1007_s11801_024_3063_z
crossref_primary_10_3390_electronics14020217
crossref_primary_10_34133_2022_9892464
crossref_primary_10_1016_j_compag_2024_109242
crossref_primary_10_1109_TPAMI_2023_3257546
crossref_primary_10_1109_TMM_2024_3358085
crossref_primary_10_1109_JSEN_2024_3467030
crossref_primary_10_1109_TMM_2024_3358080
crossref_primary_10_1007_s11227_025_07243_5
crossref_primary_10_1109_TGRS_2024_3379436
crossref_primary_10_1016_j_engappai_2025_110092
crossref_primary_10_1177_00405175231205898
crossref_primary_10_1016_j_eswa_2023_121811
crossref_primary_10_1109_ACCESS_2024_3509986
crossref_primary_10_3390_s24175661
crossref_primary_10_1109_JIOT_2025_3559921
crossref_primary_10_1016_j_patcog_2023_109801
crossref_primary_10_3390_s23167027
crossref_primary_10_1007_s11554_024_01562_1
crossref_primary_10_1016_j_imavis_2024_105054
crossref_primary_10_3390_app14041664
crossref_primary_10_3390_s23167145
crossref_primary_10_1007_s10489_023_05216_w
crossref_primary_10_1016_j_patcog_2025_112449
crossref_primary_10_1049_ipr2_70027
crossref_primary_10_1109_TCE_2025_3527678
crossref_primary_10_1111_exsy_13444
crossref_primary_10_1016_j_aei_2024_102748
crossref_primary_10_1088_1361_6501_adcf41
crossref_primary_10_1177_14727978251362627
crossref_primary_10_1016_j_imavis_2025_105469
crossref_primary_10_3390_s22124339
crossref_primary_10_1109_ACCESS_2023_3264214
crossref_primary_10_1016_j_compag_2022_107609
crossref_primary_10_1109_TASE_2024_3517537
crossref_primary_10_3389_fmars_2022_1073615
crossref_primary_10_1007_s00371_023_02808_y
crossref_primary_10_21015_vtse_v13i2_2136
crossref_primary_10_1016_j_imavis_2023_104697
crossref_primary_10_3390_appliedmath5020058
crossref_primary_10_1109_TCSVT_2023_3284161
crossref_primary_10_1186_s10033_023_00874_w
crossref_primary_10_1109_TMM_2025_3542958
crossref_primary_10_1038_s41598_023_43458_3
crossref_primary_10_1109_TMM_2023_3264008
crossref_primary_10_3390_s25010214
crossref_primary_10_1007_s11760_024_03527_0
crossref_primary_10_1109_TPWRD_2024_3450185
crossref_primary_10_1007_s00371_024_03749_w
crossref_primary_10_1007_s00521_025_11076_x
crossref_primary_10_1016_j_patcog_2024_110976
crossref_primary_10_1109_TMM_2024_3521683
crossref_primary_10_3390_s23218851
crossref_primary_10_1016_j_engappai_2024_109684
crossref_primary_10_1007_s11227_025_06950_3
crossref_primary_10_3390_electronics12173600
crossref_primary_10_1049_ipr2_12766
crossref_primary_10_1016_j_jksuci_2023_101863
crossref_primary_10_1109_ACCESS_2024_3387938
crossref_primary_10_1016_j_patcog_2024_110983
crossref_primary_10_1007_s11042_023_16231_x
crossref_primary_10_1016_j_jclepro_2023_140415
crossref_primary_10_1016_j_neucom_2025_130133
crossref_primary_10_1109_TCSVT_2022_3221755
crossref_primary_10_1007_s40747_024_01652_4
crossref_primary_10_1109_TMM_2023_3330103
crossref_primary_10_1016_j_eswa_2022_119148
crossref_primary_10_1117_1_JEI_32_6_063007
crossref_primary_10_1109_JSTARS_2024_3452680
crossref_primary_10_1109_TMM_2024_3453040
crossref_primary_10_3390_app14156398
crossref_primary_10_1109_TCSVT_2025_3532243
crossref_primary_10_1109_TGRS_2025_3581150
crossref_primary_10_1177_00202940241268952
crossref_primary_10_3390_electronics12204293
crossref_primary_10_1016_j_eswa_2024_125732
crossref_primary_10_1109_ACCESS_2023_3286031
crossref_primary_10_3389_fnbot_2023_1315251
crossref_primary_10_1007_s00371_024_03709_4
crossref_primary_10_1109_LGRS_2024_3372500
crossref_primary_10_1016_j_engappai_2023_107513
crossref_primary_10_3390_rs14163919
crossref_primary_10_3390_rs15143525
crossref_primary_10_1016_j_compbiomed_2022_105763
crossref_primary_10_1007_s41060_025_00881_1
crossref_primary_10_1109_ACCESS_2022_3156953
crossref_primary_10_1002_cpe_70118
crossref_primary_10_1186_s13104_025_07263_7
crossref_primary_10_1049_cit2_12411
crossref_primary_10_1109_JSTARS_2022_3176141
crossref_primary_10_1109_TCSVT_2022_3198329
crossref_primary_10_3389_fnbot_2023_1273251
crossref_primary_10_1109_TGRS_2024_3417960
crossref_primary_10_1109_TKDE_2022_3179608
crossref_primary_10_1016_j_eswa_2024_125964
crossref_primary_10_1109_TMM_2022_3178871
crossref_primary_10_1007_s10278_025_01460_3
crossref_primary_10_3390_s23052439
crossref_primary_10_1007_s10044_025_01526_6
crossref_primary_10_1049_ipr2_70188
crossref_primary_10_1080_09540091_2023_2168254
crossref_primary_10_1109_ACCESS_2024_3388590
crossref_primary_10_3390_rs15235575
crossref_primary_10_1109_TMM_2024_3521793
crossref_primary_10_1016_j_patrec_2024_11_027
crossref_primary_10_1109_TMM_2025_3542970
crossref_primary_10_1016_j_patcog_2023_109558
crossref_primary_10_1049_ell2_12732
crossref_primary_10_1016_j_eswa_2024_126375
crossref_primary_10_1109_TGRS_2024_3363614
crossref_primary_10_3390_rs17142415
crossref_primary_10_1007_s11042_023_16309_6
crossref_primary_10_1109_ACCESS_2025_3538873
crossref_primary_10_1007_s00371_025_03878_w
crossref_primary_10_1016_j_image_2023_116919
crossref_primary_10_1016_j_neunet_2022_08_029
crossref_primary_10_1109_TGRS_2023_3276995
crossref_primary_10_1121_10_0037080
crossref_primary_10_1016_j_eswa_2022_118665
crossref_primary_10_1038_s41598_024_51868_0
crossref_primary_10_1007_s00521_023_08741_4
crossref_primary_10_1109_TITS_2024_3522195
crossref_primary_10_1109_JSEN_2023_3263539
crossref_primary_10_1109_ACCESS_2023_3260223
crossref_primary_10_1109_TGRS_2024_3454355
crossref_primary_10_1016_j_compag_2022_107587
crossref_primary_10_3390_geosciences12060248
crossref_primary_10_1016_j_bspc_2025_108064
crossref_primary_10_1016_j_eswa_2024_125505
crossref_primary_10_1155_2022_6394823
crossref_primary_10_1016_j_dsp_2025_105268
crossref_primary_10_1007_s10044_024_01323_7
crossref_primary_10_3390_electronics13245014
crossref_primary_10_3390_s25020589
crossref_primary_10_1016_j_neucom_2025_130327
crossref_primary_10_3390_app13116587
crossref_primary_10_1007_s11042_023_17838_w
crossref_primary_10_3390_rs17121997
crossref_primary_10_1007_s13197_025_06428_3
crossref_primary_10_3390_rs15092322
crossref_primary_10_1007_s11042_024_18618_w
crossref_primary_10_1016_j_eswa_2024_124686
crossref_primary_10_1016_j_sigpro_2024_109619
crossref_primary_10_3390_s25113511
crossref_primary_10_1016_j_autcon_2022_104399
crossref_primary_10_1016_j_cja_2025_103781
crossref_primary_10_1080_01431161_2022_2038396
crossref_primary_10_1109_TGRS_2021_3133956
crossref_primary_10_3390_electronics12051142
crossref_primary_10_3390_electronics12040817
crossref_primary_10_3390_sym16040401
crossref_primary_10_1177_30504554251319452
crossref_primary_10_3390_electronics14081548
crossref_primary_10_1109_ACCESS_2023_3321966
crossref_primary_10_1109_TGRS_2023_3346041
crossref_primary_10_3390_electronics13020409
crossref_primary_10_3390_rs15092433
crossref_primary_10_1007_s00530_023_01243_2
crossref_primary_10_3390_electronics13234820
crossref_primary_10_3390_rs15112728
crossref_primary_10_1088_1361_6501_ad7972
crossref_primary_10_1016_j_isprsjprs_2025_01_005
crossref_primary_10_3390_app14114857
crossref_primary_10_3390_s23187806
crossref_primary_10_1587_elex_22_20240283
crossref_primary_10_1007_s10489_024_05556_1
crossref_primary_10_1109_TPAMI_2025_3544621
crossref_primary_10_1007_s00371_024_03284_8
crossref_primary_10_3390_ijgi14090365
crossref_primary_10_3390_s24175496
crossref_primary_10_1080_22797254_2025_2540109
crossref_primary_10_1016_j_cja_2024_06_036
crossref_primary_10_1007_s11042_021_11413_x
crossref_primary_10_3390_insects16090959
crossref_primary_10_1109_TMM_2023_3236212
crossref_primary_10_1007_s10489_024_05418_w
crossref_primary_10_1016_j_measurement_2025_117019
crossref_primary_10_1109_TNNLS_2024_3454063
crossref_primary_10_1016_j_engappai_2024_108500
crossref_primary_10_1016_j_undsp_2024_07_003
crossref_primary_10_1007_s00371_024_03277_7
crossref_primary_10_1109_TMM_2024_3521841
crossref_primary_10_3389_fpls_2024_1375118
crossref_primary_10_1109_TIM_2025_3556896
crossref_primary_10_1109_TGRS_2025_3602640
crossref_primary_10_1016_j_ipm_2024_103858
crossref_primary_10_1109_JSTARS_2025_3551551
crossref_primary_10_1109_TGRS_2024_3520161
crossref_primary_10_1109_TITS_2024_3373793
crossref_primary_10_1155_2022_6390260
crossref_primary_10_1109_TMM_2025_3543091
crossref_primary_10_1016_j_imavis_2024_105232
crossref_primary_10_1109_TIM_2022_3219500
crossref_primary_10_3390_rs16040644
crossref_primary_10_1109_ACCESS_2023_3292881
crossref_primary_10_3390_math12050622
crossref_primary_10_3390_drones9090659
crossref_primary_10_1007_s11554_024_01507_8
crossref_primary_10_1007_s10462_023_10455_x
crossref_primary_10_1109_TAES_2024_3512525
crossref_primary_10_1007_s11760_025_04085_9
crossref_primary_10_1109_TMM_2025_3535341
crossref_primary_10_1109_JSEN_2024_3374388
crossref_primary_10_3390_machines10080626
crossref_primary_10_1016_j_patcog_2023_110041
crossref_primary_10_1109_TMM_2024_3396281
crossref_primary_10_1016_j_patcog_2024_110312
crossref_primary_10_1109_TPAMI_2022_3166956
crossref_primary_10_1049_ell2_12690
crossref_primary_10_1109_ACCESS_2025_3584952
crossref_primary_10_1109_TGRS_2023_3294241
crossref_primary_10_1371_journal_pone_0304691
crossref_primary_10_1016_j_autcon_2024_105643
crossref_primary_10_1109_TMM_2024_3371787
crossref_primary_10_3390_math10122150
crossref_primary_10_3390_s24123828
crossref_primary_10_1007_s00530_024_01360_6
crossref_primary_10_1109_TMM_2022_3223780
crossref_primary_10_1109_TAES_2023_3238703
crossref_primary_10_1109_TCSVT_2024_3402097
crossref_primary_10_1109_TMM_2023_3347645
crossref_primary_10_1016_j_cviu_2023_103787
crossref_primary_10_1109_TMM_2023_3234368
crossref_primary_10_1109_TGRS_2023_3344584
crossref_primary_10_3390_app122211854
crossref_primary_10_1109_TIV_2024_3450201
crossref_primary_10_1016_j_dsp_2025_105121
crossref_primary_10_1016_j_neucom_2024_127715
crossref_primary_10_1017_pasa_2023_34
crossref_primary_10_1109_TIM_2024_3385846
crossref_primary_10_3390_info16090798
crossref_primary_10_1109_TCSVT_2023_3286896
crossref_primary_10_1016_j_cviu_2025_104428
crossref_primary_10_1109_ACCESS_2023_3286545
crossref_primary_10_1016_j_knosys_2024_112353
crossref_primary_10_1109_TGRS_2023_3343806
crossref_primary_10_3390_app142411604
Cites_doi 10.1109/CVPR.2016.207
10.1109/ICCV.2017.324
10.1109/CVPR.2019.00720
10.1007/978-3-030-01231-1_6
10.1109/CVPR.2016.89
10.1109/CVPR.2017.106
10.1109/ICCV.2019.00615
10.1109/TMM.2018.2863602
10.1109/TMM.2016.2642789
10.1109/ICCV.2015.169
10.1109/CVPR.2018.00062
10.1109/CVPR.2018.00010
10.1109/CVPR.2019.00817
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2016.91
10.3390/s17051062
10.1109/CVPR.2019.00091
10.1609/aaai.v33i01.33019259
10.1109/TMM.2020.2999182
10.1109/CVPR.2017.243
10.1109/ICCV.2019.00975
10.1109/CVPR.2014.81
10.1109/ICCV.2019.00982
10.1109/TMM.2019.2916104
10.1007/978-3-030-01240-3_21
10.1109/ICCV.2019.00972
10.1109/CVPR.2016.232
10.1109/CVPR.2019.00093
10.1007/978-3-319-46493-0_22
10.1109/CVPR.2017.634
10.1109/CVPR.2017.211
10.1007/978-3-030-01252-6_24
10.1109/CVPR.2018.00913
10.1007/978-3-030-00764-5_51
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2021.3074273
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 1979
ExternalDocumentID 10_1109_TMM_2021_3074273
9409729
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61836015
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-f45c10b0ce1d047c89f6930ab937cc9f2f8878c138fdef932918f8d02d585cec3
IEDL.DBID RIE
ISICitedReferencesCount 323
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778959200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-9210
IngestDate Mon Jun 30 04:47:19 EDT 2025
Sat Nov 29 03:10:07 EST 2025
Tue Nov 18 21:58:05 EST 2025
Wed Aug 27 02:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f45c10b0ce1d047c89f6930ab937cc9f2f8878c138fdef932918f8d02d585cec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4035-0630
0000-0001-9476-3014
0000-0003-4822-8939
0000-0001-7910-810X
0000-0003-4500-5836
PQID 2647425475
PQPubID 75737
PageCount 12
ParticipantIDs proquest_journals_2647425475
crossref_primary_10_1109_TMM_2021_3074273
ieee_primary_9409729
crossref_citationtrail_10_1109_TMM_2021_3074273
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References lin (ref38) 0
ref35
ref13
ref34
ref37
ref36
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref39
ref17
haris (ref9) 2018
ref16
bai (ref10) 0
ref18
yu (ref19) 0
law (ref14) 0
zhou (ref15) 2019
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref3
liu (ref5) 0
ref6
girshick (ref41) 2018
goodfellow (ref12) 0
ref40
dai (ref4) 0
References_xml – ident: ref32
  doi: 10.1109/CVPR.2016.207
– ident: ref7
  doi: 10.1109/ICCV.2017.324
– start-page: 734
  year: 0
  ident: ref14
  article-title: CornerNet: Detecting objects as paired keypoints
  publication-title: Proc Eur Conf Comput Vis
– start-page: 206
  year: 0
  ident: ref10
  article-title: SOD-MTGAN: Small object detection via multi-task generative adversarial network
  publication-title: Proc Eur Conf Comput Vis
– ident: ref27
  doi: 10.1109/CVPR.2019.00720
– start-page: 740
  year: 0
  ident: ref38
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– ident: ref36
  doi: 10.1007/978-3-030-01231-1_6
– ident: ref40
  doi: 10.1109/CVPR.2016.89
– ident: ref8
  doi: 10.1109/CVPR.2017.106
– ident: ref22
  doi: 10.1109/ICCV.2019.00615
– ident: ref34
  doi: 10.1109/TMM.2018.2863602
– ident: ref23
  doi: 10.1109/TMM.2016.2642789
– start-page: 2672
  year: 0
  ident: ref12
  article-title: Generative adversarial nets
  publication-title: Proc Neural Inf Process Syst
– start-page: 21
  year: 0
  ident: ref5
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis
– year: 2018
  ident: ref9
  article-title: Task-driven super resolution: Object detection in low-resolution images
– ident: ref2
  doi: 10.1109/ICCV.2015.169
– ident: ref30
  doi: 10.1109/CVPR.2018.00062
– ident: ref29
  doi: 10.1109/CVPR.2018.00010
– year: 2019
  ident: ref15
  article-title: Objects as points
– ident: ref35
  doi: 10.1109/CVPR.2019.00817
– ident: ref3
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref6
  doi: 10.1109/CVPR.2016.91
– ident: ref28
  doi: 10.3390/s17051062
– ident: ref43
  doi: 10.1109/CVPR.2019.00091
– ident: ref26
  doi: 10.1609/aaai.v33i01.33019259
– ident: ref33
  doi: 10.1109/TMM.2020.2999182
– ident: ref31
  doi: 10.1109/CVPR.2017.243
– ident: ref44
  doi: 10.1109/ICCV.2019.00975
– ident: ref1
  doi: 10.1109/CVPR.2014.81
– ident: ref13
  doi: 10.1109/ICCV.2019.00982
– ident: ref18
  doi: 10.1109/TMM.2019.2916104
– ident: ref21
  doi: 10.1007/978-3-030-01240-3_21
– ident: ref16
  doi: 10.1109/ICCV.2019.00972
– ident: ref37
  doi: 10.1109/CVPR.2016.232
– ident: ref17
  doi: 10.1109/CVPR.2019.00093
– ident: ref24
  doi: 10.1007/978-3-319-46493-0_22
– year: 2018
  ident: ref41
  article-title: Detectron
– year: 0
  ident: ref19
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: Proc Int Conf Learn Representations
– start-page: 379
  year: 0
  ident: ref4
  article-title: R-FCN: Object detection via region-based fully convolutional networks
  publication-title: Proc Neural Inf Process Syst
– ident: ref39
  doi: 10.1109/CVPR.2017.634
– ident: ref11
  doi: 10.1109/CVPR.2017.211
– ident: ref20
  doi: 10.1007/978-3-030-01252-6_24
– ident: ref25
  doi: 10.1109/CVPR.2018.00913
– ident: ref42
  doi: 10.1007/978-3-030-00764-5_51
SSID ssj0014507
Score 2.7057776
Snippet Small object detection remains an unsolved challenge because it is hard to extract the information of small objects with only a few pixels. While scale-level...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1968
SubjectTerms Datasets
deep learning
Detectors
Distillation
Feature extraction
feature pyramid
feature super-resolution
knowledge distillation
Object detection
Object recognition
Pipelines
Semantics
Signal resolution
Small object detection
Superresolution
Title Extended Feature Pyramid Network for Small Object Detection
URI https://ieeexplore.ieee.org/document/9409729
https://www.proquest.com/docview/2647425475
Volume 24
WOSCitedRecordID wos000778959200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MenG6K0yk5eBHslrZpm-BJ1OHBzYETdivNFwy2TrpN8L83ybqhKIK3HpJS3q_J-71vgEtDKTDHlHicc-oZDa09jjPhhZlgPAoJldI1cX1KBgM6HrNhBa63tTBKKZd8pjr20cXy5VysrKusy2xzpoBVoZok8bpWaxsxIJErjTbqCHvM2DGbkCRm3VG_bwzBwO-E1hBMwm8qyM1U-XERO-3Sq__vuw5gv2SR6HYN-yFUVN6A-mZCAyoPbAP2vrQbbMLNQ-nxRpb4rQqFhh9FNptINFgngyPDYNHLLJtO0TO3Dhp0r5YuVys_gtfew-ju0SuHJ3giYP7S0yQSvoFBKF9ikgjKtJ16mHHDR4RgOtDmeqHCD6mWShsWx3yqqcSBNAaEUCI8hlo-z9UJIBnHmNgIqUw00YRRbd6pFOPcsLk4C1rQ3cgzFWVncTvgYpo6CwOz1CCQWgTSEoEWXG13vK27avyxtmklvl1XCrsF7Q1kaXnsFqlhd2ZPRJLo9PddZ7Ab2PoF50NpQ21ZrNQ57Ij35WRRXLg_6hNo3MeY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagPTqfidGoefBHslrbpmuCT6MbEbQ6csLfS3GCwi-wi-O9Nsm4oiuBbH5JSztfkfOcOcGUoBeaYEo9zTj2jobXHcSq8MBWMRyGhUromrq2406H9Puvm4GZdC6OUcslnqmIfXSxfTsTCusqqzDZnCtgGbEaEBHhZrbWOGZDIFUcbhYQ9ZiyZVVASs2qv3TamYOBXQmsKxuE3JeSmqvy4ip1-aRT-92X7sJfxSHS3BP4AcmpchMJqRgPKjmwRdr80HDyE23rm80aW-i2mCnU_puloIFFnmQ6ODIdFL6N0OETP3Lpo0IOau2yt8RG8Nuq9-6aXjU_wRMD8uadJJHwDhFC-xCQWlGk79zDlhpEIwXSgzQVDhR9SLZU2PI75VFOJA2lMCKFEeAz58WSsTgDJWg0TGyOVsSaaMKrNO5VinBs-V0uDElRX8kxE1lvcjrgYJs7GwCwxCCQWgSRDoATX6x1vy74af6w9tBJfr8uEXYLyCrIkO3izxPA7sycicXT6-65L2G722q2k9dh5OoOdwFYzOI9KGfLz6UKdw5Z4nw9m0wv3d30C90LK3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+Feature+Pyramid+Network+for+Small+Object+Detection&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Deng%2C+Chunfang&rft.au=Wang%2C+Mengmeng&rft.au=Liu%2C+Liang&rft.au=Liu%2C+Yong&rft.date=2022&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=24&rft.spage=1968&rft.epage=1979&rft_id=info:doi/10.1109%2FTMM.2021.3074273&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2021_3074273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon